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Berkeley Retrofitted and Inexpensive HVAC
Testbed for Energy Efficiency (BRITE)
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* Partially engineered living laboratory
— 640 sq. ft. computer space
— Networked thermostat

— Newton’s law of cooling with complex heating load
from occupant behavior

(Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)
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(Aswani, et al., Proc. IEEE, 2011)
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Semi-autonomous systems Biology and cancer

(Aswani, et al., submitted, 2011) (Aswani, et al., BMC Bioinformatics, 2010) s



Control Paradigms

Model Based Learning Based
* Theoretical guarantees * High Performance
« Safety and stability « Adaptation
* Robustness  Emergent behavior

Learning + Model Based
* Theoretical guarantees from model
* High performance from learning



Model Predictive Control (MPC)

* Three elements

Element Example: BRITE

Finite horizon cost  Energy usage and temperature

variation
Model Newton’s law of cooling
Constraints Room temperature

Equipment on-time

* Optimization solved at each time step
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(Mayne, et al., 2000); (Borelli, et al., 2009); (Aswani, et al., 2011)



Solution of MPC
Element |

Non-linear feedback Minimizer of optimization
Value function Convex for linear problems
Enlarged feasible set Xp = {x : Hu*}

Rp

(Mayne, et al., 2000); (Borelli, et al., 2009)



Modeling for Efficient HVAC

Solar
Heating

Occupants
Equipment

* Physics given by Newton’s law of cooling

 Difficult to model heating load
— Time-varying nature

— Lack of direct data
(Aswani, et al., Proc. IEEE, 2011)



Control Paradigms




Identification of System Model

« Model: zn1 = f(zn, un) + zn
e« Data: & .==.+¢ E(e) =0;var(e) = o7
Input: Ty ug Output: AL
X=1: Y= :
oyl Ay
* Regression is ill-posed when

a) Measured data is collinear
b) Manifold relationship between input variables

« Can using b) improve identification of ill-
posed regression models?

(Aswani, et. al, Annals of Statistics, 2010)



Piecewise Linear Models

« Exploratory modeling for nonlinear systems

Ambient space of
input variables //

Relationship
between inputs

(Aswani, et. al, Annals of Statistics, 2010)



Piecewise Linear Models

« Exploratory modeling for nonlinear systems
* Indentify local linear models

Ambient space of
input variables //

Relationship
between inputs

(Aswani, et. al, Annals of Statistics, 2010)



Piecewise Linear Models

« Exploratory modeling for nonlinear systems
* Indentify local linear models
 Combine local models to cover space

Ambient space of H

input variables \ //
~ % Relationship
\[ between inputs

(Aswani, et. al, Annals of Statistics, 2010)



Manifold Regularization

* For each local model
— Input variables form plane
— Outputs linear with respect to inputs
* With differential geometric view
— Manifold described by cotangent space about a point

— Exterior derivative
» Best linear approximation of function
» Spans cotangent space

X,=X—-p'1

(Aswani, et. al, Annals of Statistics, 2010)



Manifold Regularization

* |ldea: Exploit differential geometric structure

1) Locally estimate cotangent space
» Compute local covariance matrix: C, =X, W, X,
» Take first d principal components

2) Estimate exterior derivative

* Penalize deviation of estimate from manifold
df , = arg mm W, (Y — X,8)[l5* + ATLB| 5>

Projection orthogonal
to cotangent space

Local linear regression
(Aswani, et. al, Annals of Statistics, 2010)



Quadrotor Helicopter Testbed

« Partially engineered semi-autonomous system
— Embedded processor onboard
— Simple steady-state model

— Complex physics in dynamic regimes
(Aswani, et al., ICRA, 2009); (Bouffard, et al., submitted, 2011)



Quadrotor Dataset

« Measurements

— Position-velocity _ Prediction Error

— Angular orientation-velocity Ordinary Least 0.807 (3.26)
* Online learning simulation Squares
— Build piecewise linear model with Ridge Regression 0.165 (0.07

(0.07)
{x;,u; :0<1<n} Elastic Net 0.166  (0.08)

— Predict position ten steps into future Partial Least Squares 0.194  (0.10)
(0.09)

{C%?OS n+1<i<n+ 10} Principal Components ~ 0.174
— Compare prediction to actual data Regression

n+10 || ~pos pos Exterior Derivative 0.156  (0.07)
V1/10- S0 igpos  gposy 2 Beerort
 Reduced error with manlfold Averages and standard deviations

regu|arization over 100 steps of online learning

(Aswani, et al., ICRA, 2009)



Augmentation of Learning

« Consequence: No learning orthogonal to
cotangent space of manifold

» Stable control needs more structure
— Apprenticeship learning uses expert human data
— Possibility of new technique using physical model

(Abbeel, et al., 2008); (Aswani, et al., Annals of Statistics, 2010)



Control Paradigms

Learning + Model Based
* Theoretical guarantees from model

* High performance from learning




Learning-based MPC (LBMPC)

* Insight: Performance and safety can be
decoupled in MPC

* |dea: Maintain two models
— First updated with learning
— Second kept fixed

* Learning can be any statistical tool

Performance Safety

« Cost function « Constraints and uncertainty
* Learned model  Original model

(Aswani, et al., submitted, 2011); (Aswani, et al., Proc. IEEE, 2011) 19



Components of LBMPC

* Five elements

Element Example: BRITE

Finite horizon cost  Energy usage and temperature

variation
Model Newton’s law of cooling
Constraints Room temperature

Equipment on-time
Uncertainty Modeling error

Heating load variation
Oracle (Learned Learning of heating load
model)

« Constraints robustified by subtracting out
effect of uncertainty

(Aswani, et al., submitted, 2011)



LBMPC Formulation

* At each time step
— Optimization solved
— Oracle updated

* . ~ ~
ur, = argmin J(Tomg1, .-y Lot Ny Uy « + + 5 Uan N —1)

S.t. Tpa1 = Axp + Buy + Op (T, Uy)
Ttk E X ORi;TmeN € AN O RN
Umtk = KTy +Ccmar €U S KR,
Tni1 = Az, + Buy,

(Aswani, et al., submitted, 2011)



LBMPC Formulation

* At each time step

— Optimization solved
— Oracle updated

L BMPC Performance

wy, = argmin J(Topa1, .- Tt Ny Uy - - s Ut N—1)

Tmik € X O Ri; TN € AN O RN
Um+k — KCEm_|_k + Cm+k € Uo KRZ
Tni1 = Az, + Bu,y,

Safety

(Aswani, et al., submitted, 2011) 22



Solution of LBMPC

Oracle

RP

Nominal Model

RP

(Aswani, et al., submitted, 2011)

23



Theoretical Properties of LBMPC

* For bounded modeling error, LBMPC has

— Deterministic stability

« Control always computable

« States remain bounded and in constraints
— Deterministic robustness

* Continuous value function
 Input-to-state stable (ISS) to modeling error

* If system dynamics are sufficiently excited

— Control law of LBMPC stochastically converges
to control law of MPC that knows the true model



Partially Engineered Systems

LoCal
Computer

Control
Computer

Energy-efficient building automation

(Aswani, et al., Proc. IEEE, 2011)
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Semi-autonomous systems Biology and cancer
(Aswani, et al., submitted, 2011) (Aswani, et al., BMC Bioinformatics, 2010) s



Quadrotor Helicopter

* Linear model * Physics improve statistics
— Physics for structure — Fewer parameters
— Experimental coefficients — Less noise
Tpi1 = Az, + Bu, +d O,, = Fx,, + Hu,, + z
A B d F H =z
N
N I H B
N
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(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)
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Quadrotor Helicopter

* Linear model * Physics improve statistics
— Physics for structure — Fewer parameters
— Experimental coefficients — Less noise
Tpi1 = Az, + Bu, +d O,, = Fx,, + Hu,, + z
A B d F H =z
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(Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)



Quadrotor Experiments

* Implementation with this

structure
— Oracle and state ) LuenbergAer Observer
estimation Tn1 = (A+ F)an + (B + H)un
* Dual Fxte;\ded Kalman + (k4 2) + K¢,
filter (EKF
; . n=1%Yn — Ciy
_ LBMPC is quadratic / T O N
program (QP) =F,C2
« Solved using LSSOL solver Pz,nJr1 = (A+F)Py,, + M,Ps,, — KEL
 Experiments Psyi1=Psp — LyEL), — P3Py, + Y
— Learning physical effect M, = 8(F&, + Hu, + 2)/03
— Improved performance Bpi1 = bound (B + Lny)
— Robustness under mis- \ Extended Kalman Filter /

learning
— High-precision task

(Ljung, 1979); (Aswani, et al., submitted, 2011); (Bouffard, et al., submitted, 2011)
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Testbed for Energy Efficiency (BRITE)
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* Partially engineered living laboratory
— 640 sq. ft. computer space
— Networked thermostat

— Newton’s law of cooling with complex heating load
from occupant behavior
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Challenges in Efficient HVAC

Existing control overcools (or overheats)

AC on
e L LS, 1 S S L S S
o) 225/ NN AN N A e A A AN LN SN AN NSNS L L ;
S 2 N AC off -
21 51 2|AM 2AIM 4AI\M 6AIM 8AIM 1OIAM 12I|3M 2PIM 4PIM 6FI’M 8PIM
Time
Time-varying Complex energy
heating load characteristics

(Aswani, et al., Proc. IEEE, 2011)



Temperature Modeling

* Semi-parametric regression modeling
— Parametric: Newton’s law of cooling
— Nonparametric: Heating load
Thi1 = AT, + Biu, + Bow,, + qy

— Novelty: Estimate heating load using only
temperature measurements of thermostat
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(Aswani, et al., Proc. IEEE, 2011); (Aswani, et al., submitted, 2011)
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Transient Power (0.01 kWh)
Steady State Power (0.35 kWh)
T

 Electrical home AC

— Transient and steady
state power

— Power independent (on
average) of outside

Minutes

* Energy estimates
Eactual = S 10,925 -tk + 0.015 - L(tsgy > 0)} kWh

« Convex relaxation using L1 norm
Eeonvex = Y rg (0.925 + 0.015) - w4z kWh

(Aswani, et al., Proc. IEEE, 2011)



Experiments on BRITE

 Compare controllers under identical
conditions using simulations and experiments

 LBMPC provides 30-70% energy savings

Experiment Method Switches | Energy | Tracking | Temperature Average
Error Variation External
Load

Thermostat LBMPC 23.6 kWh 0.75°C 0.13 °C 11.0 °C
Controller — \ypc 96 30.5kWh 0.62 °C 0.30 °C 11.0 °C
Thermostat 71 32.6KWh 0.61°C 0.20 °C 11.0 °C
LBMPC LBMPC 81 11.8KWh 0.86°C 0.17 °C 8.7 °C
Controller  nvipc 70 8.6kWh 0.93°C 0.21 °C 8.7 °C
Thermostat 38 345KWh 0.55°C 0.19 °C 8.7 °C

(Aswani, et al., Proc. IEEE, 2011)



Experimental Measurements

LBMPC Controller Experiment

2o | LBMPC Experiment — 11.8 kWh .

(°C)

23 .

| | | | | |
1PM 3PM 5PM 7PM 9PM 11PM 1AM 3AM 5AM 7AM 9AM 11AM
Time

(O

Thermostat Controller Experiment

22 - Theqmostalt Expelrimentl— 32.6I kKWh | .
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(Aswani, et al., Proc. IEEE, 2011)
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Thank you

Any questions?



