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•  Large-scale, complex system

•  Constraints 

•  Uncertainties

•  High performance and safety  


•  Composed of coupled subsystems

•  Often high-speed dynamics

•  Computation and communication 

constraints


Challenges in modern control systems 


Courtesy of 


Customer:

-  Control of building 

networks 

-  Control of flexible loads 

and storage capacities

     






Power system: 

-  Frequency control

-  Voltage control 


Electric vehicles 


i4Energy seminar: 12pm, 310 SDH

"The Role of Supply-Following Loads in Highly Renewable 
Electricity Grids”, Jay Taneja  
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•  Large-scale, complex system

•  Constraints 

•  Uncertainties

•  High performance and safety  


•  Composed of coupled subsystems

•  Often high-speed dynamics

•  Computation and communication 

constraints


Challenges in modern control systems


Electric vehicles 


Courtesy of 


Power network
Traffic network 


Courtesy of Dr. Pu Wang


Robotics


Courtesy of IDSC, ETH
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Model Predictive Control (MPC) "
– A High Performance Method for Constrained Control


state x 

output y system


Each sample time:

1.  Measure / estimate state

2.  Solve optimization problem for entire planning window

3.  Implement only the first control action


u�(x) := argmin Vf (xN) +
N�1�

k=0

l(xk , uk)

Z�[� x0 = x TLHZ\YLTLU[
xk+1 = f (xk , uk) Z`Z[LT TVKLS
(xk , uk) � X � U JVUZ[YHPU[Z
xN � Xf PU]HYPHUJL

x∗1

x∗4

x∗0 = x

x∗5

Xf
x∗2

x∗3
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Model Predictive Control (MPC) "
– A High Performance Method for Constrained Control


state x 

output y system


Established approach:

• Optimality 

•  Terminal cost and constraint


Classical MPC theory:

J  High performance

J  Recursive constraint satisfaction

J  Stability by design


u�(x) := argmin Vf (xN) +
N�1�

k=0

l(xk , uk)

Z�[� x0 = x TLHZ\YLTLU[
xk+1 = f (xk , uk) Z`Z[LT TVKLS
(xk , uk) � X � U JVUZ[YHPU[Z
xN � Xf PU]HYPHUJL
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Real-time Model Predictive Control


state x 

output y system


u�(x) := argmin Vf (xN) +
N�1�

k=0

l(xk , uk)

Z�[� x0 = x TLHZ\YLTLU[
xk+1 = f (xk , uk) Z`Z[LT TVKLS
(xk , uk) � X � U JVUZ[YHPU[Z
xN � Xf PU]HYPHUJL

Embedded 
processor


Bounded computation time 

à Early termination

à  Invalidates MPC theory based on  

     optimality


Classical MPC theory:

J  High performance

J  Recursive constraint satisfaction

J  Stability by design
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Distributed Model Predictive Control 


Local computation and information:

à  Restrictive local terminal conditions 

à  Stability in exchange for significant 

conservatism 


…

contr1


sys1


contr3


sys3
 …


…


sys2


contr2


contrM


sysM


Classical MPC theory:

J  High performance

J  Recursive constraint satisfaction

J  Stability by design
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Outline: Distributed and Real-time MPC

Established approach:

• Optimality 

•  Terminal cost and constraint


Centralized MPC theory:

J  Recursive constraint satisfaction

J  Stability by design


Outline (Part II):

Stability with larger region of attraction 
based on local information 

à Plug and Play MPC 


Distributed MPC:

•  Reduced conservatism through 

distributed optimization

•  BUT: Global terminal conditions




Outline (Part I):

Stability and constraint satisfaction for 
any real-time constraint

à MPC for fast, safety-critical systems


Real-time MPC:

•  Flexibility and fast convergence 

through interior-point methods 

•  BUT: Variable solve-times


 8




Outline: Distributed and Real-time MPC

Established approach:

• Optimality 

•  Terminal cost and constraint


Centralized MPC theory:
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J  Stability by design


Outline (Part II):

Stability with larger region of attraction 
based on local information 

à Plug and Play MPC 


Distributed MPC:

•  Reduced conservatism through 

distributed optimization

•  BUT: Global terminal conditions




Outline (Part I):

Stability and constraint satisfaction for 
any real-time constraint

à MPC for fast, safety-critical systems


Real-time MPC:

•  Flexibility and fast convergence 

through interior-point methods 

•  BUT: Variable solve-times
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Stability and Invariance of Optimal MPC


Assumptions:
1. Xf ⇢ X is invariant

x 2 Xf ) Ax + Buf (x) 2 Xf

2. Vf (x) is a Lyapunov function in Xf
Vf (Ax + Buf (x))� Vf (x)  �l(x, uf (x))

V �N (x) = min VN(x,u) := Vf (xN) +
N�1�

i=0

xTi Qxi + uTi Rui

Z�[� x0 = x TLHZ\YLTLU[
xi+1 = Axi + Bui Z`Z[LT�TVKLS
Cxi +Dui � b JVUZ[YHPU[Z
xN � Xf [LYTPUHS�JVUZ[YHPU[

x∗0 = x

x∗4

x∗5

Xf

x∗1 = x
+

x∗2

x∗3

Ax�5 + Buf (x
�
5 )

Theorem:

V �N (x)•            is a convex Lyapunov function


•  The feasible set is invariant under the optimal MPC controller
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Stability and Invariance of Optimal MPC


Assumptions:
1. Xf ⇢ X is invariant

x 2 Xf ) Ax + Buf (x) 2 Xf

2. Vf (x) is a Lyapunov function in Xf
Vf (Ax + Buf (x))� Vf (x)  �l(x, uf (x))

x∗0 = x

x∗4

x∗5

Xf

x∗1 = x
+

x∗2

x∗3

Ax�5 + Buf (x
�
5 )

Proof: Shifted sequence

•  is feasible 
 
 
à Recursive feasibility and invariance

•  decreases the cost



 
 
 
à             is a Lyapunov function

V �N (x

+)� V �N (x) � V ZOPM[
N (x+)� V �N (x) � �l(x, u�0) < 0

V �N (x)

uZOPM[ = [u∗1, . . . , u
∗
N−1, Kx

∗
N ]

V �N (x) = min VN(x,u) := Vf (xN) +
N�1�

i=0

xTi Qxi + uTi Rui

Z�[� x0 = x TLHZ\YLTLU[
xi+1 = Axi + Bui Z`Z[LT�TVKLS
Cxi +Dui � b JVUZ[YHPU[Z
xN � Xf [LYTPUHS�JVUZ[YHPU[
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Real-Time MPC Controller Synthesis


Ideal approach is problem specific


Interior point methods

•  Modify controller to 

be robust to time 
constraints


Large-scale, ms

Gradient approaches

•  Bound computation 

time a priori


Medium-scale, us

Pre-compute controller

•  Fixed time online


Small-scale, ns


Generic 
optimization 

code

Deterministic 

optimizer

Analytic 

expression for 
control law


x x x u u 

Flexibility


Speed


u 
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Real-time MPC using interior-point methods

Real-time online MPC:

Guarantee that

•  within the real-time constraint 
 
 


•  a feasible solution 
 
 


•  satisfying stability criteria 
 
 


•  for any admissible initial state 


is found. 
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Real-time MPC using interior-point methods

Real-time online MPC:

Guarantee that

•  within the real-time constraint 
 
⇐ Early termination 


•  a feasible solution 
 
 
⇐  Warm-start

•  satisfying stability criteria 
 
 


•  for any admissible initial state 


is found. 




Suboptimal 

solution


Warm-start
 Online optimization


x+

x
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Real-time MPC using interior-point methods

Real-time online MPC:

Guarantee that

•  within the real-time constraint 
 
⇐ Early termination 


•  a feasible solution 
 
 
⇐  Warm-start

•  satisfying stability criteria 
 
 


•  for any admissible initial state 


is found. 




Many recent codes have demonstrated that extreme speeds are possible…


qpOases

Online Active Set Strategy


CVXGEN

Code Generation for 
Convex Optimization


QPSchur

A dual, active-set, Schur-
complement method for 
quadratic programming


OOQP

Object-oriented software 
for quadratic 
programming


… but cannot guarantee stability in a real-time setting!
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Example: Effect of limited computation time


Closed loop trajectory: 
Optimal control law 


0
 5
 10
 15
 20
 25
1


2


3

x 10
-4


Time Step


Co
m

pu
ta

tio
n 

tim
e 

[s]



Closed loop trajectory:

Optimization stopped after 4 iterations


= max computation time of 21ms 


Limited computation time => No stability properties


Unstable example


x+ =

�
1.2 1
0 1

�
x +

�
1
0.5

�
u

|x1| � 5,�5 � x2 � 1

|u| � 1, N = 5, Q = I, R = 1
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Real-time robust MPC : Nearly optimal and satisfies time constraints


Example: Stability under proposed real-time method


Proposed real-time 
MPC method"

stopped after 4 
online iterations


Closed loop trajectory: 
Optimal control law 


0
 5
 10
 15
 20
 25
1


2


3

x 10
-4


Time Step


Co
m

pu
ta

tio
n 

tim
e 

[s]



x
1

Closed loop trajectory:


Optimization stopped after 4 iterations

= max computation time of 21ms 


Unstable example


x+ =

�
1.2 1
0 1

�
x +

�
1
0.5

�
u

|x1| � 5,�5 � x2 � 1

|u| � 1, N = 5, Q = I, R = 1
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Loss of stability guarantee in real-time

Requirement for stability: Lyapunov function




à Use of MPC cost as Lyapunov function

à  Key condition: Decrease of MPC cost at every time step






Using interior-point methods this condition can be violated even when 
initializing with a stabilizing sequence, e.g. the shifted sequence





Example: Barrier interior-point method

Minimize augmented cost 








z* z*(10) min
z

f (z)

Z�[� Fz = Ex

Gz � d

min
z

f (z)� µ
m�

i=1

log(�Giz + di)

Z�[� Fz = Ex

à  Decrease in augmented cost does not enforce a decrease in MPC cost 
à  Steady-state offset for μ≠0




VN(xt ,ut) < VN(xt−1,ut−1)
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Suboptimal cost for any feasible solution to real-time problem provides 
Lyapunov function 




Real-time stability guarantees 


Goal: Ensure that suboptimal cost is Lyapunov function 




Introduce ‘Lyapunov constraint’:

Enforces decrease in suboptimal MPC cost at each iteration






If …

•  We can provide (strictly) feasible solution for Lyapunov constraint in real-time

     Key: Ensure that epsilon progress is always possible without optimization

à Technique based on warm-starting from previous sampling time!
•  We can solve quadratically constrained QPs with modified structure


(Quadratic constraint)


Theorem:


VN(xUVTt ,ut) ≤ VN(xt−1,ut−1)− ε‖xt−1‖2Q

à Stability for any real-time constraint  
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Computation times on Intel Atom for QP


0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

77 μs


Time per"
iteration (s)


Number of masses

(Number of states/2)


FORCES

CVXGEN


Oscillating masses:




QP with 

- box constraints

- diagonal cost


More details in [Domahidi, et al., ACC 2012].
 forces.ethz.ch 

 20




Computation times on Intel Atom for QP


0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

Time per"
iteration (s)


Number of masses

(Number of states/2)


FORCES
 Oscillating masses:




QP with 

- box constraints

- diagonal cost




QCQP with

- quadr. terminal set

- real-time constr.


FORCES RT


207 μs


0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

FORCES RT is stabilizing for "
all numbers of iterations!

⇒  207 μs is obtainable

⇒  Other methods ~10 iterations


CVXGEN


More details in [Domahidi, et al., ACC 2012].
 forces.ethz.ch 
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Summary: Real-Time MPC


•  Optimal MPC requires unknown computation time 

     à Fast systems require theory of real-time MPC

•  Real-time method provides stability guarantees for arbitrary time constraints 

•  Extension to robust tube-based MPC

•  Extension to tracking (more involved)

•  Possible to achieve millisecond solve-times on inexpensive hardware

•  Real-time MPC still faster than solvers without guarantees


[Zeilinger, et al., Automatica 2013, accepted], [Domahidi, et al., CDC 2012]









Real-time online MPC:

Guarantee that

•  within the real-time constraint 
 
⇐ Early termination

•  a feasible solution 
 
 
⇐ Warm-start

•  satisfying stability criteria 
 
⇐ Lyapunov constraint

•  for any admissible initial state 


is found. 
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Outline: Distributed and Real-time MPC

Established approach:

• Optimality 

•  Terminal cost and constraint


Centralized MPC theory:

J  Recursive constraint satisfaction

J  Stability by design


Outline (Part II):

Stability with larger region of attraction 
based on local information 


Distributed MPC:

•  Reduced conservatism through 

distributed optimization

•  BUT: Global terminal conditions




Outline (Part I):

Stability and constraint satisfaction for 
any real-time constraint


Real-time MPC:

•  Flexibility and fast convergence 

through interior-point methods 

•  BUT: Variable solve-times
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Distributed Model Predictive Control (MPC)


…

contr1


sys1


contr3


sys3
 …


…


sys2


contr2


contrM


sysM


Independent constraints


xi � Xi ui � Ui

Coupled linear dynamics


x+i =

∑M
j=1 Ai jxj + Biui = ANi xNi + Biui

Communication with 
neighbours 
Ni

How to ensure stability and constraint satisfaction without central coordination?


Cooperative objective


l(x, u) =

∑M
i=1 li(xi , ui)

 24




Modified dynamics




Distributed Model Predictive Control (MPC)


…

contr1


sys1


contr3


sys3
 …


…


sys2


contr2


contrM


sysM


sys4


contr4


Plug and Play MPC: 

Allow subsystems to join or leave the network 


How to maintain stability and constraint satisfaction during network changes? 


x+i =
∑
j∈NTVK

i
Ai jxj + Biui

 25




Example: Dual Decomposition







Gradient of the dual function: 




Distributed Optimization Requires Structure


min
�

fi(yi)

Z�[� yi � Yi
�

Aiyi = c

Distributed optimization 
requires that the problem is 

structured


Gradient-based approach
 Optimal values yi
* 
➙ 
Local optimization"

Dual update 
➙ 
Consensus


Many variants on this theme (ADMM, AMA,...)


g(�) = min
yi�Yi

�
fi(yi) + �T

��
Aiyi � c

�
=

�
min
yi�Yi

fi(yi) + �TAiyi

�+ = �+ ��g(�)

�g(�) =
�

Aiy
�
i (�)� c
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Two Conflicting Requirements


Structured optimization











Stability and invariance if:


min Vf (xN) +
N�1X

i=0

l(xi , ui)

s.t. x0 = x

xi+1 = Axi + Bui

(xi , ui) 2 X ⇥ U
xN 2 Xf

Plant

A, B structured

X , U distributed

l(x, u) distributed

1
 2

Terminal cost & constraints:


Xf = X 1
f � · · ·� Xf

Vf (x) =
M�

k=1

V k
f (xNk )

uf (x) = [u1f (xN1), . . . , u
M
f (xNM )]

T

1. Xf � X is invariant
x � Xf � Ax + Buf (x) � Xf

2. Vf (x) is a Lyapunov function in Xf

Vf (Ax + Buf (x))� Vf (x) � �l(x, uf (x))

Goal: Satisfy both requirements without central coordination

à Online & offline optimization structured according to system coupling


Dense


Dense
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Structured Lyapunov Function

Lyapunov requirement:




Structure requirement: 
Vf (x) = V 1f (x1) + · · ·+ V Mf (xM)
Vf (x

+)� Vf (x) � �l(x, uf (x))





Theorem: [Jokic, Lazar, 2009]


Vf (x) :=
M�

i=1

V i
f (xNi ) is a Lyapunov function if

V i
f (x

+
i )� V i

f (xi) � �li(xNi ) + �i(xNi )

M�

i=1

�i(xNi ) � 0

Possible local increase


Global decrease


J  Global Lyapunov function à Stability


Idea: Allow local increase while requiring a global decrease
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Structured Invariant Set


Idea: Level sets of a Lyapunov function are invariant








Want a condition that can be tested in a distributed fashion


V i
f (x

+
i )� V i

f (xi) � �li(xNi , u
i
f (xNi )) + �i(xNi ) �� 0

Xf =

�

x

����� Vf (x) =
M�

i=0

V i
f (xNi ) � �̄

�

Problem: This terminal constraint couples all sub-systems


7YVISLT! :[H[PJ ZL[Z X i
f (�i) HYL UV[ PU]HYPHU[���

Invariance requirement:




Structure requirement: 
 Xf (�) = X 1
f (�1)� · · ·� XM

f (�M)

x � Xf � x+ � Xf

Vf (xi) � �i �� Vf (x
+
i ) � �i � ZPUJL

X i
f (�i) = {x | V i

f (xNi ) � �i} where
M�

i=0

�i = � � �̄
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Theorem: 


Proof: From


1.   


2.   


Structured Dynamic Invariant Set

Invariance requirement:




Structure requirement: 
 Xf (�) = X 1
f (�1)� · · ·� XM

f (�M)

x � Xf � x+ � Xf

•  Define auxiliary dynamics, with the same structure as the system dynamics:




•  Choose initial 


 





1.  Time-varying terminal set 
 
 
           is invariant


2.  All state and input constraints are satisfied in 


X i
f (�i) = {x | V i

f (xi) � �i}

�+i = �i + �i(xNi )

Xf (�)

xi � X i
f (�i)� x+i � X

i
f (�

+
i )

V i
f (x

+
i ) � V i

f (xi)� li(xNi , u
i
f (xNi )) + �i(xNi ) � �i + �i(xNi ) = �+i

Xf (�) � X � Xf (�+) � X

�i Z\JO [OH[
�
�i � �̄�

�
x

�� �
V i

f (xNi ) � �̄
�
� X

�
�+i =

�
�i +

�
�i(xNi ) �

�
�i
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Theorem: 


Structured Dynamic Invariant Set

Invariance requirement:




Structure requirement: 
 Xf (�) = X 1
f (�1)� · · ·� XM

f (�M)

x � Xf � x+ � Xf

•  Define auxiliary dynamics, with the same structure as the system dynamics:




•  Choose initial 


 





1.  Time-varying terminal set 
 
 
           is invariant


2.  All state and input constraints are satisfied in 


X i
f (�i) = {x | V i

f (xi) � �i}

�+i = �i + �i(xNi )

Xf (�)

xi � X i
f (�i)� x+i � X

i
f (�

+
i )

�i Z\JO [OH[
�
�i � �̄�

�
x

�� �
V i

f (xNi ) � �̄
�
� X

J  Recursive feasibility
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Distributed MPC – Online Control


+PZ[YPI\[LK JVU[YVS �VUSPUL MVY L]LY` Z\IZ`Z[LT�!

�� 4LHZ\YL Z[H[L

�� :VS]L NSVIHS 47* WYVISLT I` KPZ[YPI\[LK VW[PTPaH[PVU� HWWS` PUW\[ ui

�� <WKH[L �+i = �i + �(xNi )

min
M�

i=1

V i
f (xi(N)) +

N�1�

k=0

l(xi(k), ui(k))

s.t. xi(0) = xi

xi(k + 1) = Ai ixi(k) + Biui(k) +
�

j�Ni

Ai jxj(k)

(xi(k), ui(k)) � X i � U i

xi(N) � X i
f (�i)

Structured MPC problem
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Distributed MPC - Synthesis and Online Control


No central coordination required!


+PZ[YPI\[LK JVU[YVS �VUSPUL MVY L]LY` Z\IZ`Z[LT�!

�� 4LHZ\YL Z[H[L

�� :VS]L NSVIHS 47* WYVISLT I` KPZ[YPI\[LK VW[PTPaH[PVU� HWWS` PUW\[ ui

�� <WKH[L �+i = �i + xT
Ni
(N)�Ni xNi (N)

 33


+PZ[YPI\[LK Z`U[OLZPZ PU [OL SPULHY X\HKYH[PJ JHZL �VMÅPUL�!

�� :VS]L KPZ[YPI\[LK 340 [V JVTW\[L!
� 3VJHS YLSH_LK 3`HW\UV] M\UJ[PVUZ V f

i (xi) = xT
i Pixi

� 0UKLÄUP[L JV\WSPUN �i(xNi ) = xT
Ni
�ixNi

� 3VJHS SPULHY JVU[YVS SH^Z uf
i (xNi ) = KNi xNi

�� :VS]L KPZ[YPI\[LK 37 [V JVTW\[L PUP[PHS MLHZPISL [LYTPUHS ZPaL �̄



Computational example

•  Chain of inverted pendulums (unstable)

•  Linearized around the origin

•  States: Angle and angular velocity of each pendulum

•  Inputs: Torque at each pivot
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Computational example – Closed-Loop Simulation


•  5 Pendulums, alternating direction method of multipliers, 100 iterations.

•  Initially all pendulums in origin, only pendulum 1 is deflected.

•  Cost of proposed method only 4% higher than centralized MPC and 21% 

lower than for a trivial terminal set.


5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation step

An
gl

e 
� i

5 10 15 20 25 30 35 40 45 50
−10

−8

−6

−4

−2

0

2

4

Simulation step

In
pu

t T
i

 

 

Pend.1, centr. MPC (cost 9.021)
Pend.2 centr. MPC (cost 9.021)
Pend.1, distr. MPC (cost 9.360)
Pend.2, distr. MPC (cost 9.360)
Pend. 1, distr. MPC Xf=0 (cost 11.891)
Pend. 2, distr. MPC Xf=0 (cost 11.891)
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Computational example – Local Terminal Sets


Sizes of local terminal sets change dynamically
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Computational example – Region of Attraction


•  Maximum feasible deflection of the first pendulum vs. prediction horizons


•  Short prediction horizons: Region of attraction for proposed method significantly 
larger than for trivial terminal set


•  Long prediction horizons: All methods converge to the same maximum control 
invariant set


5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

MPC prediction horizon

φ 1,
m

ax

 

 

Centr. MPC
Distr. MPC
Distr. MPC Xf = 0
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Distributed Model Predictive Control (MPC)


…

contr1


sys1


contr3


sys3
 …


…


sys2


contr2


contrM


sysM


sys4


contr4


Plug and Play MPC: 

Allow subsystems to join or leave the network 


Maintain stability and recursive feasibility during network changes: 

•  Adapt local control laws of subsystems and neighbours

•  Ensure feasibility of the modified control laws


C! Z`Z[LTZ [V IL YLKLZPNULK
R! Z`Z[LTZ [OH[ YLTHPU \UJOHUNLK

Modified dynamics


x+i =

∑
j∈NTVK

i
Ai jxj + Biui
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Preparation for Plug and Play operation:


Redesign Phase: Adapt local control laws of subsystems and neighbours




•  Compute new local terminal costs 
    and constraint sets 
       for 
(virtually) modified network  


Ṽ i
f (xi) X̃ i

f (�i)

Transition Phase: Ensure feasibility of the modified MPC problem




•  Compute a steady-state for Plug and Play operation such that:

-  Steady-state is a feasible initial state for the modified MPC problem 

-  System can be controlled to the steady-state from the current state


•  If steady-state can be found

-  Control system to steady-state 

-  Permit plug and play operation


     Else 

-  Reject plug and play operation 


Plug and Play operation 

= subsystems join/leave network and modified 

   local control law is applied


…

contr1


sys1


contr3


sys3
 …


…


sys2


contr2


contrM


sysM


sys4


contr4
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Preparation for Plug and Play operation:


Redesign Phase: Adapt local control laws of subsystems and neighbours




•  Compute new local terminal costs 
    and constraint sets 
       for 
(virtually) modified network  


Ṽ i
f (xi) X̃ i

f (�i)

Transition Phase: Ensure feasibility of the modified MPC problem




•  Compute a steady-state for Plug and Play operation such that:

-  Steady-state is a feasible initial state for the modified MPC problem 

-  System can be controlled to the steady-state from the current state


•  If steady-state can be found

-  Control system to steady-state 

-  Permit plug and play operation


     Else 

-  Reject plug and play operation 


Plug and Play operation 

= subsystems join/leave network and modified 

   local control law is applied


…

contr1


sys1


contr3


sys3
 …


…


sys2


contr2


contrM


sysM


sys4


contr4


Plug and and play 

synthesis and control 


via distributed optimization
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Computational example – Area Generation Control


1"

2" 3"

4"

5"

•  Four power generation areas with load frequency control

•  Model linearized around equilibrium (Saadat, 2002; Riverso, et al.  2012)





Goals: - Restore frequency, follow load change  

           - Allow fifth area to join the network
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Frequency deviation is controlled to zero

System is first regulated to steady-state 

and then to the origin
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żi =
�

j�Ni

Ai jzi + Bivi + Li�PLi
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Computational example – Area Generation Control


1"

2" 3"

4"

5"

•  Four power generation areas with load frequency control

•  Model linearized around equilibrium (Saadat, 2002; Riverso, et al.  2012)





Goals: - Restore frequency, follow load change  

           - Allow fifth area to join the network
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żi =
�

j�Ni

Ai jzi + Bivi + Li�PLi

�PL1 = �0.15,�PL3 = 0.05

Terminal set sizes change dynamically
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Summary – Distributed MPC

•  Structured Lyapunov functions and dynamic invariant sets guarantee 

stability and invariance by design


•  Synthesis and control via distributed optimization

[Conte, et al., ACC 2012], [Conte, et al., CDC 2012]




•  Extension to Robust Tube-based MPC and Tracking MPC


[Conte, et al., ECC 2013, Conte, et al., CDC 2013, submitted]




•  Plug and Play MPC enables network changes during closed-loop operation 

[Zeilinger, et al., CDC 2013, submitted]
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Distributed and Real-time MPC

Established approach:

• Optimality 

•  Terminal cost and constraint


Centralized MPC theory:

J  Recursive constraint satisfaction

J  Stability by design


Outline (Part II):

Stability with larger region of attraction 
based on local information 


Distributed MPC:

•  Reduced conservatism through 

distributed optimization

•  BUT: Global terminal conditions




Outline (Part I):

Stability and constraint satisfaction for 
any real-time constraint


Real-time MPC:

•  Flexibility and fast convergence 

through interior-point methods 

•  BUT: Variable solve-times
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