AFDX Network Simulation in PtolemyIl

1 Summary

The following document is a short documentation to explain how you can use PtolemyII’s actors to simulate a (full-
duplex) AFDX network in a distributed application. The important concepts in an AFDX network are: End-System
(ES) or "daughter board” (connected to the CPIOM board of a computer), AFDX switches (SW) and virtual links
(VL). The transmission of Ethernet frames in a VL queue is scheduled by the ES’s Virtual Link Scheduler, as
depicted in figure 1, The AFDX switch has a static routing table which specifies for each VL the output(s) port(s).
In practice, there is an implicit routing based on the topology described by the nodes and switches. More details
about AFDX network can be found in [AFDX12, [GEIP12, TECH0S]. Demos for AFDX network simulation can be
found in ptolemy/actor/lib/qm/demo/AFDX. The actors implemented can be found in the Vergil’s library under
MoreLibrairies->QuantityManager: AFDX_ESs, AFDX_SW and VL.

Calculator

Controllers]—) portl '4
Actuators I_)

Node 1

VL
scheduler

End-System (ES)

AFDX - ARINC 664

Figure 1: AFDX concept, devices and network

2 The AFDX simulator

2.1

Hypothesis based on the AFDX specification

Let us consider N a node (or computer), Nt an transmitting node and Nr a receiving node. We consider the
followings hypothesis:

1.

There is only one AFDX network, even if AFDX specifications considers (theoretically) that there are two
redundant networks,

Each node (e.g. a Ptides platform or a DE composite actor) is connected to (only) one End-System (ES), and
each ES is connected to only one switch (SW); but a same SW can be connected to several ESs.

Some SW(s) are directly connected to a ES, other SW(s) are in the "network heart” (only connected to other
SWs).

. A VL can link one Nt to one Nr (unicast) or to several Nr(s) (multicast). In the multicast case, each Nr node

can be connected to distinct SW, and the path is given by a tree.

A VL has a source SW (connected to its ES), zero or more intermediate SW(s), one or more final SW(s) (one
if it is an unicast, more if it is a multicast).

There can be several paths between two nodes (2 ESs), but a VL is a static path chosen by the designer.
The delay introduced by the traffic shaper of the end-system is considered as negligible.

The latency of the network physical link is negligible compared with the latency introduced by the AFDX
devices (switches and end-systems).

2.2

Components of the AFDX network

There are three components, all found in MoreLibrairies -> QuantityManager:

e VL actor (see Figure [2lc), with the following parameters: vlink (name), bag and trameSize (size of frame);

the parameter schedulerMux is the name of the ES (see Figure [2d).

AFDX_ESs, with a parameter bitRate, the bit rate of the traffic shaper of the end system. It simulates all
the end systems of the AFDX network.

AFDX_SW, with the following parameters: inputBufferDelay, outputBufferDelay, technologicalDelay
and the number of ports. The default values are, respectively, 0.0, 0.0, 140us and 2 (see Figure f). Add as
many parameters i, i = 0..(k — 1) as the number of ports k: double-click on AFDX_SW, click on Add bouton.
For each parameter, put the node name or the AFDX switch name the corresponding port is connected to,
according with the network topology.

3 How to deploy the AFDX network

Let us consider the (functional) model of Figure [2]a), already validated as a centralized system (no latency in the
transmission data). The goal is now consider that the three nodes are distributed and the data are transmitted
through an AFDX network whose topology is represented in Figure [2lb. The bit rate of the traffic shaper of the
end system ES1 (connected to Nodel) is 100 Mbit/s. The input and output buffer delay of the switches is 0.0. Two
virtual links will be used:

e VL1 (from ol to il, going through AFDX switches SW1 and SW2), with a bag of 32ms and size of frame of

600,

e VL2 (from 02 to i2, going through AFDX switch SW1), with a bag of 16ms and size of frame of 300.

We describe here the steps required to build a model adding an AFDX network to the original model of Figure[2a:

1.

be sure there is a DE director inside each Node connected to the network in the original model. Otherwise,
add a DE director;

for each data sent through the network (functional link), add a VL actor, see Figure c;

put the information concerning the VLs in the VL actors (see Figure[2ld for VL1). Make the logical connections
between the output ports of VL1 and VL2 and the respective inputs ports of Node2 and Node3.

put an AFDX_ESs quantity manager and two AFDX_SW quantity manager in the top level model. Rename
the switches as AFDX_SW1 and AFDX_SW2. You can also add an annotation showing the network topology
(see Figure e). Choose the bit rate for AFDX_ESs. For each AFDX switch, put the right number of ports,
and for each port, put the name of the node or other switch according with the topology as described in
section Figure 2f depicts the default values for AFDX_ SW1 and Figure [2lg after have changed the
number of ports and have added parameters 0, 1 and 2 with, respectively, values AFDX_SW2, AFDX_ESs
and Node3. Figure [2lh shows the final values for AFDX_SW2.

finally, indicate at each receiving port all the quantity managers representing the virtual link, i.e. the net-
work communication (from the sender port to the received port) by right clicking on the receiving port,
Customize->Configure/ add a parameter and putting the name of the quantity manager actor. The pa-
rameters must be added in this order: first, the AFDX_ESs, then each switch crossed by the corresponding
virtual link. In fact, the order in which quantity managers are specified is also the order in which they process
the tokens from the sender (see information on receiving port of Node2 and Node3 in Figure i). Notice that
the color of the port is the color of the last quantity manager crossed (you can change the color of a quantity
manager).

You can find more information about a quantity manager actor in [QM]. For a more complex topology, see the
demo /ptll/ptolemy/actor/lib/qm/demo/AFDX/AFDX xml.

DE Director

DE Director
Node2 Node2
JEa] -G — G — |
Nodel ’M_I—“-r E]-I:I - m Nodel Vil B]-EI
Node3 l Node3
= - o = G N

a) initial model

b) network topology

¢) adding VL actors

Network topology:
o B DE Director RAED TS e
800 Edit parameters for AFDX_VL N1\
SW1 - SW2 - N2
N3
\ vlink: "WL1" !
g/ bag (ms): 32 poded AFDX_SW[.

trameSize (bytes):
schedulerMux:

M
2

600 VL1 Eio <=
"M1f Node1l JEDI.
B}D Node3 AFDX_SW.
..nﬁ VL2

N

24

4

| Defaults | | Remove | | Add | [commit | 8]-(:]
d) VL configuration e) adding AFDX_ESs and AFDX_SW
eno Edit parameters for AFDX_SW1 8,006 Edit parameters for AFDX_SW1
or - Soolon {1.0,0.0,0.0,1.0}
ﬂ' ~calor: {1.0,0.0,0.0,1.0} H—/ bitRate (Mbit/s): 100
“"/ bitRate (Mbit/s): 100 technologicalDelay (us): [140
technologicalDelay (us): 140 inputBufferDelay (ms): 0.0
inputBufferDelay (ms): [0.0 outputBufferDelay (ms): 0.0
outputBufferDelay (ms): [0.0 Nrumber of ports: 3
Number of ports: 2 L AFDX_SW2
< 3 AFDX_ESs
2 Node3
—— el
Defaul R Add [Commit |
‘ gablly | | S | ‘ | Defaults) (Remove) (Add) E Commit 3
f) AFDX_SW1 default values g) AFDX_SWT1 final values
Network topology:
BOe Edit ters for AFDX_SW2 i
L LUl AL DE Director AFDX_ESs NI\
ﬂ- _color: (1.0.0.0.0.0.1.0]) SW1 - SW2 - N2
“’/ bitRate (Mbit/s): 100 AFDX_SW1
technologicalDelay (us): (140 Node2 —’
inputBufferDelay (ms): [0.0 <KF%
outputBufferDelay (ms): [0.0 QM: AFDX_ESs, AFDX_SW1, AFDX_SW2 B}D <«
Number of ports: 2
0:
> AFDX_SW1 Node3 AFDX_Sw2
. Node2 :D
) STl QM: AFDX_ESs, AFDX_SW1, 4'_" ,__
‘aults) (Remove) (Add) (Commit)

h) AFDX_SW2 final values i) quantity managers configuration

Figure 2: Adding an AFDX network to a functional model

4 Developper corner

The implementation of the AFDX network, based on quantity manager and parameter actors, has the following

classes:

e AFDXESs.java: manages all end-systems required in an AFDX network.

e AFDXSwitch. java: simulates the behavior of an AFDX switch with respect to our hypothesis made on sec-

tion [2.11

e AFDXV1Cfg.java: implements the virtual-link configurator used by the user to configure the different virtual-
links for each node of the application.

e AFDXVlink.java: implements a virtual-link for an AFDX Network

For the integration and the deployment of actors in PtolemyIl and Vergil you should also read the gm.xml,
AFDX*Icon.xml and makefile files in ptolemy/actor/lib/qm.

5 Authors

e Gilles Lasnier, ISAE/DMIA, post-doctoral researcher (gilles.lasnier@isae.fr)

o Janette Cardoso ISAE/DMIA, professor (janette.cardoso@isae.fr)

The authors are from the DMIA team of the Institut Supérieur de I’Aéronautique et de I’Espace (ISAE), 10,
avenue Edouard Belin, 31055, Toulouse, France.

References

[AFDX12] ARINC Specification. 664P7-1 Aircraft Data Network, Part 7, Avionics Full-Duplex Switched Ethernet Network
https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=1270

[GEIP12] ARINC Protocol Tutorial (GFT-640A). GE Intelligent Platforms. http://defense.ge-ip.com/library/detail/
1955

[TECHO08] AFDXARINC 664 Tutorial. techSAT. 700008_TUT-AFDX-EN_1000. 2008. www.techsat.com/fileadmin/.../
TechSAT_TUT-AFDX-EN.pdf

[QM] Using a Quantity Manager for modeling a Network. ptolemy/actor/1lib/qm/doc-files/QuantityManager.pdf

https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=1270
http://defense.ge-ip.com/library/detail/1955
http://defense.ge-ip.com/library/detail/1955
www.techsat.com/fileadmin/.../TechSAT_TUT-AFDX-EN.pdf
www.techsat.com/fileadmin/.../TechSAT_TUT-AFDX-EN.pdf

	Summary
	The AFDX simulator
	Hypothesis based on the AFDX specification
	Components of the AFDX network

	How to deploy the AFDX network
	Developper corner
	Authors

