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•  Large-scale, complex system
•  Constraints 
•  Uncertainties
•  High performance and safety  

•  Composed of coupled subsystems
•  Often high-speed dynamics
•  Computation and communication 

constraints

Challenges in modern control systems 

Courtesy of 

Customer:
-  Control of building 

networks 
-  Control of flexible loads 

and storage capacities
     



Power system: 
-  Frequency control
-  Voltage control 

Electric vehicles 

i4Energy seminar: 12pm, 310 SDH
"The Role of Supply-Following Loads in Highly Renewable 
Electricity Grids”, Jay Taneja  
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•  Large-scale, complex system
•  Constraints 
•  Uncertainties
•  High performance and safety  

•  Composed of coupled subsystems
•  Often high-speed dynamics
•  Computation and communication 

constraints

Challenges in modern control systems

Electric vehicles 

Courtesy of 

Power networkTraffic network 

Courtesy of Dr. Pu Wang

Robotics

Courtesy of IDSC, ETH
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Model Predictive Control (MPC) "
– A High Performance Method for Constrained Control

state x 

output y system

Each sample time:
1.  Measure / estimate state
2.  Solve optimization problem for entire planning window
3.  Implement only the first control action

u�(x) := argmin Vf (xN) +
N�1�

k=0

l(xk , uk)

Z�[� x0 = x TLHZ\YLTLU[
xk+1 = f (xk , uk) Z`Z[LT TVKLS
(xk , uk) � X � U JVUZ[YHPU[Z
xN � Xf PU]HYPHUJL

x∗1

x∗4

x∗0 = x

x∗5

Xf
x∗2

x∗3

 4



Model Predictive Control (MPC) "
– A High Performance Method for Constrained Control

state x 

output y system

Established approach:
• Optimality 
•  Terminal cost and constraint

Classical MPC theory:
J  High performance
J  Recursive constraint satisfaction
J  Stability by design

u�(x) := argmin Vf (xN) +
N�1�

k=0

l(xk , uk)

Z�[� x0 = x TLHZ\YLTLU[
xk+1 = f (xk , uk) Z`Z[LT TVKLS
(xk , uk) � X � U JVUZ[YHPU[Z
xN � Xf PU]HYPHUJL
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Real-time Model Predictive Control

state x 

output y system

u�(x) := argmin Vf (xN) +
N�1�

k=0

l(xk , uk)

Z�[� x0 = x TLHZ\YLTLU[
xk+1 = f (xk , uk) Z`Z[LT TVKLS
(xk , uk) � X � U JVUZ[YHPU[Z
xN � Xf PU]HYPHUJL

Embedded 
processor

Bounded computation time 
à Early termination
à  Invalidates MPC theory based on  
     optimality

Classical MPC theory:
J  High performance
J  Recursive constraint satisfaction
J  Stability by design
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Distributed Model Predictive Control 

Local computation and information:
à  Restrictive local terminal conditions 
à  Stability in exchange for significant 

conservatism 

…
contr1

sys1

contr3

sys3 …

…

sys2

contr2

contrM

sysM

Classical MPC theory:
J  High performance
J  Recursive constraint satisfaction
J  Stability by design
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Outline: Distributed and Real-time MPC
Established approach:
• Optimality 
•  Terminal cost and constraint

Centralized MPC theory:
J  Recursive constraint satisfaction
J  Stability by design

Outline (Part II):
Stability with larger region of attraction 
based on local information 
à Plug and Play MPC 

Distributed MPC:
•  Reduced conservatism through 

distributed optimization
•  BUT: Global terminal conditions


Outline (Part I):
Stability and constraint satisfaction for 
any real-time constraint
à MPC for fast, safety-critical systems

Real-time MPC:
•  Flexibility and fast convergence 

through interior-point methods 
•  BUT: Variable solve-times
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à MPC for fast, safety-critical systems

Real-time MPC:
•  Flexibility and fast convergence 

through interior-point methods 
•  BUT: Variable solve-times
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Stability and Invariance of Optimal MPC

Assumptions:1. Xf ⇢ X is invariant

x 2 Xf ) Ax + Buf (x) 2 Xf

2. Vf (x) is a Lyapunov function in Xf
Vf (Ax + Buf (x))� Vf (x)  �l(x, uf (x))

V �N (x) = min VN(x,u) := Vf (xN) +
N�1�

i=0

xTi Qxi + uTi Rui

Z�[� x0 = x TLHZ\YLTLU[
xi+1 = Axi + Bui Z`Z[LT�TVKLS
Cxi +Dui � b JVUZ[YHPU[Z
xN � Xf [LYTPUHS�JVUZ[YHPU[

x∗0 = x

x∗4

x∗5

Xf

x∗1 = x
+

x∗2

x∗3

Ax�5 + Buf (x
�
5 )

Theorem:
V �N (x)•            is a convex Lyapunov function

•  The feasible set is invariant under the optimal MPC controller
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Stability and Invariance of Optimal MPC

Assumptions:1. Xf ⇢ X is invariant

x 2 Xf ) Ax + Buf (x) 2 Xf

2. Vf (x) is a Lyapunov function in Xf
Vf (Ax + Buf (x))� Vf (x)  �l(x, uf (x))

x∗0 = x

x∗4

x∗5

Xf

x∗1 = x
+

x∗2

x∗3

Ax�5 + Buf (x
�
5 )

Proof: Shifted sequence
•  is feasible   à Recursive feasibility and invariance
•  decreases the cost

   à             is a Lyapunov function
V �N (x

+)� V �N (x) � V ZOPM[
N (x+)� V �N (x) � �l(x, u�0) < 0

V �N (x)

uZOPM[ = [u∗1, . . . , u
∗
N−1, Kx

∗
N ]

V �N (x) = min VN(x,u) := Vf (xN) +
N�1�

i=0

xTi Qxi + uTi Rui

Z�[� x0 = x TLHZ\YLTLU[
xi+1 = Axi + Bui Z`Z[LT�TVKLS
Cxi +Dui � b JVUZ[YHPU[Z
xN � Xf [LYTPUHS�JVUZ[YHPU[
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Real-Time MPC Controller Synthesis

Ideal approach is problem specific

Interior point methods
•  Modify controller to 

be robust to time 
constraints

Large-scale, ms
Gradient approaches
•  Bound computation 

time a priori

Medium-scale, us
Pre-compute controller
•  Fixed time online

Small-scale, ns

Generic 
optimization 

code
Deterministic 

optimizer
Analytic 

expression for 
control law

x x x u u 

Flexibility

Speed

u 
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Real-time MPC using interior-point methods
Real-time online MPC:
Guarantee that
•  within the real-time constraint   
•  a feasible solution   
•  satisfying stability criteria   
•  for any admissible initial state 
is found. 
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Real-time MPC using interior-point methods
Real-time online MPC:
Guarantee that
•  within the real-time constraint  ⇐ Early termination 
•  a feasible solution   ⇐  Warm-start
•  satisfying stability criteria   
•  for any admissible initial state 
is found. 


Suboptimal 
solution

Warm-start Online optimization

x+

x
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Real-time MPC using interior-point methods
Real-time online MPC:
Guarantee that
•  within the real-time constraint  ⇐ Early termination 
•  a feasible solution   ⇐  Warm-start
•  satisfying stability criteria   
•  for any admissible initial state 
is found. 


Many recent codes have demonstrated that extreme speeds are possible…

qpOases
Online Active Set Strategy

CVXGEN
Code Generation for 
Convex Optimization

QPSchur
A dual, active-set, Schur-
complement method for 
quadratic programming

OOQP
Object-oriented software 
for quadratic 
programming

… but cannot guarantee stability in a real-time setting!
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Example: Effect of limited computation time

Closed loop trajectory: 
Optimal control law 

0 5 10 15 20 251

2

3
x 10-4

Time Step

Co
m

pu
ta

tio
n 

tim
e 

[s]


Closed loop trajectory:
Optimization stopped after 4 iterations

= max computation time of 21ms 

Limited computation time => No stability properties

Unstable example

x+ =

�
1.2 1
0 1

�
x +

�
1
0.5

�
u

|x1| � 5,�5 � x2 � 1

|u| � 1, N = 5, Q = I, R = 1
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x 2

Real-time robust MPC : Nearly optimal and satisfies time constraints

Example: Stability under proposed real-time method

Proposed real-time 
MPC method"

stopped after 4 
online iterations

Closed loop trajectory: 
Optimal control law 

0 5 10 15 20 251

2

3
x 10-4

Time Step

Co
m

pu
ta

tio
n 

tim
e 

[s]


x1
Closed loop trajectory:

Optimization stopped after 4 iterations
= max computation time of 21ms 

Unstable example

x+ =

�
1.2 1
0 1

�
x +

�
1
0.5

�
u

|x1| � 5,�5 � x2 � 1

|u| � 1, N = 5, Q = I, R = 1
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Loss of stability guarantee in real-time
Requirement for stability: Lyapunov function


à Use of MPC cost as Lyapunov function
à  Key condition: Decrease of MPC cost at every time step



Using interior-point methods this condition can be violated even when 
initializing with a stabilizing sequence, e.g. the shifted sequence



Example: Barrier interior-point method
Minimize augmented cost 




z* z*(10) min
z

f (z)

Z�[� Fz = Ex

Gz � d

min
z

f (z)� µ
m�

i=1

log(�Giz + di)

Z�[� Fz = Ex

à  Decrease in augmented cost does not enforce a decrease in MPC cost 
à  Steady-state offset for μ≠0


VN(xt ,ut) < VN(xt−1,ut−1)
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Suboptimal cost for any feasible solution to real-time problem provides 
Lyapunov function 


Real-time stability guarantees 
Goal: Ensure that suboptimal cost is Lyapunov function 


Introduce ‘Lyapunov constraint’:
Enforces decrease in suboptimal MPC cost at each iteration



If …
•  We can provide (strictly) feasible solution for Lyapunov constraint in real-time
     Key: Ensure that epsilon progress is always possible without optimization
à Technique based on warm-starting from previous sampling time!
•  We can solve quadratically constrained QPs with modified structure

(Quadratic constraint)

Theorem:

VN(xUVTt ,ut) ≤ VN(xt−1,ut−1)− ε‖xt−1‖2Q

à Stability for any real-time constraint  
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Computation times on Intel Atom for QP

0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

77 μs

Time per"
iteration (s)

Number of masses
(Number of states/2)

FORCES
CVXGEN

Oscillating masses:


QP with 
- box constraints
- diagonal cost

More details in [Domahidi, et al., ACC 2012]. forces.ethz.ch 
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Computation times on Intel Atom for QP

0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

Time per"
iteration (s)

Number of masses
(Number of states/2)

FORCES Oscillating masses:


QP with 
- box constraints
- diagonal cost


QCQP with
- quadr. terminal set
- real-time constr.

FORCES RT

207 μs

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

FORCES RT is stabilizing for "
all numbers of iterations!
⇒  207 μs is obtainable
⇒  Other methods ~10 iterations

CVXGEN

More details in [Domahidi, et al., ACC 2012]. forces.ethz.ch 
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Summary: Real-Time MPC

•  Optimal MPC requires unknown computation time 
     à Fast systems require theory of real-time MPC
•  Real-time method provides stability guarantees for arbitrary time constraints 
•  Extension to robust tube-based MPC
•  Extension to tracking (more involved)
•  Possible to achieve millisecond solve-times on inexpensive hardware
•  Real-time MPC still faster than solvers without guarantees

[Zeilinger, et al., Automatica 2013, accepted], [Domahidi, et al., CDC 2012]





Real-time online MPC:
Guarantee that
•  within the real-time constraint  ⇐ Early termination
•  a feasible solution   ⇐ Warm-start
•  satisfying stability criteria  ⇐ Lyapunov constraint
•  for any admissible initial state 
is found. 
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Outline: Distributed and Real-time MPC
Established approach:
• Optimality 
•  Terminal cost and constraint

Centralized MPC theory:
J  Recursive constraint satisfaction
J  Stability by design

Outline (Part II):
Stability with larger region of attraction 
based on local information 

Distributed MPC:
•  Reduced conservatism through 

distributed optimization
•  BUT: Global terminal conditions


Outline (Part I):
Stability and constraint satisfaction for 
any real-time constraint

Real-time MPC:
•  Flexibility and fast convergence 

through interior-point methods 
•  BUT: Variable solve-times

 23



Distributed Model Predictive Control (MPC)

…
contr1

sys1

contr3

sys3 …

…

sys2

contr2

contrM

sysM

Independent constraints
xi � Xi ui � Ui

Coupled linear dynamics
x+i =

∑M
j=1 Ai jxj + Biui = ANi xNi + Biui

Communication with 
neighbours Ni

How to ensure stability and constraint satisfaction without central coordination?

Cooperative objective
l(x, u) =

∑M
i=1 li(xi , ui)

 24



Modified dynamics


Distributed Model Predictive Control (MPC)

…
contr1

sys1

contr3

sys3 …

…

sys2

contr2

contrM

sysM

sys4

contr4

Plug and Play MPC: 
Allow subsystems to join or leave the network 

How to maintain stability and constraint satisfaction during network changes? 

x+i =
∑
j∈NTVK

i
Ai jxj + Biui

 25



Example: Dual Decomposition



Gradient of the dual function: 


Distributed Optimization Requires Structure

min
�

fi(yi)

Z�[� yi � Yi
�

Aiyi = c

Distributed optimization 
requires that the problem is 

structured

Gradient-based approach Optimal values yi
* ➙ Local optimization"

Dual update ➙ Consensus

Many variants on this theme (ADMM, AMA,...)

g(�) = min
yi�Yi

�
fi(yi) + �T

��
Aiyi � c

�
=

�
min
yi�Yi

fi(yi) + �TAiyi

�+ = �+ ��g(�)

�g(�) =
�

Aiy
�
i (�)� c
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Two Conflicting Requirements

Structured optimization





Stability and invariance if:

min Vf (xN) +
N�1X

i=0

l(xi , ui)

s.t. x0 = x

xi+1 = Axi + Bui

(xi , ui) 2 X ⇥ U
xN 2 Xf

Plant

A, B structured

X , U distributed

l(x, u) distributed

1 2
Terminal cost & constraints:

Xf = X 1
f � · · ·� Xf

Vf (x) =
M�

k=1

V k
f (xNk )

uf (x) = [u1f (xN1), . . . , u
M
f (xNM )]

T

1. Xf � X is invariant
x � Xf � Ax + Buf (x) � Xf

2. Vf (x) is a Lyapunov function in Xf

Vf (Ax + Buf (x))� Vf (x) � �l(x, uf (x))

Goal: Satisfy both requirements without central coordination
à Online & offline optimization structured according to system coupling

Dense

Dense
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Structured Lyapunov Function
Lyapunov requirement:


Structure requirement: Vf (x) = V 1f (x1) + · · ·+ V Mf (xM)
Vf (x

+)� Vf (x) � �l(x, uf (x))



Theorem: [Jokic, Lazar, 2009]

Vf (x) :=
M�

i=1

V i
f (xNi ) is a Lyapunov function if

V i
f (x

+
i )� V i

f (xi) � �li(xNi ) + �i(xNi )

M�

i=1

�i(xNi ) � 0

Possible local increase

Global decrease

J  Global Lyapunov function à Stability

Idea: Allow local increase while requiring a global decrease

 28



Structured Invariant Set

Idea: Level sets of a Lyapunov function are invariant




Want a condition that can be tested in a distributed fashion

V i
f (x

+
i )� V i

f (xi) � �li(xNi , u
i
f (xNi )) + �i(xNi ) �� 0

Xf =

�

x

����� Vf (x) =
M�

i=0

V i
f (xNi ) � �̄

�

Problem: This terminal constraint couples all sub-systems

7YVISLT! :[H[PJ ZL[Z X i
f (�i) HYL UV[ PU]HYPHU[���

Invariance requirement:


Structure requirement:  Xf (�) = X 1
f (�1)� · · ·� XM

f (�M)

x � Xf � x+ � Xf

Vf (xi) � �i �� Vf (x
+
i ) � �i � ZPUJL

X i
f (�i) = {x | V i

f (xNi ) � �i} where
M�

i=0

�i = � � �̄
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Theorem: 

Proof: From

1.   

2.   

Structured Dynamic Invariant Set
Invariance requirement:


Structure requirement:  Xf (�) = X 1
f (�1)� · · ·� XM

f (�M)

x � Xf � x+ � Xf

•  Define auxiliary dynamics, with the same structure as the system dynamics:


•  Choose initial 
 


1.  Time-varying terminal set              is invariant

2.  All state and input constraints are satisfied in 

X i
f (�i) = {x | V i

f (xi) � �i}

�+i = �i + �i(xNi )

Xf (�)

xi � X i
f (�i)� x+i � X

i
f (�

+
i )

V i
f (x

+
i ) � V i

f (xi)� li(xNi , u
i
f (xNi )) + �i(xNi ) � �i + �i(xNi ) = �+i

Xf (�) � X � Xf (�+) � X

�i Z\JO [OH[
�
�i � �̄�

�
x

�� �
V i

f (xNi ) � �̄
�
� X

�
�+i =

�
�i +

�
�i(xNi ) �

�
�i
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Theorem: 

Structured Dynamic Invariant Set
Invariance requirement:


Structure requirement:  Xf (�) = X 1
f (�1)� · · ·� XM

f (�M)

x � Xf � x+ � Xf

•  Define auxiliary dynamics, with the same structure as the system dynamics:


•  Choose initial 
 


1.  Time-varying terminal set              is invariant

2.  All state and input constraints are satisfied in 

X i
f (�i) = {x | V i

f (xi) � �i}

�+i = �i + �i(xNi )

Xf (�)

xi � X i
f (�i)� x+i � X

i
f (�

+
i )

�i Z\JO [OH[
�
�i � �̄�

�
x

�� �
V i

f (xNi ) � �̄
�
� X

J  Recursive feasibility
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Distributed MPC – Online Control

+PZ[YPI\[LK JVU[YVS �VUSPUL MVY L]LY` Z\IZ`Z[LT�!

�� 4LHZ\YL Z[H[L

�� :VS]L NSVIHS 47* WYVISLT I` KPZ[YPI\[LK VW[PTPaH[PVU� HWWS` PUW\[ ui

�� <WKH[L �+i = �i + �(xNi )

min
M�

i=1

V i
f (xi(N)) +

N�1�

k=0

l(xi(k), ui(k))

s.t. xi(0) = xi

xi(k + 1) = Ai ixi(k) + Biui(k) +
�

j�Ni

Ai jxj(k)

(xi(k), ui(k)) � X i � U i

xi(N) � X i
f (�i)

Structured MPC problem
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Distributed MPC - Synthesis and Online Control

No central coordination required!

+PZ[YPI\[LK JVU[YVS �VUSPUL MVY L]LY` Z\IZ`Z[LT�!

�� 4LHZ\YL Z[H[L

�� :VS]L NSVIHS 47* WYVISLT I` KPZ[YPI\[LK VW[PTPaH[PVU� HWWS` PUW\[ ui

�� <WKH[L �+i = �i + xT
Ni
(N)�Ni xNi (N)

 33

+PZ[YPI\[LK Z`U[OLZPZ PU [OL SPULHY X\HKYH[PJ JHZL �VMÅPUL�!

�� :VS]L KPZ[YPI\[LK 340 [V JVTW\[L!
� 3VJHS YLSH_LK 3`HW\UV] M\UJ[PVUZ V f

i (xi) = xT
i Pixi

� 0UKLÄUP[L JV\WSPUN �i(xNi ) = xT
Ni
�ixNi

� 3VJHS SPULHY JVU[YVS SH^Z uf
i (xNi ) = KNi xNi

�� :VS]L KPZ[YPI\[LK 37 [V JVTW\[L PUP[PHS MLHZPISL [LYTPUHS ZPaL �̄



Computational example
•  Chain of inverted pendulums (unstable)
•  Linearized around the origin
•  States: Angle and angular velocity of each pendulum
•  Inputs: Torque at each pivot
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Computational example – Closed-Loop Simulation

•  5 Pendulums, alternating direction method of multipliers, 100 iterations.
•  Initially all pendulums in origin, only pendulum 1 is deflected.
•  Cost of proposed method only 4% higher than centralized MPC and 21% 

lower than for a trivial terminal set.

5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation step

An
gl

e 
� i

5 10 15 20 25 30 35 40 45 50
−10

−8

−6

−4

−2

0

2

4

Simulation step

In
pu

t T
i

 

 

Pend.1, centr. MPC (cost 9.021)
Pend.2 centr. MPC (cost 9.021)
Pend.1, distr. MPC (cost 9.360)
Pend.2, distr. MPC (cost 9.360)
Pend. 1, distr. MPC Xf=0 (cost 11.891)
Pend. 2, distr. MPC Xf=0 (cost 11.891)
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Computational example – Local Terminal Sets

Sizes of local terminal sets change dynamically

 36



Computational example – Region of Attraction

•  Maximum feasible deflection of the first pendulum vs. prediction horizons

•  Short prediction horizons: Region of attraction for proposed method significantly 
larger than for trivial terminal set

•  Long prediction horizons: All methods converge to the same maximum control 
invariant set

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

MPC prediction horizon

φ 1,
m

ax

 

 

Centr. MPC
Distr. MPC
Distr. MPC Xf = 0
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Distributed Model Predictive Control (MPC)

…
contr1

sys1

contr3

sys3 …

…

sys2

contr2

contrM

sysM

sys4

contr4

Plug and Play MPC: 
Allow subsystems to join or leave the network 

Maintain stability and recursive feasibility during network changes: 
•  Adapt local control laws of subsystems and neighbours
•  Ensure feasibility of the modified control laws

C! Z`Z[LTZ [V IL YLKLZPNULK
R! Z`Z[LTZ [OH[ YLTHPU \UJOHUNLK

Modified dynamics
x+i =

∑
j∈NTVK

i
Ai jxj + Biui
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Preparation for Plug and Play operation:

Redesign Phase: Adapt local control laws of subsystems and neighbours


•  Compute new local terminal costs     and constraint sets        for 
(virtually) modified network  

Ṽ i
f (xi) X̃ i

f (�i)

Transition Phase: Ensure feasibility of the modified MPC problem


•  Compute a steady-state for Plug and Play operation such that:
-  Steady-state is a feasible initial state for the modified MPC problem 
-  System can be controlled to the steady-state from the current state

•  If steady-state can be found
-  Control system to steady-state 
-  Permit plug and play operation

     Else 
-  Reject plug and play operation 

Plug and Play operation 
= subsystems join/leave network and modified 
   local control law is applied

…
contr1

sys1

contr3

sys3 …

…

sys2

contr2

contrM

sysM

sys4

contr4
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Preparation for Plug and Play operation:

Redesign Phase: Adapt local control laws of subsystems and neighbours


•  Compute new local terminal costs     and constraint sets        for 
(virtually) modified network  

Ṽ i
f (xi) X̃ i

f (�i)

Transition Phase: Ensure feasibility of the modified MPC problem


•  Compute a steady-state for Plug and Play operation such that:
-  Steady-state is a feasible initial state for the modified MPC problem 
-  System can be controlled to the steady-state from the current state

•  If steady-state can be found
-  Control system to steady-state 
-  Permit plug and play operation

     Else 
-  Reject plug and play operation 

Plug and Play operation 
= subsystems join/leave network and modified 
   local control law is applied

…
contr1

sys1

contr3

sys3 …

…

sys2

contr2

contrM

sysM

sys4

contr4

Plug and and play 
synthesis and control 

via distributed optimization
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Computational example – Area Generation Control

1"

2" 3"

4"

5"

•  Four power generation areas with load frequency control
•  Model linearized around equilibrium (Saadat, 2002; Riverso, et al.  2012)


Goals: - Restore frequency, follow load change  
           - Allow fifth area to join the network
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Frequency deviation is controlled to zero
System is first regulated to steady-state 
and then to the origin
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Computational example – Area Generation Control

1"

2" 3"

4"

5"

•  Four power generation areas with load frequency control
•  Model linearized around equilibrium (Saadat, 2002; Riverso, et al.  2012)


Goals: - Restore frequency, follow load change  
           - Allow fifth area to join the network
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j�Ni

Ai jzi + Bivi + Li�PLi

�PL1 = �0.15,�PL3 = 0.05

Terminal set sizes change dynamically
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Summary – Distributed MPC
•  Structured Lyapunov functions and dynamic invariant sets guarantee 

stability and invariance by design

•  Synthesis and control via distributed optimization
[Conte, et al., ACC 2012], [Conte, et al., CDC 2012]


•  Extension to Robust Tube-based MPC and Tracking MPC

[Conte, et al., ECC 2013, Conte, et al., CDC 2013, submitted]


•  Plug and Play MPC enables network changes during closed-loop operation 
[Zeilinger, et al., CDC 2013, submitted]
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Distributed and Real-time MPC
Established approach:
• Optimality 
•  Terminal cost and constraint

Centralized MPC theory:
J  Recursive constraint satisfaction
J  Stability by design

Outline (Part II):
Stability with larger region of attraction 
based on local information 

Distributed MPC:
•  Reduced conservatism through 

distributed optimization
•  BUT: Global terminal conditions


Outline (Part I):
Stability and constraint satisfaction for 
any real-time constraint

Real-time MPC:
•  Flexibility and fast convergence 

through interior-point methods 
•  BUT: Variable solve-times
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