Decentralized Path Planning For Air Traffic Management

Wei Zhang

Advisor: Prof. Claire Tomlin

Dept. of EECS, UC Berkeley

Outline

- Background
 - National Aviation System
 - Needs for Next Generation Air Traffic Management Systems
 - Air traffic control system from a control perspective
- Hierarchical Decentralized Flight Planning
 - Problem Formulation
 - Solution Procedure
 - Advantages Over the Current Planning Procedure
 - Simulation Results
- Conclusions

Motivations

National Aviation System is a large-scale Cyber-Physical System

14,500 traffic controllers, 4,500 safety inspectors, 5,800 technicians,

19,000 airports, 600 traffic control facilities, 50,000 flights each day

Physical components: large number of aircrafts, equipment and human agents

Cyber components: traffic & weather measurements, computation, prediction and communications.

Research Perspectives: FAA, traffic controllers, airline companies

My focus: System-level modeling and optimization methods for en-route traffic management and terminal area operations

The Needs for Next Generation ATM

Air traffic delays in 2007 has cost US economy \$41 billion

• fuel: 740 million gallons, carbon dioxide: 7.1 million tons

Staffing Emergency in major ATC facilities across the nation

As of 2008:

- 11,077 certified controller s—lowest level in 15 years
- 10,000 are expected to retire before 2015
- Oakland Center: training ratio: 2-1 vs 12-1 in 2005 operational error: 30 vs 14 in FY07
- planning to hire 12,000 before 2018

Jan, 2010

- Certified TRACONs controllers plummeted more than 25% in the last six years
- New York reaches post-1981 low

Situation gets much worse due to the expected two- to three-fold increase in air traffic

Need to modernize, (semi)automate the ATC system NOW

Challenges

- Legacy systems
 - require continuous operations
- Critical Safety Standards
- Large number of competing users
- Human in the loop
 - fear of new working conditions
 - TRACON controllers are still using the same Radar system as they did in 1960s.

- Gradual change
- Respective the structure of the system

Background of ATM

Hierarchical Control Structure of ATM

Lack of Collaborative Information Exchange

A major problem: lack of information exchange

- User does not know the traffic information
- only weather briefing is available before taking off
- FAA/ATM does not know users' preferences

Consistent situation awareness is needed

Benefit of Information Sharing

With the traffic information

- User can find the best path (according to its specific preference) to avoid traffic according
- Decide whether to delay the flight or take the best available detour

Towards a New Flight Planning Framework

A framework with planning algorithm

- deal with large number of aircrafts in real time
- consider both weather and traffic restrictions, guaranteed safety with certain "optimality" for the nominal trajectories
- 4D trajectory (3D + time)
- practically feasible

Graph of Airways

- Spacial graph $\mathcal{G}_s = (\mathcal{V}_s, \mathcal{E}_s)$
 - vertices (nodes): waypoints (Navigation aids, airports, "virtual" waypoint)
 - Edges: airways of jetways

Space-Time Graph G = (V, E)

$$\mathcal{V} = \left\{ \left(x, t \right) : x \in \mathcal{V}, t = 1, \dots, N \right\}$$

- Nodes are disconnected within the same layer
- Edges between layers determined by the dynamics of the aircraft

Planning Under Weather Uncertainty

Link weight ("length"):

- $l(v_i, v_j)$ Fuel cost; expected turbulence based on weather forecast:
 - infinite when crossing forbidden weather zone

Single aircraft path planning with weather data is a shortest path problem

Departure nodes Departure time
$$z_0 = \begin{bmatrix} x_0 \\ t_0 \end{bmatrix}$$
 ----> $z_f = \begin{bmatrix} x_f \\ t_f \end{bmatrix}$ Destination Latest arrival time

$$J\left(z_0, u; \lambda\right) = \phi\left(z_{t_f}\right) + \sum_{t}^{t_f - 1} l\left(z_t, u_t\right)$$

Need to handle sector capacity constraints

$$\sum_{i} \mathbf{1}_{S_{j}}(x_{t}^{i}) \leq \text{max sector counts } \forall t, j$$

Planning with Traffic Restrictions

- Current way for Traffic control:
 - speed variation, ground delay program, holding pattern, vector for spacing, redirecting
- Traffic Regulation Function: $\lambda(j,t)$

$$\lambda(j,t) = \begin{cases} 0 & \text{sector j open over } [t,t+1] \\ \infty & \text{otherwise} \end{cases}$$

• Each aircraft tries to minimize its own cost subject to the traffic rules specified by FAA

$$J_{i}\left(z_{0}^{i}, u^{i}; \lambda\right) = \phi\left(z_{t_{f}^{i}}^{i}\right) + \sum_{t}\left[l\left(z_{t}^{i}, u_{t}^{i}\right) + \sum_{j} \lambda_{j, t} \cdot \mathbf{1}_{S_{j}}\left(z_{t}^{i}\right)\right]$$

infinite link cost if crossing forbidden weather zone infinite price if sector "sold out" over certain time period

Safety and satisfy all sector constraints

Decentralized Path Planning Algo

Planning / Rerouting Algorithm

- 1. Get weather data and traffic restrictions λ
- 2. Solve the shortest path problem
- 3. File the plan
 - ATM approve and update traffic rules λ

- $\lambda(j,t)$ is a tool for the ATM to regulate traffic
 - the above is First-Come-First-Serve rule
 - can achieve certain "fairness" by using the historical data
 - nominal plans are safe but capacity buffer is needed to cope with uncertainty

Distinctions and Advantages

- Traffic Flow Management
 - Bertsimas 98', Waslander 08'
- Path Planning with Weather Uncertainty
 - Nilim (ACC03), Pannequin (GNC07), Kamgarpour (CDC10)
 - mostly centralized and only works for a small number of aircrafts
 - require same taking off time
 - does not consider traffic information
- Distinctions of our methods
 - decentralized
 - used for the entire NAS or different subregions of NAS
 - planning considering weather and traffic
 - 4D trajectory (3D + time)
 - guaranteed safety with certain "optimality"
 - respect current planning procedure, practically feasible in the near future

Simulation Results I

- •30 sectors, 2 deterministic weather zones, 12 airports, 100 flights
- randomly select departure and arrival airports, random departure time
- plans are made and filed in the order of departure time

Simulation Results II

Operational Evolution Plan (OEP) Airports
-- about 74% passengers and 69% operations

Flight schedules among OEP airports -- Aug. 24, 2005

- We consider 34 OEP airports (except HNL)
- Consider flights depart between 7am EST and 5pm EST
- Proof of concept: the framework works for realistic traffic patterns and realistic number of flights
 - no weather data and no comparison with real flight tracts
 - assume all flights try to minimize travelling distance
 - uniform grids corresponding to roughly 3 minutes flight time

Unconstrained Flight Plans

Traffic Regulation Results

Without constraints,

- •traffic concentrates on a few sectors
- the majority of the rest under-utilized
- 40 sectors have counts above 8 at some time

With traffic control

- meet capacity constraints at all time
- traffic in congested sectors diffused into neighbors
- increase 0.71% travel time

Result for Sector ZTL15

Satisfy capacity at all time

The new sector count does not always stay below the old one

Conclusion

- Proposed a Hierarchical Decentralized Flight Planning
 Framework
- Respect user's preference and has potential to reduce delay and energy
- Future Work
 - Further validating the framework using realistic weather data
 - compare the fuel savings as compared with the real flight plans

Thank you very much!