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Challenges in modern control systems

Power system:
- Frequency control
- Voltage control

,,,,,,,,

Customer:

- Control of building
networks

- Control of flexible loads
and storage capacities

i4Energy seminar: 12pm, 310 SDH ' ,
"The Role of Supply-Following Loads in Highly Renewable Chusegys ' TOPOSa)
Electricity Grids”, Jay Taneja

« Large-scale, complex system Composed of coupled subsystems
« (Constraints » Often high-speed dynamics

« Uncertainties « Computation and communication

» High performance and safety constraints




Challenges in modern control systems

Courtesy of Dr. Pu Wang

« Large-scale, complex system « Composed of coupled subsystems
« (Constraints » Often high-speed dynamics
« Uncertainties « Computation and communication

» High performance and safety constraints



Model Predictive Control (MPC)
— A High Performance Method for Constrained Control

N—1
u*(x) :=argmin  Vi(xy) + Z (X, uk)
k=0
st. xp=x measurement

Xkr1 = F(xk, ug)  system model
(xx, ux) € X XU constraints

XN € XF invariance

u(x) ={ugh ... uy_1} state x

—)[ system '—) output y

Each sample time:
1. Measure / estimate state

2. Solve optimization problem for entire planning window
3. Implement only the first control action



Model Predictive Control (MPC)
— A High Performance Method for Constrained Control

N—1
u*(x) :=argmin  Vs(xy) + Z (X, uk)
k=0

s.t. xg=x measurement
Xer1 = F(xk, ug)  system model
(xk, ug) € X xU constraints

XN € XF invariance
u (x) ={ugh-. . un_q} T state x
—)[ system }—) output y
Classical MPC theory: Established approach:
© High performance » Optimality
© Recursive constraint satisfaction e Terminal cost and constraint

© Stability by design



Real-time Model Predictive Control

N—1
u*(x) :=argmin  Vs(xy) + Z (X, uk)
k=0

st. xg=x measurement

Xkr1 = F(xk, ug)  system model

Embédded (xx, ux) € X XU constraints
processor Xy € X invariance
u*(x) = {up .. Uy 1) T state x
SIS, X output y
o
Classical MPC theory: Bounded computation time
© High performance —> Early termination

© Recursive constraint satisfaction - Invalidates MPC theory based on
© Stability by design optimality



Distributed Model Predictive Control

|—: contr, :—| [ contrs i—| |—: contry, :—|
- SyS1 J - SySS J o - SySM J
|_: SYS, :—|
3l contr, |
Classical MPC theory: Local computation and information:
© High performance - Restrictive local terminal conditions

© Recursive constraint satisfaction —> Stability in exchange for significant
© Stability by design conservatism



Outline; Distributed and Real-time MPC

Centralized MPC theory:

© Recursive constraint satisfaction

© Stability by design

Real-time MPC:

» Flexibility and fast convergence
through interior-point methods

« BUT: Variable solve-times

Distributed MPC:

* Reduced conservatism through
distributed optimization

« BUT: Global terminal conditions

Established approach:
» Optimality
* Terminal cost and constraint

Outline (Part |):

Stability and constraint satisfaction for
any real-time constraint

- MPC for fast, safety-critical systems

Outline (Part II):

Stability with larger region of attraction
based on local information

- Plug and Play MPC



Outline; Distributed and Real-time MPC

Centralized MPC theory:

© Recursive constraint satisfaction

© Stability by design

Real-time MPC:

» Flexibility and fast convergence
through interior-point methods

« BUT: Variable solve-times

Established approach:
» Optimality
* Terminal cost and constraint

Outline (Part |):

Stability and constraint satisfaction for
any real-time constraint

- MPC for fast, safety-critical systems



Stability and Invariance of Optimal MPC

N—1
Vy(x) =min  Wy(x,u) := Vi(xy) + Z x| Qx; + ul Ruj
i=0
st xg=x measurement
Xi+1 = AXx; + Bu; system model
Cxi+Du <b constraints

Xy € Xr terminal constraint

Assumptions: 1. Xr C X is invariant
X € Xr = Ax + Bur(x) € Xr

2. Vi(x) is a Lyapunov function in X
Vr(Ax + Bug(x)) — Vr(x) < —I(x, ug(x))

Theorem:

« Vy(x) is a convex Lyapunov function
» The feasible set is invariant under the optimal MPC controller

10



Stability and Invariance of Optimal MPC

N—1
Viy(x) =min  Wy(x,u) := Ve(xy) + Z x! Qx; + u! Ruj;
=0
s.t. xg=x measurement
Xi+1 = AXx; + Bu; system model
Cxi+Du <b constraints
XN € Xr terminal constraint

Assumptions: 1. Xr C X is invariant
X € Xr = Ax + Bur(x) € Xr Ax;

2. Vi(x) is a Lyapunov function in X
Vr(Ax + Bug(x)) — Vr(x) < —I(x, ug(x))

Proof: Shifted sequence us"™ = [uf, .. ., uy_ oy, KX

» isfeasible - Recursive feasibility and invariance

e decreases the cost Vi(xT) — Vi (x) < VEM(xT) — Vi (x) < —I(x, uf) <0
> Vjy(x) is a Lyapunov function




Real-Time MPC Controller Synthesis

Large-scale, ms Medium-scale, us Small-scale, ns

Interior point methods Gradient approaches Pre-compute controller
* Modify controller to « Bound computation * Fixed time online

be robust to time time a priori

constraints
X Generic u, X Deterministic u.  x Analytic
—>  optimization ——> —> o —> —> expression for =

optimizer
code control law

< Flexibility
Speed >

|deal approach is problem specific

12



Real-time MPC using interior-point methods

Real-time online MPC:

Guarantee that

* within the real-time constraint
« afeasible solution

« satisfying stability criteria

- for any admissible initial state
Is found.

13



Real-time MPC using interior-point methods

Real-time online MPC:

Guarantee that

« within the real-time constraint < Early termination
« afeasible solution < Warm-start

« satisfying stability criteria

- for any admissible initial state

Is found.

oy
%
o
Q
2]
o
@

Suboptimal
solution

Warm-start Online optimization

14



Real-time MPC using interior-point methods

Real-time online MPC:

Guarantee that

« within the real-time constraint < Early termination
« afeasible solution < Warm-start

« satisfying stability criteria

- for any admissible initial state

Is found.

Many recent codes have demonstrated that extreme speeds are possible...

O0QP CVXGEN gpOases QPSchur
Object-oriented software Code Generation for Online Active Set Strategy A dual, active-set, Schur-
for quadratic Convex Optimization complement method for

programming quadratic programming

... but cannot guarantee stabillity in a real-time setting!

15



Example: Effect of limited computation time

Unstable example

Closgd loop trajectory: . 1.2 1 s 1 y
Optimal control law

0 1 0.5
x1] <5, -5<x <1
U <1,N=5Q=/R=1

x
.
O 1

N~ SN
Uaa i

5 10 15 20 25
Time Step

w

N

—

Computation time [s]

(@)

Closed loop trajectory:
Optimization stopped after 4 iterations
= max computation time of 21ms

Limited computation time => No stability properties

16



Example: Stability under proposed real-time method

Unstable example

Closed loop trajectory: L+ (12 1 1
Optimal control law X = X+ u

0 1 0.5
x1] <5, -5<x <1
U <1,N=5Q=/R=1

x
.
O 1

N SN
e N

5 10 15 20 25
Time Step

w

N

—

Computation time [s]

(@)

Closed loop trajectory:
Optimization stopped after 4 iterations
= max computation time of 21ms

Real-time robust MPC : Nearly optimal and satisfies time constraints
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Loss of stability guarantee in real-time

Requirement for stability: Lyapunov function

- Use of MPC cost as Lyapunov function
- Key condition: Decrease of MPC cost at every time step
Viv(Xe, ur) < Wy(Xe—1, Up—1)

Using interior-point methods this condition can be violated even when
initializing with a stabilizing sequence, e.g. the shifted sequence

Example: Barrier interior-point method
Minimize augmented cost

mZin f(z) [> min  f(z) — “Z log(—G;z + d;)
st. Fz =Ex =
Gz <d

s.t. Fz =Ex

- Decrease in augmented cost does not enforce a decrease in MPC cost
- Steady-state offset for u#0



Real-time stablility guarantees

Goal: Ensure that suboptimal cost is Lyapunov function

Introduce ‘Lyapunov constraint’:
Enforces decrease in suboptimal MPC cost at each iteration

Wiv(X£°™, ug) < Wv(Xe—1, up—1) — €llxe—1 13 (Quadratic constraint)

Suboptimal cost for any feasible solution to real-time problem provides
Lyapunov function

- Stability for any real-time constraint

If ...

* We can provide (strictly) feasible solution for Lyapunov constraint in real-time
Key: Ensure that epsilon progress is always possible without optimization

—> Technique based on warm-starting from previous sampling time

* We can solve quadratically constrained QPs with modified structure

19



107 ¢

CVXGEN F\

Time per 10—3:_
iteration (s)

10 3
4
77 us [ﬁ | | | | | |
0 5 10 15 20 25 30
Number of masses
(Number of states/?2)

More details in [Domabhidi, et al., ACC 2012].

AR
d d d d
Oscillating masses:

QP with
- box constraints
- diagonal cost

FORCES

forces.ethz.ch
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-1

10

Time per ;-
iteration (s)

107

207 s r/

"‘

~ (-

(>

FORCES RT is stabilizing for
all numbers of iterations!
= 207 us is obtainable
= Other methods ~10 iterations

5

10 1'5 2'0 2'5 3'o
Number of masses
(Number of states/?2)

More details in [Domabhidi, et al., ACC 2012].

Oscillating masses:

QP with
- box constraints
- diagonal cost

QCQP with
- quadr. terminal set
- real-time constr.

FORCES

forces.ethz.ch
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summary: Real-Time MPC

Real-time online MPC:

Guarantee that

» within the real-time constraint < Early termination

» afeasible solution < Warm-start

» satisfying stability criteria < Lyapunov constraint
« for any admissible initial state

is found.

* Optimal MPC requires unknown computation time

- Fast systems require theory of real-time MPC
* Real-time method provides stability guarantees for arbitrary time constraints
« Extension to robust tube-based MPC
» Extension to tracking (more involved)
« Possible to achieve millisecond solve-times on inexpensive hardware
» Real-time MPC still faster than solvers without guarantees

[Zeilinger, et al., Automatica 2013, accepted], [Domahidi, et al., CDC 2012]

22



Outline; Distributed and Real-time MPC

Centralized MPC theory:

© Recursive constraint satisfaction

© Stability by design

Real-time MPC:

» Flexibility and fast convergence
through interior-point methods

« BUT: Variable solve-times

Distributed MPC:

* Reduced conservatism through
distributed optimization

« BUT: Global terminal conditions

Established approach:
» Optimality
* Terminal cost and constraint

Outline (Part |):

Stability and constraint satisfaction for
any real-time constraint

Outline (Part ll):

Stability with larger region of attraction
based on |local information



Distributed Model Predictive Control (MPC)

Communication with Cooperative objective
neighbours N I(x,u) = Z,"il li(x;, uj)
|—: contr, i—| |—: contrg i—| |—: contr,, i—|

\ SyS1 J<—> SySS ] v € SySI\/I ]

| . | Coupled linear dynamics
|;\ 2 )(:| XI-+ = Z_//'\il A,'J'XJ' + B,'LI,' = AMXM + B,‘LI,'
> ceniit Independent constraints

xi € X; u; €U,

How to ensure stability and constraint satisfaction without central coordination?



Distributed Model Predictive Control (MPC)

Plug and Play MPC:

Allow subsystems to join or leave the network

f¢l\f|\ f \fv\

~
N

J

N\

J

) (
contr, ] [ contrs
Sys; i SYyS,
) (
Sys, ] [ Sys,
contr, |2 contr,

contry,

k

' -

SYSy,

~
J
)
J

Modified dynamics

XI'—|— —_—

jENmod Aiix; + Biu;

How to maintain stability and constraint satisfaction during network changes”?



Distributed Optimization Requires Structure

min fi(y D L
Z i) Distributed optimization
st.yiey, requires that the problem is
Z Ay — structured
I.yl =C

Example: Dual Decomposition
— Mmi (v T RV _ in F.(\- T A\
g(A) = min > fily) + A (ZA,y, c) ZQ”G'Q fi(yi) + A" Ay,
Gradient of the dual function: Vg(X) = > " Ajy/(A\) — ¢

Gradient-based approach Optimal values y;* = Local optimization
AT =X+ aVg(\) Dual update - Consensus

Many variants on this theme (ADMM, AMA,...)



Two Conflicting Requirements

N—-1

min  Vi(xy) + Z I(xi, u;)

= A, B structured
5> st. Xp=x > Plant > . .
xio1 = Ax + B, X, U distributed
(a,u) € &> U /(x, u) distributed
xy € Xr

© Stability and invariance fif: ~ Structured optimization

_ . /‘ Dense Terminal cost & constraints:
1. Xr C X 1s invariant

p— 1 e o o
X € Xr = Ax + Bur(x) € Xr Xr=XF X X Xf
Dense M )
2. Vr(x) is a Lyapunov function in Xf Vr(x) = va (XA )
Ve(Ax + Bue(x)) — Vr(x) < —1(x, ur(x)) =L

Uf(X) — [U}(X./\ﬁ) """ UIIFW(X./\/’M)]T

Goal: Satisfy both requirements without central coordination

—> Online & offline optimization structured according to system coupling



Structured Lyapunov Function

Lyapunov requirement: V7(x") — Vi(x) < —/(x, us(x))
Structure requirement: V¢ (x) = VA (xq) + -+ - 4+ VM (xp)

Idea: Allow local increase while requiring a global decrease

Theorem: [Jokic, Lazar, 2009]
M

Vi(x) = Z V! (xx) is a Lyapunov function if
i=1

Vi(xT) = Vi(x) < —li(xw;) +¥i(xn;)  Possible local increase

M
> i) <0 Global decrease
=1

© Global Lyapunov function - Stability

28



Structured Invariant Set

Invariance requirement: x € Xr = xT € X%

Structure requirement:  Xr(o) = X2 (o1) x - x XM ()

|dea: Level sets of a Lyapunov function are invariant
Xf{ VfX) va XN)<O(}

Problem: This terminal constraint couples all sub-systems

Want a condition that can be tested in a distributed fashion
M

Xf(o) ={x | Vi(xn;) < o} where » aj=a<a
1=0

Problem: Static sets X/ (a;,) are not invariant...
Vf(X,') < 7$ Vf(XI-—i_) < o , since
VI () = Vi (xi) < =1l up () +vi(xa;) £ 0



Structured Dynamic Invariant Set

Invariance requirement: x € Xr = xT € X%

Structure requirement:  Xr(o) = X2 (o1) x - x XM ()

« Define auxiliary dynamics, with the same structure as the system dynamics:

at = aj +vi(xn)

« Choose initial o such that Y- a; < @&, {x | > Vi(xy) <a} € X

Theorem:
1. Time-varying terminal set X/ (a;) = {x | V/(x)) < a;} is invariant
xi € XHay) = x € Xl (a))
2. All state and input constraints are satisfied in Xr(a)
Proof: From Y o = > a; + > vilwv) <X o
1. V(G S VE06) = i, up () + i) < o+ i) = o

2. Xf(a) C X = Xf(Ot_'_) C X

30



Structured Dynamic Invariant Set

Invariance requirement: x € Xr = xT € X%

Structure requirement:  Xr(o) = X2 (o1) x - x XM ()

« Define auxiliary dynamics, with the same structure as the system dynamics:
af = a; +vi(xn)

« Choose initial o such that Y- a; < @&, {x | > Vi(xy) <a} € X

1. Time-varying terminal set X/ (a;) = {x | V/(x)) < a;} is invariant

X € X;(Oé,') — XI-+ < X;(Oél—'_)

2. All state and input constraints are satisfied in Xr(a)

© Recursive feasibility

31



Distributed MPC — Online Control

Structured MPC problem N—1
min Y VE(xi(N)) + > 1(x(k), ui(k))
=1 k=0

s.t.  xi(0) = X

xi(k 4+ 1) = Aixi(k) + Biui(k) + ) Ayxi(k)
JEN;

(x;(k), ui(k)) € X' x U’
xi(N) € Xf(a;)

Distributed control (online for every subsystem):

1. Measure state

2. Solve global MPC problem by distributed optimization, apply input u;

3. Update o = a; + v(xv;)



Distributed MPC - Synthesis and Online Control

Distributed synthesis in the linear quadratic case (offline):

1. Solve distributed LMI to compute:
e Local relaxed Lyapunov functions Vi (x;) = x P.x;
e Indefinite coupling i(xx;) = xi- [ixn:
e Local linear control laws uf (xy;) = Ky xw;

2. Solve distributed LP to compute initial feasible terminal size &

Distributed control (online for every subsystem):
1. Measure state
2. Solve global MPC problem by distributed optimization, apply input u;

3. Update o = a; + X]\_[I,(/V)FMXM(N)

No central coordination required!



Computational example

Chain of inverted pendulums (unstable)
Linearized around the origin
States: Angle and angular velocity of each pendulum

Inputs: Torque at each pivot

klZa b12

m; ANAA mp My
T 1
1 T




Computational example — Closed-Loop Simulation

14

Angle ¢.
Input Ti

——Pend.1, centr. MPC (cost 9.021)
-6r ——Pend.2 centr. MPC (cost 9.021)

0 = —— Pend.1, distr. MPC (cost 9.360)
——Pend.2, distr. MPC (cost 9.360)
-0.2r -8 Pend. 1, distr. MPC %=0 (cost 11.891)

Pend. 2, distr. MPC )$=0 (cost 11.891)

5 10 15 20 2 w0 3 40 4 s oA
Simulation step Simulation step
5 Pendulums, alternating direction method of multipliers, 100 iterations.

Initially all pendulums in origin, only pendulum 1 is deflected.

Cost of proposed method only 4% higher than centralized MPC and 21%
lower than for a trivial terminal set.
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Computational example — Local Terminal Sets

Pend. 1

Pend. 2

w 05
2 o
[0]
o

-0.5

Sizes of local terminal sets change dynamically

-05 0 05

Sim. step 1

0.5

-0.5

-05 0 05

Sim. step 20

0.5

-0.5

-05 0 05

Sim. step 40

180

~ 100 K

160 K
140

120

80
60 -

40

20 L

Pendulum 1
Pendulum 2
Pendulum 3
Pendulum 4
Pendulum 5

20 25 30
Simulation step

35

40
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Computational example — Region of Attraction

251

1.5F

¢1 ,max

0.5F

Centr. MPC

Distr. MPC
Distr. MPC )§ =0

Il Il Il T J
5 10 15 20 25 30
MPC prediction horizon

« Maximum feasible deflection of the first pendulum vs. prediction horizons

« Short prediction horizons: Region of attraction for proposed method significantly
larger than for trivial terminal set

* Long prediction horizons: All methods converge to the same maximum control
invariant set



Distributed Model Predictive Control (MPC)

Plug and Play MPC:

Allow subsystems to join or leave the network

)f
|_: contr,
SysS;

\T ';*T)

!

-

[ Sys,
3 contr,
k -

\A| TAJ

N

~ <

|_: contrs i—|

3 sysg

o 1 ~ 4

[ SyS, ]
> contr, [

<3 SYsw

|_: contry, i—|

Modified dynamics
XI-+ = ZJEMmOd A,JXJ + B,’U,‘

C: systems to be redesigned
R: systems that remain unchanged

Maintain stability and recursive feasibility during network changes:
« Adapt local control laws of subsystems and neighbours

* Ensure feasibility of the modified control laws



Preparation for Plug and Play operation:

G ——

Plug and Play operation j J; } ]; .
= subsystems join/leave network and modified = (_y R
local control law is applied { o JH yﬂ
_;[ contr, ]— >[ contr, ]—

Redesign Phase: Adapt local control laws of subsystems and neighbours

Compute new local terminal costs V/(x;) and constraint sets X} (a;) for
(virtually) modified network

Transition Phase: Ensure feasibility of the modified MPC problem

« Compute a steady-state for Plug and Play operation such that:

- Steady-state is a feasible initial state for the modified MPC problem
- System can be controlled to the steady-state from the current state

» [f steady-state can be found

— Control system to steady-state
- Permit plug and play operation

Else
- Reject plug and play operation



Preparation for Plug and Play operation:

G ——

Plug and Play operation j J; } ]; .
= subsystems join/leave network and modified = Sf* Lo ) Yo

local control law is applied L= AR yﬂ
_;[ contr, ]— >[ contr, ]—

Redesign Phase: Adapt local control laws of subsystems and neighbours

Compute new local terminal costs V/(x;) and constraint sets X} (a;) for
(virtually) modified network

Transition Phase: Ensure feasibility of the modified MPC problem

« Compute a steady-state for Plug and Play operation such that:

- Steady-state is a feasible initial state for the modified MPC problem
- System can be controlled to the steady-state from the current state

» [f steady-state can be found
— Control system to steady-state
- Permit plug and play operation Plug and and play
Else synthesis and control
- Reject plug and play operation via distributed optimization



Computational example — Area Generation Control

« Four power generation areas with load frequency control
* Model linearized around equilibrium (Saadat, 2002; Riverso, et al. 2012)
Zi = Z A,'J'Z,' + Bjv; + L,‘APL,.
JEN;
Goals: - Restore frequency, follow load change AP, = —0.15, AP, =
- Allow fifth area to join the network

Area 1 x 107 Area2

0 20 40 60 80 0 20 40 60 80
t[s] t[s]
x 107 Area3 x 10 Aread
5 5
ﬂxc\l 0 EXN 0
-5 -5
0 20 40 60 80 0 20 40 60 80
t[s] t[s] =
Area 5 >

Ba o ‘ \ _ adi ; ; ; ; ; ; ; ;
x 0 10 20 30 40 50 60 70 80
~0.01 t[s]

0 20 40 60 80

t[s] System is first regulated to steady-state
Frequency deviation is controlled to zero  and then to the origin

41



Computational example — Area Generation Control

« Four power generation areas with load frequency control
* Model linearized around equilibrium (Saadat, 2002; Riverso, et al. 2012)
Zi = Z A,'J'Z,' + Bjv; + L,‘APL,.
JEN;
Goals: - Restore frequency, follow load change AP, = —0.15, AP, = 0.05
- Allow fifth area to join the network

—_—— a“] .

| —a— a[z]

R

e

S N ()

o

| ——dP|

30 35 40 45 50 55 60

Terminal set sizes change dynamically

42



Summary — Distributed MPC

Structured Lyapunov functions and dynamic invariant sets guarantee
stability and invariance by design

Synthesis and control via distributed optimization
[Conte, et al., ACC 2012], [Conte, et al., CDC 2012]

Extension to Robust Tube-based MPC and Tracking MPC
[Conte, et al., ECC 2013, Conte, et al., CDC 2013, submitted]

Plug and Play MPC enables network changes during closed-loop operation
[Zeilinger, et al., CDC 2013, submitted]



Distributed and Real-time MPC

Centralized MPC theory:
© Recursive constraint satisfaction
© Stability by design

Real-time MPC:

» Flexibility and fast convergence
through interior-point methods

« BUT: Variable solve-times

Distributed MPC:

* Reduced conservatism through
distributed optimization

« BUT: Global terminal conditions

Established approach:
» Optimality
* Terminal cost and constraint

Outline (Part |):

Stability and constraint satisfaction for
any real-time constraint

Outline (Part ll):

Stability with larger region of attraction
based on |local information



