Modal Models in Vehicle-Vehicle Coordination Control

Xiaojun Liu
The Ptolemy Group
EECS Department, UC Berkeley

Berkeley, CA, March 12, 2002
Vehicle-Vehicle Coordination Control

- Part of the MoBIES Automotive Open Experimental Platform (OEP)
- Used on vehicles in an intelligent vehicle highway system
 - Platoon formation
- Goals
 - Maintain safety
 - Reduce traffic delay
 - Maximize fuel efficiency
 - Give passengers a comfortable ride

Picture obtained from http://vehicle.me.berkeley.edu/mobies/vehicle/
Control Modes in Vehicle-Vehicle Coordination

- The controller works in different modes due to:
 - Operational requirements
 - Tracking
 - Collision avoidance
 - Quality of communication among vehicles
 - Reliable real-time update of speed/distance among neighboring vehicles
 - Complete loss of inter-vehicle communication
 - Various failure conditions, etc.

- A modeling paradigm is needed for designing and validating modal controllers
Motivation of Modal Models

- Finite state machines (FSM) are used extensively to describe modes and transitions
 - Formal analysis and verification methods available

- FSMs are in general not practical to describe the control algorithms
Motivation of Modal Models, Continued

- FSMs need to be hierarchically composed with other computational models.
The composition may involve multiple computational models.
Modal Models in Ptolemy II

- Leverage the Ptolemy II infrastructure that supports hierarchical heterogeneity
- Capable of modeling modal systems that involve various models of computation, such as continuous time (CT), discrete event (DE), Giotto, and synchronous dataflow (SDF)
A Modal Model of the MoBIES Vehicle-Vehicle Automotive OEP Problem

- Created by Professor Edward A. Lee, based on a formulation from the U-Penn MoBIES team

The leading car has a modal controller with two modes: merge and track.
Vehicle-Vehicle Model, Continued
For the track mode, the model is similar but with different parameters.