
May 1, 2001

Automotive Challenge Problems v.3.1

Introduction and Objectives

This document is provided as a means to report to the MoBIES Automotive OEP
community the current state of interactions between Phase I, Phase II,
automotive industry and Government participants. It is intended to serve as a
basis for the upcoming step-up in dialog between all MoBIES participants in
order to meet the program goal of a coordinated Automotive OEP plan by the mid-
July 01 PI meeting.

Hence, we request the following:

1. Careful consideration and feedback of the contents of this document. We
ask you to particularly focus on actions, that is, how you would alter
our interpretation of the challenge problems, if our expressed
understanding of your contribution is accurate and finally, how you would
structure within your MoBIES work scope a specific plan of action to
participate in the Automotive OEP.

2. Communication with us. We have listed points of contact. Shortly, those
points of contact will be in communication with you. However, if you
wish please proact with us. Again, July 01 is rapidly approaching.

3. Development of your portion of an Automotive OEP program plan. Our
intent in contacting you is to jointly develop the following:

a. Your portion of the Automotive OEP Scope of Work. This means a
narrative task-by-task description of how you will accomplish your
objectives within the Phase II work.

b. A schedule associated with 3a. Interim milestones will be part of
that schedule (e.g., reporting certain prescribed events at PI
meetings).

c. Defined interfaces, types of data to be exchanged and deliverables
also associated with 3a.

4. Iteration with us to ensure that coordination between all participants is
accommodated. This means a give-and-take between Phase I, Phase II and
other participants to ensure, within the scope of our contracts, that we
can jointly produce the MoBIES program goals.

This document can be considered a starting point, but obviously to complete
actions 1 – 4 by July will require us to move quickly from this document to
interacting with each other, and finally to consensus on how to jointly proceed.
Weaving together our approaches in a coordinated fashion will produce an
interesting and worthwhile product, and we look forward to working with you.

Berkeley Schedule

As a reference, the UC Berkeley schedule is provided:

Note that Tasks 2 and 4 are UC Berkeley’s responsibility (with considerable
assistance from our automotive industry partners) and are covered by the present
work, referenced in this document, whereas Tasks 5 and 6 are to be jointly
developed.

What is most relevant is that Task 8, performing the mid-term experiment,
commences in early Fall 01; that is our initial target, and we are developing
schedule details in both the vehicle-vehicle communication and powertrain
components of the OEP to achieve the start date. As we formalize our schedule
during the earlier-referenced actions 1 – 4 we hope to provide you with
sufficient detail that you can understand interfaces and products – essentially,
we want to work with you to accommodate all aspects of the program.

Past the inception of Task 8, you will notice a relatively long period for that
task. This means that several interim, detailed experiments can be performed
along the way to highlight the particular technologies you purvey. Again, we
look forward to mutually defining how they can be experimentally derived.

Outline of Challenge Problems

The remainder of this document revises the previous challenge problems from the
automotive OEP. The revision incorporates discussions at the April 2001 ESWG
meeting. The focus is on two applications: Powertrain Control (PC) and
Cooperative Adaptive Cruise Control with Collision Warning (CACC+CW). The
problems are divided into categories associated with a phase in a model-based
design and implementation of embedded systems.

ID Task Name
1 Task 1. Define Products and Interfaces

5 Task 2. Retrofit Vehicle Fleet

9 Task 3. Define Software Architecture

10 Define Software Architecture

11 Deliver Interface Design Description

12 Task 4. Develop Vehicle Libraries and Interfaces

13 Define Requirements

14 Provide Implementation Tools

15 Provide Vehicle Dynamical and Control Models

16 Provide Implementation Tools

17 Deliver Users Manual and Vehicle Dynamics and Control Design

18 Task 5. Define Testbed Demonstration and Experiments

21 Task 6. Develop Testbed Demonstration and Experiments

22 Develop Schedule

23 Develop Control Laws

24 Implement MoBIES Software

25 Task 7. Develop Evaluation Criteria and Measures

27 Task 8. Perform Testbed Demonstration and Experiments

29 Task 9. Reporting

32 Task 10. Coordination and Cooperation

33 Conduct Interface Tasks with the Government and Contractors

6/1

8/31

Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2
2001 2002 2003 2004

For each challenge problem there are
• a description;
• pointers to documents that provide detail;
• a contact person who can respond to questions;
• names of Phase I people who expressed interest in it; and
• our understanding of what they can contribute.

To meet the goals of the July 2001 PI meeting, Phase I people need to work on
one or more of these problems. So far, only Edward Lee has responded to v.1 of
this document, see Mobies Position Paper:
http://vehicle.me.berkeley.edu/mobies/papers/Ptolemy.pdf

Table of Challenge Problems

1. Modeling
 1.1 Multiple-view modeling
 1.2 Automated composition of sub-components
 1.3 Communication models
2. Model Analysis
 2.1 Automatic test generation
 2.2 Verification
 2.3 Synthesis of switching
 2.4 Performance
3. Implementation
 3.1 Test vector generation
 3.2 Schedulability analysis
 3.3 Code generation
 3.4 Code debugging and testing
 3.5 RTOS generation
 3.6 Allocation to distributed platforms
4. Integration
 4.1 Model translation
 4.2 Integration of different models of computation
 4.3 Tool Integration
 4.4 Software/hardware Integration

1. Modeling

1.1 Multiple-view modeling

Primary point of contact: Ken Butts (mailto:kbutts1@ford.com), Mark Wilcutts
(mailto:wilcutts@me.berkeley.edu)

The problem is to generate and relate plant and controller models at three
levels [Butts]:

- level 1: hybrid automata with continuous dynamics
- level 2: discrete-time controllers and some scheduling information
- level 3: platform (e.g., OS, hardware) specific information (e.g.,

variable sizes).

Other refinements might include a more realistic communication model (see
problem 1.3).

The questions are:
- how to "move" from one level to the next, e.g., perhaps automatically
 refine a level-1 model to a level-2 model
- how to preserve consistency (and what does that mean)

Links to detailed documents:

In http://vehicle.me.berkeley.edu/mobies/papers/challenges_berkeley.doc reference is made
to a relevant paper by Magner, Butts, and Toeppe.

http://vehicle.me.berkeley.edu/mobies/papers/challenges_berkeley_v2.pdf

The modeling style guide at http://vehicle.me.berkeley.edu/mobies/papers/stylev242.pdf
provides documentation of the Level 2 model structure currently used at Ford.

Phase I response: Edward Lee. Ptolemy II supports a hierarchical refinement of
simulation models. At level 1, the plant can be represented by continuous odes,
the controller by a sampled data system. At level 2, the level 1 controller can
be embedded into an RTOS domain model to simulate the competition for system
resources. For the CACC+CW problem, the model can be further extended to
simulate network communication.

Our understanding: This means that to use Ptolemy II facilities the automotive
plant and control models have to be rewritten in Ptolemy II. Moreover, to
estimate the performance of the code on OSEK, one must simulate within Ptolemy
the various control tasks and OSEK. These are very difficult tasks for the OEP
group. Will the Ptolemy group undertake these tasks?

Phase I response: John Anton(?) said that the controller design normally
conducted in the continuous-time world of odes, should also have attached to it
the computational resources that the design would need. Then the control system
performance (measured in the ode world) can be traded off against the
computational resources of its implementation.

Our understanding: Perhaps this means that the controller design expressed at
levels 1 and 2, should also simultaneously include level 3 considerations. The
OEP control designs are formulated in Simulink/Stateflow and in Teja. Will
Kestrel provide the means to attach (infer) the computational resource
requirements that the designs imply?

Additional note: The study http://vehicle.me.berkeley.edu/mobies/papers/teja-
simulink.pdf compares level 1, 2 implementations of the continuous-time system

.80,0)0()0(;,1 ≤≤==== tyxxyx &&

This is the level 1 model. We are given the explicit level 2 constraint that x
must be computed every 1 second and y every 1.5 seconds. The document compares
the level 2 models (incorporating these constraints) in Teja, Simulink, and
Simulink/Stateflow (following Ford style guide) in terms of

• how natural it is to go from level 1 to level 2;
• compactness of the level 2 models;
• approximation of the computation of resulting x, y trajectories relative

to the model 1 trajectories;

• efficiency of the implementation in terms of the compactness and
readability of the resulting code.

Our conclusions are (1) that Teja scores better in all four dimensions.
Furthermore, if one is only interested in simulation of the level 1 system,
then Shift is the easiest to use.

1.2 Automated composition of sub-components

Primary point of contact: Bill Milam (mailto:wmilam@ford.com), Stavros Tripakis
(mailto:stavros@EECS.Berkeley.EDU)

The problem is to find a method to build a specified target system by composing
a given set of sub-components (e.g. block diagrams in Simulink).

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/model_composition_challenge.pdf
http://vehicle.me.berkeley.edu/mobies/papers/model_compiler.pdf both by B. Milam and A.
Chutinan.
http://vehicle.me.berkeley.edu/mobies/papers/amc.pdf by S. Tripakis.

The first document motivates and describes the problem. There are two elements
in a formal problem description. First, how is a component given (answer: it is
a Simulink block). Second, what properties are relevant to a component’s
capability of being composed with other components (answer: signal type,
suitably annotated, execution criteria (ODE solver parameters such as step
size).

The second document proposes a “grammar” that (1) gives the rules for composing
two components, and (2) infers the port description of the composed system from
its components and the rule used.

The third document proposes an abstract formalization based on the second
document. A component is described as a collection of input-output ports.
Each port has a syntactical description (name, type, sampling rate, etc.). The
“grammar” is expressed as a compositional relation C on ports. There are, in
addition, fan-in and fan-out restrictions on port signals. There also are
restrictions on the numbers of copies of a given component one is allowed to
use. Given the target system T (specified in terms of its input-output ports),
find an interconnection of components that realizes T, while satisfying C and
the other restrictions, and minimizing some cost criterion. The formal problem
is an integer programming problem. The complexity is exponential. However,
under some conditions, the complexity is polynomial.

Phase I response: Edward Lee. The problem is specified in a declarative mode,
i.e. two components may be connected if their input and output ports meet a
generalized type constraint. The problem formulated in this way is likely to
lead to too many solutions or no solution. A better approach is to have a hard-
coded “model generator” that starts from the target system, and generates a pre-
defined structure in terms of components. Those components may be parameterized
(possibly in terms of the existing components?), and the designer fills in the
appropriate parameters. Ptolemy II provides one example of the second approach:
a high-order differential equation model (the target system) automatically
generates a Simulink-style structure comprising first-order integration blocks.

Our understanding: Lee’s “generative” approach is a special case of the
generative grammar sketched in section 6 of the second document by
Milam and Chutinan. One writes a target component T as (say) T = (A + B)G,
where A, B, G are components and `+’ and `.’ denote particular types of port
connection. If A, B, G are given components, we are done. Otherwise, we must
realize them in terms of other components. Ultimately one obtains a realization
of T. The difficulty with this approach, as Milam and Chutinan note, is that we
don’t know how to “expand” T so that we can effectively obtain a realization.
The third document by Tripakis is at attempt to automate this expansion.

Other Phase I response: none.

1.3 Design and use of good (wireless) communication models

Primary point of contact: Pravin Varaiya (mailto:varaiya@EECS.Berkeley.EDU)

Automotive systems use inter-processor communication, e.g., micro-controllers
communicating over a CAN bus. Telematics applications (e.g. CCAS+CW) require
more complex networking infrastructure (both in terms of media, e.g., wireless,
and protocols, e.g., TCP/IP). Communications are an important part of the
design: they may restrict control performance; the latter may impose
communications requirements. However, in the initial control design it is
assumed that the modules communicate instantaneously and perfectly.

The goal is to develop simple communication models that are relevant for control
design. Another goal is to develop control design methods that take into account
communication system performance. These models can be used either for analysis
or simulation.

Links to detailed documents:
See IEEE Control Systems Magazine, vol.21, (no.1), IEEE, Feb. 2001, for

several articles dealing with networked-control system design.

Phase I response: Edward Lee. Ptolemy II is an excellent platform for modeling
network communications.

Our understanding: One would have to develop a library of communications
network simulation models, together with models of plant and controller design
within Ptolemy. This daunting task cannot be undertaken by the OEP group. One
alternative is to use existing simulation packages such as ns and Opnet.
However, this poses the problem of integrating these packages with, say,
Simulink or Teja that describe the plant and controller. (See challenge problem
4, below). Another approach is to build an adequate model within Simulink or
Teja.

Phase I response: I. Lee (U. Penn) expressed interest in this problem.

2. Model Analysis

2.1 Automatic test generation

Primary point of contact: Stavros Tripakis (stavros@EECS.Berkeley.EDU)

The problem of automatic test generation is, given the model of a system (in
some formalism, e.g., hybrid automata, Simulink), and a specification of the
test goal, to generate a set of test cases that check whether the system meets
the test goal.

The test cases are automata that act as observers/controllers to the system:
they generate inputs to the system, and observe its outputs for some finite
time. During this time interval they give a verdict, whether the system has
passed or failed the test.

Automatic test generation can be viewed as “intelligent simulation.” The
objective is to generate a reasonable number of test cases that covers a
representative class of behaviors, among all possible environment behaviors.

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/embedded_challenge.pdf

Phase I response: Edward Lee. Utility functions can be added to existing
Ptolemy II to generate reports on test coverage at individual component and
component interaction levels. Creation of testbenches, i.e. models that test
other models, can also be supported.

Our understanding: Running simulation models of the design against typical plant
behaviors tests Level 1 and level 2 control designs. In the PC design, one
simulates typical loads, temperature, etc. to evaluate powertrain performance.
In the CCAV+CW design, one simulates “typical” scenarios of inter-vehicle
distance and speed, etc. The design team selects the test scenarios.
Testing of code poses more difficult challenges that we haven’t resolved.

Phase I response: I. Lee (U. Penn) expressed interest in “intelligent
simulation.”

2.2 Verification

Primary point of contact: Pravin Varaiya (varaiya@EECS.Berkeley.EDU)

The problem is to verify that a controller design in Simulink or Teja satisfies
a given specification, for example, "an unsafe state is never reached", "the
controller is never deadlocked", a variable used by the controller has been
defined, and so on.

In the CACC+CW application, the main property to be verified is that collision
between vehicles is avoided, that is, the distance between the subject vehicle
and the vehicle in front is never zero.

In the PC application the unsafe or undesirable states might be specified by
bounds on engine speed, fuel-air ratio, stability of idle speed, etc.

Links to detailed documents:

http://vehicle.me.berkeley.edu/mobies/papers/embedded_challenge.pdf

For a general introduction to the hierarchical control architecture see:
Varaiya, "Smart cars on smart roads," IEEE Trans Control, 38(2): 195-207,

Feb. 1993.

For a survey of control designs see:
Horowitz and Varaiya, "Control design of an automated highway system,"
Proc. IEEE, 88(7): 913-25, July 2000.

For verification see:
Puri and Varaiya, "Driving safely in smart cars," Proc. 1995 American Control
Conference.

Botchkarev and Tripakis, "Verification of hybrid systems with linear
differential inclusions using ellipsoidal approximations", in Hybrid Systems:
Computation and Control, LNCS 1790: 73-88, 2000. The tool discussed in this
paper is available at http://robotics.eecs.berkeley.edu/~olegb/VeriSHIFT/

Kurzhanski and Varaiya, "Ellipsoidal techniques for reachability analysis", in
Hybrid Systems: Computation and Control, LNCS 1790: 202-214, 2000.

Phase I response: Edward Lee. Tom Henzinger’s group is working to integrate
verifiable models, like Giotto, with Ptolemy II.

Phase I respone: B. Krogh (CMU), I. Lee, R. Alur (U. Penn) expressed interest in
this problem.

Our understanding: Existing tools for verification of hybrid systems place
strong restrictions on the system dynamics, which preclude their use for the
automotive OEP. So one must resort to approximations. The use of FSM model-
checking tools requires even further approximations. It would be valuable to
see how the CMU and U. Penn tools work on the (non-hybrid) example in Puri and
Varaiya.

2.3 Synthesis of switching (hybrid) controllers

Primary point of contact: Pravin Varaiya (mailto:varaiya@EECS.Berkeley.EDU)

The problem here is, given a set of macro-states (system modes), for each of
which a control law is defined, and a set of switching conditions between these
states, to synthesize a global controller which operates in any of these states
and switches between them according to the conditions. The objectives are that
the controller is stable, transitions are "smooth", and so on.

The synthesis might involve restricting the conditions, adding resets
(re-initialize some variables), or synthesizing a transient set of states
through which the controller passes during the switch.

Links to detailed documents:
For some work in this area, see:

Asarin et al, "Effective sysnthesis of switching controllers for linear
systems," Proc. IEEE, 88(7): 1011-25, July 2000.

Koo et al, “Mode switching synthesis for reachability specifications,” in
Hybrid Systems: Computation and Control, LNCS, 2001.

Phase I response: J. Koo (U. Penn). The paper cited above provides an efficient
computation of the mode-switching conditions.

Our understanding: Suppose you are given modes 1, …, N. Each mode i is
characterized by a given “safe” set Si and a differential equation).(ii xfx =& You
are told whether for every initial state in Si there is a trajectory (in mode i)
that reaches Sj. The paper’s procedure determines the sequence of mode
transitions from an initial set S0 to a final set Sf. This is obviously a graph
search problem with N nodes. The difficulty in any actual application such as
CCAC+CW is to determine if there indeed is a trajectory from Si to Sj.

Phase I response: G. Pappas and R. Alur expressed interest in this problem.

2.4 Performance

Primary point of contact: Karl Hedrick (mailto:khedrick@me.berkeley.edu)

The problem is to study robustness to parameter changes (sensitivity), fault
tolerance, etc. Controller designs typically incorporate strategies for
detection and reaction to faults.

Links to detailed documents:
For one study of how faults are included in controller design, see

Godbole et al, "Design and Verification of Communication Protocols for
Degraded Modes of Operation of AHS," Proc. IEEE CDC, 427-32, 1995.

Phase I response: B. Williams (MIT) expressed interest in fault tolerance.

Phase I response: Edward Lee. The Ptolemy II simulation environment can be used
to quickly prototype concepts of fault detection and isolation, and to integrate
those models with those of the rest of the plant and controllers.

Our understanding: There are two steps in how control designs address fault
tolerance. The first step involves fault detection. One assumes a set of models
that describe the system under various fault conditions. The set includes the
no-fault model. A separate controller is built for each fault condition. Based
on sensor measurements, an on-line statistical procedure infers when a fault
occurs and what type it is, and a “supervisor” switches in the controller built
to handle that fault. There is a variety of inference procedures and redundant
architectures to make robust the inference and fault-handling controllers.

3. Implementation

3.1 Test vector generation

Primary point of contact: Ken Butts (mailto:kbutts1l@ford.com), Stavros
Tripakis (mailto:stavros@EECS.Berkeley.EDU)

This problem is related to problem 2.1, with the difference that it is not the
function of the model which is exercised by the test vectors, but rather we are
verifying the behavior of the implementation by comparing it to the behavior of
the model (code and perhaps also hardware).

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/embedded_challenge.pdf

Phase I response: I. Lee (U. Penn) may expressed interest in this problem.

3.2 Schedulability analysis

Primary point of contact: Stavros Tripakis (mailto:stavros@EECS.Berkeley.EDU)

Most systems consist of a number of logical tasks. Each task is characterized
by a set of activation conditions, execution time, resources that it has to
access, and completion deadline. Upon implementation, these logical tasks are
mapped onto one or more processes running on a single host machine, and sharing
the CPU and other resources. Schedulability analysis consists in finding a
scheduling policy to use for the processes so that the deadlines of the logical
tasks are met (plus other properties such as absence of deadlocks, process
starvation, and so on). Alternatively, given a scheduling policy, to determine
whether these conditions are met.

We distinguish between logical and (physical) processes, since in general, more
than one logical task can be implemented in the same process, where they are
scheduled internally (e.g., Teja generates code like that). Even in this case,
it is the requirements of the logical tasks that have to be met.

A particular challenge problem is to carry out in an automated way a
schedulability analysis similar to the one described in the document below, for
the publish/subscribe database architecture used in the automotive OEP. Part of
the challenge is to come up with automated ways to estimate the various
execution times necessary in the analysis. Even better would be a synthesis
procedure that proposes how priorities are to be assigned to the different
processes.

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/vehicle/papers/pub-sub.pdf by Tripakis
gives a preliminary analysis of the longitudinal and lateral control using the
publish and subscribe architecture.
http://vehicle.me.berkeley.edu/mobies/vehicle/papers/taxys-cdc.pdf by Tripakis and Yovine
gives another analysis of the same system.

The source code for the P&S architecture is available at:
http://vehicle.me.berkeley.edu/mobies/vehicle/PS-distribution.tar.gz

http://vehicle.me.berkeley.edu/mobies/papers/embedded_challenge.pdf is a more general
document from Ford.

Phase I response: Edward Lee. A key problem in scheduling is that most methods
are not compositional. Processes (and threads) consume shared resources in a
complicated manner. So if process A and B can be accommodated separately, there
is no easy way to ensure that A and B together can be accommodated. A TDM
scheduler like Giotto and TTA simplifies schedulability since it divides CPU
resources into time slots and assigns a time slot to each periodic task.

Phase I response: B. Abbott (SWRI), R. Rajkumar (CMU), K. Shin (U. Mich)
expressed interest in this problem.

Our understanding: Traditional schedulability analysis like RMA is limited.
Some limitations are overcome by extensions, eg., Harbour, Lehoczky, and Klein:
“Analysis of tasks with varying fixed priorities,” Prof. 12th IEEE Real-time
Systems Symposioum, 1991. The above-cited document by Tripakis does this. Yet
another approach based on Esterel and Kronos is presented in the document by

Tripakis and Yovine. Going to a TDM system certainly simplifies schedulability
analysis. However, there may be a large cost: the underlying hardware and OS
must support TDM; the fixed TDM schedule reduces flexibility; TDM schedules may
not work for event-driven systems as in the PC problem where camshaft-driven
events are very important.

3.3 Code generation

Primary point of contact: Dave Bostic (mailto:dbostic@ford.com), Paul
Griffiths (mailto:pggriffi@vehicle.me.berkeley.edu)

The problem is to automatically generate code for a given platform, starting
from a model (e.g., hybrid automata, dataflow blocks), so that the generated
code preserves the properties of the model, under assumptions on the underlying
platform. In the PC application, this is OSEK, MPC555+HC08. For the CACC+CW
application, this is a publish and subscribe architecture on QNX.

Code generation can occur at various granularities: generating code for pieces
of the entire model (e.g., Simulink blocks) up to generating code for the entire
model (e.g., Teja). In the first case, support is necessary for "gluing" the
pieces together (e.g., scheduling). In the latter case, support is necessary for
schedulability analysis (c.f. problem 3.2). In case this analysis shows that
some deadlines are missed, it is likely that this is due to the granularity of
some atomic actions, which is too coarse (i.e., preemption of these actions is
necessary). The tool should be able to figure this out and guide the user into
splitting the actions in question into more fine-grain pieces.

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/embedded_challenge.pdf

Phase I response: Edward Lee. Ptolemy II can generate code at shallow and deep
levels. Shallow code in Java uses Ptolemy libraries to execute a simulation.
Deep code that targets specific designs (platforms like OSEK+MPC55?) can in
principle be generated.

Phase I response: John Anton (Kestrel) expressed interest in this problem.

Our understanding: Executable simulation (shallow) code seems like the code
generated by, say, Simulink or Shift. Teja generates code for the publish and
subscribe architecture and a forthcoming Teja compiler for OSEK will generate
code for the MPC555 platform.

3.4 Code debugging and testing

Primary point of contact: Baris Dundar (mailto:dundar@eecs.berkeley.edu)

Code debugging and testing refers to first, the ability to run and debug the
code with or without hardware in the loop; second, the ability to map the
results to the model from which the code has been generated. For example, if an
error occurs during the execution of the code, say a variable X grows above an
acceptable limit, one should be able to check whether the same behavior can be
reproduced in the model. If this is so, then the model is incorrect. Otherwise,
either some of the assumptions of the underlying platform were violated (e.g.,
not enough CPU), or the code generator is incorrect.

A useful method for code debugging and is the annotation of the code with "self-
examining" parts, for example, assertions about the timing, values of variables,
and so on. This is often done manually, and a challenge is to generate such
annotations automatically and provide support for the interpretation of the
results.

Links to detailed documents:
[Baris will provide reference]

Phase I response: none.

3.5 RTOS generation

Primary point of contact: Bill Milam (mailto:wmilam@ford.com), Baris
Dundar (mailto:dundar@eecs.berkeley.edu), Mike Bauer
mailto:Mike.Bauer@motorola.com

Ford's definition of the challenge problem is as follows: given a target
software and hardware architecture, the worst-case execution time for the
embedded system code, and additional timing constraints, generate a custom
RTOS that enables the target code to meet all the timing requirements and
is the most efficient in ROM, RAM, and CPU usage.

Automatic generation of OSEK OIL files for Matlab/Simulink generated code can
also be considered under this topic, as the latest version of Matlab cannot
generate OIL files for OSEK applications. OSEK Implementation Language (OIL)
aims to create an OSEK-compliant RTOS scaled to a specific application. For all
OSEK applications OIL must be used to statically configure the application at
compile time. OIL is used to select the scheduling policy, define the objects
(like tasks, alarms, events, resources, counters, ISRs...etc) in an application
and their attributes.

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/embedded_challenge.pdf

Phase I response: Edward Lee. Addressing this problem within the Ptolemy
framework is on the agenda.

Phase I response: no one else.

3.6 Allocation of system function and performance to distributed platforms

Primary point of contact: Mike Bauer (mailto:Mike.Bauer@motorola.com), Mark
Wilcutts (mailto:wilcutts@me.berkeley.edu)

Implementation is relative to a given platform, which includes hardware
components such as computers/micro-controllers, sensors, actuators,
communication devices and links, and software such as operating systems,
device drivers, libraries, or middleware (e.g., Corba, Jini, Publish/Subscribe).
Often the choice of the underlying platform has been fixed by other factors, but
it may be the case that a number or alternatives are possible.

One challenge problem is therefore to provide methods for choosing a platform,
given a description of the particular application or class of applications that
the platform has to support. The description might be the detailed model of the

application, or some general characteristics such as sampling frequencies,
desired throughput, and so on.

Assuming the platform and application are fixed, and the platform is
distributed, a challenge is to support the user in deciding how to partition the
different functions or tasks of the application to the different computers,
micro-controllers, etc. Such feedback may be input to the code-generation tools,
which will generate code for the different parts, as well as for interfacing
these parts (e.g., through a network). The PC platform has two processors, the
CACC+CW also has multiple processors.

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/partitioned_control.pdf

Phase 1 response: K. Shin (U. Mich) and R. Rajkumar (CMU) expressed interest in
this problem.

4. Integration

This problem has several aspects. In the automotive OEP, the problem concerns
merging the PC and CACC+CW applications) at

- the modeling, simulation and analysis level; and
- the implementation level.

The controllers for PC and CACC+CW are complementary: CACC+CW produces a desired
acceleration/deceleration output, while PC receives acceleration as input and
produces torque as output.

In the first stages of the project, models and implementations of the two
applications will be developed using different formalisms and tools, and on
different platforms.

Phase 1 response: E. Lee (UCB) and G. Karsai (VU) have expressed interest in
this set of problems.

The integration challenge is to develop methods and tools to perform one or more
of the following functions:

4.1 Model translation

To/from TEJA

Primary point of contact: Anouck Girard (mailto:anouck@eecs.berkeley.edu), Marco
Zandonatti (mailto:marcoz@teja.com)

4.2 integration of models of computation

This includes studying different underlying models of computation of each tool,
and resolving whether the underlying assumptions are compatible, and what fixes
are needed for meaningful model comparison/integration.

Primary point of contact: Anouck Girard (mailto:anouck@eecs.berkeley.edu)

4.3 Tool integration (e.g., Simulink and Teja) so two sets of interacting models
can be run in parallel

The challenge here is to preserve real-time properties and semantical meaning
during the execution of both tools in parallel.
This may include studying different verification and model checking tools, and
studying whether the tools can work on the same models.

Primary point of contact: Anouck Girard (mailto:anouck@eecs.berkeley.edu)

4.4 Software/Hardware Integration

This includes studying aspects of several of the above challenge problems:
• what is the best way to communicate between software and hardware (P/S

database),
• and how to map the software onto the hardware (schedulability analysis,

allocation to distributed platforms, code generation, debugging and testing
for particular hardware platforms etc…)

Primary point of contact: Anouck Girard (mailto:anouck@eecs.berkeley.edu)

Links to detailed documents:
http://vehicle.me.berkeley.edu/mobies/papers/MoBIES_v2v.pdf

Concerning the model development, the primary points of contact are:

Vehicle control:
- Plant: Adam Howell (mailto:ahowell@vehicle.me.berkeley.edu)
- Controllers: Mike Drew (mailto:mdrew@vehicle.me.berkeley.edu)
-

Powertrain control:
- Plant: Jason Souder (mailto:jsouder@me.berkeley.edu), Mark Wilcutts
- Controllers: Mark Wilcutts (mailto:wilcutts@me.berkeley.edu), Jason

 Souder (Ken Butts regarding controller
 representation in Simulink/Stateflow)

Phase I response: Edward Lee. The issue to be faced is that tools are based on
one or more models of computation (MoC). So we need to understand the MoCs and
the interaction between them. Since Ptolemy II supports multiple MoCs, it can
be used as a glue between them. If we can “wrap” a specific tool to make it
behave like a dataflow component, it may be much easier to integrate them.

