Control and Optimization of Cyber-Physical Energy Systems:

(A Platform-Based Design Approach)

Mehdi Maasoumy

PhD Candidate UC Berkeley Advisor: Alberto Sangiovanni-Vincentelli <image>

03/01/2013

Outline

- Motivation
- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform
- Buildings and Smart Grid

Outline

Motivation

- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform
- Buildings and Smart Grid

Motivation

•

•

•

•

•

Buildings Consume Significant Energy

Computers 1% Cooking 5% Electronics 7% 40% of total US energy consumption Wet Clean 5% Refrigeration 8% 22% Residential 72% of total US electricity consumption Cooling 12% Lights 11% Industry Water Heat 12% Buildings 32% 55% of total US natural gas consumption Heating 31% 40% Other 4% Total US annual energy cost \$ 370 Billion Cooking 2% Computers 3% Increase in US electricity cons. since 1990: 200% Transportation **Refrigeration 4%** 28% 18% Commercial Office Equipment 6% Ventilation 6% Water Heat 7% Source: Buildings Energy Data Book 2007 Cooling 13% Heating 14% Lights 26% Other 13% 2006 U.S. Buildings Energy End-Use Splits Adjust to SEDS, 6.3% **Related to HVAC** Other, 8.5%-Space Heating, 19.8% Computers, 2.3%-Electronics, 2.8%-Cooking, 3.3%-Wet Clean, 3.4%-Space Cooling, 17.7% Refrigeration, 5.8%-Lighting, 7.8% Water Heating, 9.6% Ventilation, 12.7%

4

Buildings Energy Data Book

Current HVAC Control Systems

Observations

 Control logic governing today's buildings uses simple control schemes dealing with one subsystem at a time...

- Local actions are determined <u>without</u> taking into account the interrelations among:
 - Outdoor weather conditions
 - Indoor air quality
 - Cooling demands
 - HVAC process components

Outline

Motivation

Thermal Modeling

- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform

7

Smart Buildings in Smart Grid

First approach

Physical Buildings

- Modeling
- Parameter & Unmodeled dynamics estimation
- Online state estimation and parameter adaptation
- Model-based Control

Thermal Modeling

• Energy balance for a **wall** node:

$$\frac{dT_{w_i}}{dt} = \frac{1}{C_{w_i}} \left[\sum_{j \in \mathcal{N}_{w_i}} \frac{T_j - T_{w_i}}{R'_{ij}} + r_i \alpha_i A_i q''_{rad_i} \right]$$
$$r_i = \begin{cases} 0 & \text{internal wall} \\ 1 & \text{peripheral wall} \end{cases}$$

• Energy balance for a **room** node:

$$\frac{dT_{r_i}}{dt} = \frac{1}{C_{r_i}} \left[\sum_{j \in \mathcal{N}_{r_i}} \frac{T_j - T_{r_i}}{R'_{ij}} + \frac{\dot{m}_{r_i}c_p(T_{s_i} - T_{r_i})}{m'_{ij}} + \frac{\dot{m}_{r_i}c_p(T_{s_i} - T_{r_i})}$$

L

Thermal and circuit model of a wall with window

Building Thermal Dynamics

More details at: Maasoumy et al. DSCC 2011.

Parameterizing Unmodeled Dynamics

External heat gain

$$q_{rad_i}''(t) = \lambda T_{out}(t) + \gamma$$

Note: other quantities such as **global horizontal irradiance (GHI)** data can be used here as well.

Internal heat gain

$$\dot{q}_{int}(t) = \mu \Psi(t) + \nu$$

 $\Psi(t)$ is the CO_2 concentration in the room in (ppm).

Parameter & Unmodeled Dynamics Identification

$$T(t) = f(C_r, C_{w1}, C_{w2}, C_{w3}, C_{w4}, R_1, R_2, R_3, R_4)$$

 $[C_r, C_{w1}, C_{w2}, C_{w3}, C_{w4}, R_1, R_2, R_3, R_4]^* = \arg \min_{C_r, C_{wi}, R_i} \sum_{t} [e(t)]^2$

Unmodeled Dynamics Estimation

- Data of UC Berkeley
- Bancroft library, Conference room

More details at: Maasoumy et al., IEEE D&T, SI on Green Buildings, July/Aug 2012

• Initial guess (ASHRAE Handbook)

Online State Estimation and Parameter Adaptation

Second approach

Simulation Models

- Family of linear systems:
 - Linearized models at each operating point
 - Obtain adequate number of models for a given tolerance
 - Switched or Hybrid Models
 - Balanced realization
 - Model order reduction

Family of linear systems

Simulink model

Nonlinear Model

 $\dot{x} = f(x, u)$

y = h(x, u)

y = Cx + Du

Hankel singular values: Relative amount of energy per state

Model

 $y = \tilde{C}z + Du$

Reduced Order Model

Heterogeneous Modeling and Control

Outline

- Motivation
- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform
- Buildings and Smart Grid

Model Predictive Control

 $\min_{U_t,\bar\epsilon,\underline\epsilon}$ $\{|U_t|_1 + \kappa |U_t|_{\infty} + \rho(|\overline{\epsilon}_t|_1 + |\underline{\epsilon}_t|_1)\} =$ N-1 $\left\{\sum_{k=1}^{\infty} |u_{t+k|t}| + \kappa \max(|u_{t|t}|, \cdots, |u_{t+N-1|t}|) + \rho \sum_{k=1}^{\infty} (|\overline{\varepsilon}_{t+k|t}| + |\underline{\varepsilon}_{t+k|t}|)\right\}$ $\min_{U_t,\bar{\varepsilon},\underline{\varepsilon}}$ $x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t} + Ed_{t+k|t}, \qquad k = 0, \dots, N-1$ s.t. k = 1, ..., N $y_{t+k|t} = Cx_{t+k|t},$ $k = 0, \dots, N - 1$ $0 \le u_{t+k|t} \le \mathcal{U},$ $\underline{T}_{t+k|t} - \underline{\varepsilon}_{t+k|t} \le y_{t+k|t} \le \overline{T}_{t+k|t} + \overline{\varepsilon}_{t+k|t}, \quad k = 1, \dots, N$ k = 1, ..., N $\underline{\varepsilon}_{t+k|t}, \overline{\varepsilon}_{t+k|t} \ge 0,$ 20 upper bound 19.5 - · · lower bound 19 Temperature [^oC] 18.5 Occupied hours 18 Unoccupied Unoccupied hours hours 17.5 Q_2, R_2 17 Q_1, R_1 Q_1, R_1 16.5 16 L 6 am 12 pm 12 am 6 pm

Time [hr]

"MPC" and "On-off" Control Results

Outline

- Motivation
- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform
- Buildings and Smart Grid

ROBUST MODEL PREDICTIVE CONTROL (AGAINST MODEL AND MEASUREMENT UNCERTAINTIES)

Original Control with Uncertainty

Schematic of RMPC Implementation

More details at: Maasoumy, et al. DSCC 2012

29

Min-Max Strategy (Open-Loop) for RMPC

$$\begin{array}{c} J_{0}(x(t),U_{t}) \triangleq \\ \max_{w_{[.]}} & \{\sum_{k=0}^{N-1} |u_{t+k|t}| + \kappa \max(|u_{t|t}|,\cdots,|u_{t+N-1|t}|) + \\ \rho \sum_{k=1}^{N} (|\overline{\varepsilon}_{t+k|t}| + |\underline{\varepsilon}_{t+k|t}|) \} \\ \text{s.t.} & x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t} + Ed_{t+k|t} + Fw_{t+k|t} \\ & w_{t+k|t} \in \mathbb{W} \\ & k = 0, \cdots, N-1 \end{array}$$

$$J_{0}^{*}(x(t)) \triangleq \min_{U_{t}} J_{0}(x(t),U_{t}) \\ \text{subject to} \\ x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t} + Ed_{t+k|t} + Fw_{t+k|t} \\ y_{t+k|t} = Cx_{t+k|t} \\ T_{t+k|t} - \underline{\varepsilon}_{t+k|t} \leq \overline{T}_{t+k|t} + \overline{\varepsilon}_{t+k|t} \\ E_{t+k|t}, \overline{\varepsilon}_{t+k|t} \geq 0 \\ \forall w_{t+k|t} \in \mathbb{W} & \forall k = 0, \cdots, N-1 \end{array}$$

CL-RMPC: Feedback Predictions

- New decision variables: $\mathbf{v} = [v_{k|k}, v_{k+1|k}, \dots, v_{k+N-1|k}]$
- Parameter matrix **M** is *causal*:

in the sense that $u_{k+j|k}$ only depends on $\overline{x_{k+i|k}}$, $i \leq j$.

• Sometimes **M** is incorporated as a **decision variable**...

Lower Triangular Structure (LTS)

- Disturbance Feedback Policy:
 - parameterize <u>future inputs</u> as affine functions of <u>past disturbances</u>.

$$U = \mathbf{M}\mathbf{w} + \mathbf{v}$$
 i.e. $u_i := \sum_{j=0}^{i-1} m_{i,j}\omega_j + v_i$ $\forall i = 1, ..., N-1$

Where
$$M_{i,j} \in \mathbb{R}^{m \times p}$$
 and $v_i \in \mathbb{R}^m$.

$$\mathbf{M} := \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ m_{1,0} & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ m_{N-1,0} & \cdots & m_{N-1,N-2} & 0 \end{bmatrix}, \mathbf{v} := \begin{bmatrix} v_0 \\ \vdots \\ \vdots \\ v_{N-1} \end{bmatrix}$$

Drawback:

 Main problem with the min-max formulations based on these parameterizations is:

Toeplitz Structure

• Lower Triangular Toeplitz (diagonal-constant) structure:

$$U = \mathbf{M}\mathbf{w} + \mathbf{v} \quad \mathbf{M} = \begin{pmatrix} k_1 & & & \\ k_2 & k_1 & & \\ k_3 & k_2 & k_1 & & \\ \vdots & \ddots & \ddots & \\ k_{N-1} & \cdots & \cdots & k_2 & k_1 \\ k_N & k_{N-1} & \cdots & \cdots & k_2 & k_1 \end{pmatrix}$$

was shown to deteriorate the performance of the CL-RMPC in our simulations!

Two Lower Diagonal Structure (TLDS)

- By analyzing the structure of the optimal matrix **M**, we observed:
 - the parameterization of the input need not consider feedback of more than past two values of w at each time.

$$u_{i} := m_{i,i-2}w_{i-2} + m_{i,i-1}w_{i-1} + v_{i}$$
$$= \sum_{j=i-2}^{i-1} m_{i,j}\omega_{j} + v_{i} \qquad \forall i = 1, \dots, N-1$$

Simulation Results

RMPC: Energy vs. Comfort

Simulation Results

• Comparison of LTS and TLDS uncertainty feedback parameterizations and Open Loop min-max results for the case of $\delta = 50\%$.

		Number of	Average		
	Controller	feedback decision	simulation time	I_e	I_d
Closed-loop		variables	for $N = 24$ [s]	[kWh]	$[^{o}Ch]$
	J LTS	$lmr(\frac{N(N+1)}{2})$	200	16467	0
	TLDS	3lmr(N-1)	138	16467	0
	OL	-	159	22592	0.84

Outline

- Motivation
- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform
- Buildings and Smart Grid

Observations

The design of HVAC systems involves three main aspects:

- I. Physical components and environment
- II. Control algorithm that determines the system operations based on sensing inputs,
- III. Embedded platform that implements the control algorithm.

In the traditional *top-down approach*, the design of the HVAC control algorithm is done without explicit consideration of the embedded platform. NOT PLATFORM-BASED!!!

Problem

With...

- Employment of more complex HAVC control algorithms
- use of distributed networked platforms
- *imposing of tighter requirements for user comfort*

the assumption that... the embedded platform will always be sufficient for any control mechanism **is no longer true.**

Co-design framework for HVAC systems

Sensing System Set-up

BubbleZERO Research Setup

Which is conceived as part of the Low Exergy Module development for Future Cities Laboratory (FCL)

The environment sense system includes:

- 8 indoor sensors (Telosb41-48)
- 4 CO2 concentration sensors (flap31-34)
- 4 outdoor sensors (Telosb53-56)

Sensor Reading from the Set-up

Temperature measurements from 8 sensors located spatially at different locations in the room.

CO2 measurements from 2 sensors located spatially at different places in the room.

Analysis of Sensor Readings

Average error of k sensors for the Minimal error set of sensors and a random choose of sensors.

The pdf of the difference of the average of k sensor readings with the average of all nts=7 sensor readings.

The best, worst and random set of sensors are selected based on their resulting Δ_{rms} error.

Average error of k sensors for the Minimal error set of sensors and the worst choose of sensors.

BEST: Pdf of error of average of $T_{42},\,T_{43},\,T_{46}$ and T_{47} RANDUM: Pdf of onor of average of $T_{41},\,T_{42},\,T_{45}$ and T_{47}

BEST: Pdf of error of average of T_{42} . T_{43} . T_{46} and T_{47} WORST: Pdf of error of average of T_{41} . T_{42} . T_{43} and T_{47}

BEST Pdf of error of average of T_{41} , T_{43} , T_{45} , T_{45} , T_{46} , T_{45} , $T_$

BEST: Pdf of error of average of T₄₁ and T₄₈ WORST: Pdf of error of average of T₄₇ and T₄₂

BEST: Pdf of error of average of $\mathsf{T}_{42},\,\mathsf{T}_{43},\,\mathsf{T}_{45},\,\mathsf{T}_{46}$ and T_{47} WORST: Pdf of error of average of $\mathsf{T}_{41},\,\mathsf{T}_{42},\,\mathsf{T}_{43},\,\mathsf{T}_{45}$ and T_{46}

BEST: Pdf of error of average of T_{41} , T_{45} and T_{48} WORST: Pdf of error of average of T_{41} , T_{42} and T_{43}

Simulation Results

Pareto front Under Discomfort index Contraints

Pareto front under comfort constraints with best sensor locations

More details at: Maasoumy, et al. ICCPS 2012

Pareto front Under Discomfort index Contraints

Pareto front under comfort constraints with random sensor locations

Outline

- Motivation
- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Co-design of Control Algorithm and Embedded Platform
- Buildings and Smart Grid

Grid Infrastructure

Source: www.engineerlive.com

Smart Grid & Smart Buildings

Ancillary service to Grid from Buildings

No Ancillary

$$\min_{u_{anc}} \sum_{i=1}^{n} \int (ACE^{i}(t))^{2} dt \text{s.t.} \qquad x(k+1) = Ax(k) + B_{2}u_{anc}(k) + Ed(k) U_{anc}^{min}(k) \le u_{anc}(k) \le U_{anc}^{max}(k) |u_{anc}(k) - u_{anc}(k+1)| \le L_{anc}^{max}(k)$$

$$\text{Where:} \qquad ACE_{i} = \Delta P_{tie}^{i} + \beta^{i}x_{1}^{i}$$

$$\text{ACE}(\text{rms})=1.06$$

ACE(rms)=0.05 With Ancillary

50 60

20 30

10

reduction

ACE,

90

100

80

Thank You!

Questions?

More information at: eecs.berkeley.edu/~maasoumy

References

- Mehdi Maasoumy, Barzin Moridian, Meysam Razmara, Mahdi Shahbakhti and Alberto Sangiovanni-Vincentelli, "Online Simultaneous State Estimation and Parameter Adaptation for Building Predictive Control", Dynamic System and Control Conference (DSCC 2013), Stanford, CA, USA. Submitted
- Mehdi Maasoumy, Qi Zhu, Cheng Li, Forrest Meggers and Alberto Sangiovanni-Vincentelli, "Co-design of Control Algorithm and Embedded Platform for HVAC Systems", The 4th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2013), Philadelphia, USA
- Mehdi Maasoumy, Alberto Sangiovanni-Vincentelli, "Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control", IEEE Design & Test of Computers, Special Issus on Green Buildings, July/Aug 2012
- Yang Yang, Qi Zhu, **Mehdi Maasoumy**, and Alberto Sangiovanni-Vincentelli, "*Development of Building Automation and Control Systems*", IEEE Design & Test of Computers, Special Issue on Green Buildings, July/Aug 2012
- Mehdi Maasoumy, Alberto Sangiovanni-Vincentelli, "Optimal Control of Building HVAC Systems in the Presence of Imperfect Predictions", Dynamic System Control Conference, Fort Lauderdale, FL, Oct 2012
- Mehdi Maasoumy, Alessandro Pinto, Alberto Sangiovanni-Vincentelli, "Model-based Hierarchical Optimal Control Design for HVAC Systems" Dynamic System Control Conference, Arlington, VA 2011
- **Mehdi Maasoumy**, "Modeling and Optimal Control Algorithm Design for HVAC Systems in Energy Efficient Buildings," Master's Thesis, University of California, Berkeley. Feb. 2011.