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Motivation 

Buildings Consume Significant Energy 

 
• 40%  of total US energy consumption 

• 72%  of total US electricity consumption 

• 55%  of total US natural gas consumption 

• Total US annual energy cost $ 370 Billion  

• Increase in US electricity cons. since 1990: 200% 

Source: Buildings Energy Data Book 2007  
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Related to HVAC 



Current HVAC Control Systems 

5 

PID 

On-Off 

On-Off 
On-Off 

UC Berkeley, 

Bancroft Library  

Lack of coordination at a system level 



Observations 
 

• Control logic governing today’s buildings uses simple control 

schemes dealing with one subsystem at a time… 

 
• Local actions are determined without taking into account the 

interrelations among: 

 

• Outdoor weather conditions  

• Indoor air quality 

• Cooling demands  

• HVAC process components 
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First approach  
 

 

 
• Modeling 

• Parameter & Unmodeled 

dynamics estimation 

• Online state estimation and 

parameter adaptation 

• Model-based Control 
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Physical Buildings 

courtesy of smartgeometry.com 



Thermal Modeling 

9 

Thermal and circuit model of a wall with window 

• Energy balance for a wall 

node: 

• Energy balance for a room node: 



More details at: Maasoumy et al. DSCC 2011. 
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Building Thermal Dynamics 



Parameterizing Unmodeled Dynamics 

• External heat gain 

 

 
 

Note: other quantities such as global horizontal irradiance (GHI) data can be used 

here as well. 

 

• Internal heat gain 
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Parameter & Unmodeled Dynamics Identification 
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Measured 

temperature of 

Neighboring 

rooms 

𝑇1(𝑡) 

𝑇2(𝑡) 

𝑇3(𝑡) 

𝑇4(𝑡) 

𝑚𝑟  (𝑡) 

Measured 

Air mass flow 

Measured 

Supply air 

temperature 

𝑇𝑠(𝑡) 

𝑇 𝑡 = 𝑓(𝐶𝑟 , 𝐶𝑤1, 𝐶𝑤2, 𝐶𝑤3, 𝐶𝑤4, 𝑅1, 𝑅2, 𝑅3, 𝑅4) 

𝑇𝑚(𝑡) 

Measured 

temperature 

of the room 

+ 

- 
𝑒(𝑡) 

[𝐶𝑟, 𝐶𝑤1, 𝐶𝑤2, 𝐶𝑤3, 𝐶𝑤4, 𝑅1, 𝑅2, 𝑅3, 𝑅4]
∗ = 𝑎𝑟𝑔 min

𝐶𝑟,𝐶𝑤𝑖,𝑅𝑖
    [𝑒(𝑡)𝑡 ]2 

For each room: 

T(𝑡) 



Unmodeled Dynamics Estimation 
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• Data of UC Berkeley 

•  Bancroft library, Conference room • Initial guess (ASHRAE 

Handbook) 

More details at: Maasoumy et al., IEEE D&T, SI on Green Buildings, July/Aug 2012 



Online State Estimation and Parameter Adaptation 
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Offline parameter 

identification 

Online Parameter 

Adaptation using EKF 

Online Parameter 

Adaptation using UKF 

More details at: Maasoumy et al. DSCC 2013, Submitted. 



Second approach 

• Family of linear systems: 

 

• Linearized models at each 

operating point 

• Obtain adequate number of 

models for a given tolerance 

• Switched or Hybrid Models 

• Balanced realization 

• Model order reduction 
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Simulation Models 



Extract linearized 

model 

Family of linear systems 
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Modelica model 

Simulink model 



MOR Procedure 
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MOR Procedure 
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Hundreds of  states 



MOR Procedure 
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Hankel singular values:  

Relative amount of  

energy per state 



MOR Procedure 
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Tens of states 



Reduced Order Model 
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Heterogeneous Modeling and Control 
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Model Predictive Control 



“MPC” and “On-off” Control Results 

66% 
68% 35% 73% 
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ROBUST MODEL PREDICTIVE CONTROL  
(AGAINST MODEL AND MEASUREMENT UNCERTAINTIES) 



Original Control with Uncertainty 
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Schematic of RMPC Implementation 

29 

State update equation Additive uncertainty 

More details at: Maasoumy, et al. DSCC 2012 



Min-Max Strategy (Open-Loop) for RMPC 
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worst-case 

objective is 

calculated. 

Robust counterpart 

of an uncertain 

optimization problem  

optimize the worst-case 

scenario cost function with 

respect to uncertainties 

TOO 

CONSERVATIVE!!! 



w 

CL-RMPC: Feedback Predictions 

• Closed-loop min-max problem: 
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Feedback 

Predictions 

• State feedback prediction: 

• Parameter matrix M is causal: 

 

• New decision variables: 

• Sometimes M is incorporated as a decision variable… 

The mapping from 

M and v to X and U 

is nonlinear! 

Intractable 

Problem 



Lower Triangular Structure (LTS) 

• Disturbance Feedback Policy: 
• parameterize future inputs as affine functions of past disturbances. 
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i.e. 



Drawback: 

• Main problem with the min-max formulations based on these 

parameterizations is: 
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To resolve 

this issue  

the excessive number of decision variables and constraints 

we study other parameterizations 



Toeplitz Structure 

• Lower Triangular Toeplitz (diagonal-constant) structure: 

 

 

 

 

 

 

 

 

 

 

•  was shown to deteriorate the performance of the CL-RMPC in our 

simulations! 
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M 



Two Lower Diagonal Structure (TLDS) 

• By analyzing the structure of the optimal matrix M, we observed: 

• the parameterization of the input need not consider feedback of more than 

past two values of w at each time. 
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we exploit the sparsity of 

the M matrix to enhance the 

computational cost of the 

optimization problem 



Simulation Results 
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Comparison of ECS, MPC, OL-RMPC and CL-RMPC 



RMPC: Energy vs. Comfort  
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Closed-loop 

Simulation Results 

• Comparison of LTS and TLDS uncertainty feedback 

parameterizations and Open Loop min-max results for the case of 

𝛿 = 50%. 
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Observations 

I. Physical components and environment  

II. Control algorithm that determines the 

system operations based on sensing inputs,  

III. Embedded platform that implements the 

control algorithm.  
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The design of HVAC systems involves three main 

aspects:  
 

In the traditional top-down approach, the design of the HVAC control algorithm is 

done without explicit consideration of the embedded platform.  

NOT PLATFORM-BASED!!!  



With… 

• Employment of more complex HAVC control  algorithms 

• use of distributed networked platforms 

• imposing of tighter requirements for user comfort 

Problem 
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the assumption that… 

the embedded platform 

will always be sufficient 

for any control mechanism  

is no longer true. 



Co-design framework for HVAC systems 
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Sensing System Set-up 
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BubbleZERO Research Setup 

 

Which is conceived as part of the 

Low Exergy Module development 

for Future Cities Laboratory (FCL) 

The environment sense system includes: 

  

• 8 indoor sensors (Telosb41-48) 

• 4 CO2 concentration sensors (flap31-34)  

• 4 outdoor sensors (Telosb53-56) 



Sensor Reading from the Set-up 
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Temperature 

measurements from 8 

sensors located 

spatially at different 

locations in the room.  

CO2 measurements 

from 2 sensors located 

spatially at different 

places in the room.  



Analysis of Sensor Readings 
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Average error of k sensors 

for the Minimal error set of 

sensors and a random 

choose of sensors.  

Average error of k sensors 

for the Minimal error set of 

sensors and the worst 

choose of sensors.  

The pdf of the difference of the 

average of k sensor readings with 

the average of all nts=7 sensor 

readings.  

The best, worst and random set of 

sensors are selected based on their 

resulting Δrms error.  



Simulation Results 
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Pareto front Under Discomfort index 

Contraints 
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Pareto front under comfort constraints with best sensor locations 

More details at: Maasoumy, et al. ICCPS 2012 



Pareto front Under Discomfort index 

Contraints 
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Pareto front under comfort constraints with random sensor locations 
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Source: www.engineerlive.com 

Smart Buildings in Smart Grid  

http://www.engineerlive.com/Power-Engineer/Transmission/A_smart_grid_versus_smart_meters/23436/


Smart Grid & Smart Buildings 

Source: http://evergreennuclear.blogspot.com/2011/08/primer-on-how-pressurized-water-

reactor.html 

Cyber-

Physical 

System 

Main idea:  

Ancillary Service for the Grid 

via Control of HVAC Systems 



Ancillary service to Grid from Buildings 

Where: 

No Ancillary  With Ancillary  

ACE(rms)=1.06 ACE(rms)=0.05 



Thank You! 

 

 

 

Questions? 

 

 
More information at: 

eecs.berkeley.edu/~maasoumy 
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