
cba

This is a chapter from the book

System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

13
Expressions

Christopher Brooks, Thomas Huining Feng, Edward A. Lee, Xiaojun Liu,
Stephen Neuendorffer, Neil Smyth, Yuhong Xiong

Contents
13.1 Simple Arithmetic Expressions . 449

13.1.1 Constants and Literals . 449
13.1.2 Variables . 453
13.1.3 Operators . 454
13.1.4 Comments . 456

13.2 Uses of Expressions . 456
13.2.1 Parameters . 457
13.2.2 Port Parameters . 457
13.2.3 String Parameters . 458
13.2.4 Expression Actor . 460
13.2.5 State Machines . 460

13.3 Composite Data Types . 461
13.3.1 Arrays . 461
13.3.2 Matrices . 466
13.3.3 Records . 468
13.3.4 Union Types . 471

13.4 Operations on Tokens . 472
13.4.1 Invoking Methods . 472
13.4.2 Accessing Model Elements 473

448

13. EXPRESSIONS

13.4.3 Casting . 475
13.4.4 Defining Functions . 476
13.4.5 Higher-Order Functions . 477
13.4.6 Using Functions in a Model 479
13.4.7 Recursive Functions . 481
13.4.8 Built-In Functions . 481

13.5 Nil Tokens . 487
13.6 Fixed Point Numbers . 487
13.7 Units . 489
13.8 Tables of Functions . 493

In Ptolemy II, models specify computations by composing actors. Many computations,
however, are awkward to specify this way. A common situation is where we wish to
evaluate a simple algebraic expression, such as sin(2π(x − 1)). It is possible to express
this computation by composing actors in a block diagram, but it is far more convenient to
give it textually.

The Ptolemy II expression language provides infrastructure for specifying algebraic ex-
pressions textually and for evaluating them. The expression language is used to specify
the values of parameters, guards and actions in state machines, and for the calculation
performed by the Expression actor. In fact, the expression language is part of the generic
infrastructure in Ptolemy II, and it can be used by programmers extending the Ptolemy II
system. In this chapter, we describe how to use expressions from the perspective of a user
rather than a programmer.

Vergil provides an interactive expression evaluator, which is accessed through the menu
command [File→New→Expression Evaluator]. This operates like an interactive
command shell, and is shown in Figure 13.1. It supports a command history. To ac-
cess the previously entered expression, type the up arrow or Control-P. To go back, type
the down arrow or Control-N. The expression evaluator is useful for experimenting with
expressions.

13.1 Simple Arithmetic Expressions

13.1.1 Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of
the constant, or by a literal. By default, the symbolic names of constants supported are:

Ptolemaeus, System Design 449

http://Ptolemy.org

13.1. SIMPLE ARITHMETIC EXPRESSIONS

PI, pi, E, e, true, false, i, j, NaN, Infinity, PositiveInfinity,
NegativeInfinity, MaxUnsignedByte, MinUnsignedByte, MaxShort,
MinShort, MaxInt, MinInt, MaxLong, MinLong, MaxFloat, MinFloat,
MaxDouble, and MinDouble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The
constants i and j are the imaginary number with value equal to

√
−1. The constant NaN

is “not a number,” which for example is the result of dividing 0.0/0.0. The constant
Infinity is the result of dividing 1.0/0.0. The constants that start with “Max” and
“Min” are the maximum and minimum values for their corresponding types.

Numerical values without decimal points, such as “10” or “-3” are integers (type int).
Numerical values with decimal points, such as “10.0” or “3.14159” are of type double.
Numerical values followed by “f” or “F” are of type float. Numerical values without
decimal points followed by the character “l” (el) or “L” are of type long. long. Numerical
values without decimal points followed by the character “s” or “S” are of type short.
Unsigned integers followed by “ub” or “UB” are of type unsignedByte, as in “5ub”. An
unsignedByte has a value between 0 and 255; note that it is not quite the same as the
Java byte, which has a value between -128 and 127. Numbers of type int, long, short or
unsignedByte can be specified in decimal, octal, or hexadecimal. Numbers beginning with
a leading “0” are octal numbers. Numbers beginning with a leading “0x” are hexadecimal
numbers. For example, “012” and “0xA” are both equal to the integer 10.

Figure 13.1: The Expression Evaluator.

450 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

A complex is defined by appending an “i” or a “j” to a double for the imaginary part.
This gives a purely imaginary complex number which can then leverage the polymorphic
operations in the Token classes to create a general complex number. Thus 2 + 3i will
result in the expected complex number. You can optionally write this 2 + 3*i.

Literal string constants are also supported. Anything between double quotation marks,
"...", is interpreted as a string constant. The following built-in string-valued constants
are defined:

variable
name

meaning JVM property name example value

PTII The directory
in which
Ptolemy II is
installed

ptolemy.ptII.dir c:\tmp

HOME The user home
directory

user.home c:\Documents and Settings
\you

CWD The current
working
directory

user.dir c:\ptII

TMPDIR The temporary
directory

java.io.tmpdir c:\Documents and Settings
\you\Local Settings\Temp\

USERNAME The user
account name

user.name ptolemy

The value of these variables is the value given by the corresponding Java virtual ma-
chine (JVM) property, such as user.home for HOME. The properties user.dir and
user.home are standard in Java. Their values are platform dependent; see the documen-
tation for the method getProperties in the java.lang.System class for details.∗ Vergil
will display all the Java properties if you invoke [View→JVM Properties] in the menu
of a Graph Editor.

The ptolemy.ptII.dir property is set automatically when Vergil or any other Ptolemy
II executable is started up. You can also set it when you start a Ptolemy II process using
the java command by a syntax like the following:

java -Dptolemy.ptII.dir=${PTII} classname

where classname is the full class name of a Java application. You can similarly set the
other variables in the table. For example, to invoke Vergil in a particular directory, use
∗Note that user.dir and user.home are usually not readable in unsigned applets, in which case,

attempts to use these variables in an expression will result in an exception.

Ptolemaeus, System Design 451

http://Ptolemy.org

13.1. SIMPLE ARITHMETIC EXPRESSIONS

variable name value variable name value
CLASSPATH ”xxxxxxCLASSPATHxxxxxx” CWD ”/Users/eal”
E 2.718281828459 HOME ”/Users/eal”
Infinity Infinity MaxDouble 1.797693134862316E308
MaxFloat 3.402823466385289E38 MaxInt 2147483647
MaxLong 9223372036854775807L MaxShort 32767s
MaxUnsignedByte 255ub MinDouble 4.9E-324
MinFloat 1.401298464324817E-45 MinInt -2147483648
MinLong -9223372036854775808L MinShort -32768s
MinUnsignedByte 0ub NaN NaN
NegativeInfinity -Infinity PI 3.1415926535898
PTII ”/ptII” PositiveInfinity Infinity
TMPDIR ”/tmp” USERNAME ”eal”
backgroundColor {0.9, 0.9, 0.9, 1.0} boolean false
complex 0.0 + 0.0i double 0.0
e 2.718281828459 false false
fixedpoint fix(0, 2, 2) float 0.0f
general present i 0.0 + 1.0i
int 0 j 0.0 + 1.0i
long 0L matrix []
nil nil null object(null)
object object(null) pi 3.1415926535898
scalar present short 0s
string ”” true true
unknown present unsignedByte 0ub
xmltoken null

Table 13.1: An example of the values returned by the constants function

java -cp /ptII -Duser.dir=/Users/eal \
ptolemy.vergil.VergilApplication

The -cp option specifies the classpath (which has to include the root directory of Ptolemy
II), the -D option specifies the property to set, and the final argument is the class that
includes a main method that invokes Vergil.

The constants utility function returns a record with all the globally defined constants.
If you open the expression evaluator and invoke this function, you will see that its value
is similar to what is shown in Figure 13.1.

452 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.1.2 Variables

Expressions can contain identifiers that are references to variables within the scope of the
expression. For example,

PI*x/2.0

is valid if “x” a variable in scope. In the expression evaluator, the variables that are in
scope include the built-in constants plus any assignments that have been previously made.
For example,

>> x = pi/2
1.5707963267949
>> sin(x)
1.0

In the context of Ptolemy II models, the variables in scope include all parameters defined
at the same level of the hierarchy or higher. So for example, if an actor has a param-
eter named “x” with value 1.0, then another parameter of the same actor can have an
expression with value “PI*x/2.0”, which will evaluate to π/2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The
scope of an expression for P includes all the parameters contained by X and Y, plus those
of the container of Y, its container, etc. That is, the scope includes any parameters defined
above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, se-
lecting [Customize→Configure] and then clicking on “Add,” or by dragging in a pa-
rameter from the Utilities library. Thus, you can add variables to any scope, a ca-
pability that serves the same role as the “let” construct in many functional programming
languages.

Occasionally, it is desirable to access parameters that are not in scope. The expression
language supports a limited syntax that permits access to certain variables out of scope.
In particular, if in place of a variable name x in an expression you write A::x, then instead
of looking for x in scope, the interpreter looks for a container named A in the scope and a
parameter named x in A. This allows reaching down one level in the hierarchy from either
the current container or any of its containers.

Ptolemaeus, System Design 453

http://Ptolemy.org

13.1. SIMPLE ARITHMETIC EXPRESSIONS

13.1.3 Operators

The arithmetic operators are +, -, *, /, ˆ, and %. Most of these operators operate on
most data types, including arrays, records, and matrices. The ˆ operator computes “to
the power of” or exponentiation, where the exponent can only be a type that losslessly
converts to an integer such as an int, short, or an unsignedByte.

The unsignedByte, short, int and long types can only represent integer numbers. Opera-
tions on these types are integer operations, which can sometimes lead to unexpected re-
sults. For instance, 1/2 yields 0, since 1 and 2 are integers, whereas 1.0/2.0 yields 0.5.
The exponentiation operator “ˆ” when used with negative exponents can similarly yield
unexpected results. For example, 2ˆ-1 is 0 because the result is computed as 1/(2ˆ1).

The % operation is a modulo or remainder operation. The result is the remainder after
division. The sign of the result is the same as that of the dividend (the left argument). For
example,

>> 3.0 % 2.0
1.0
>> -3.0 % 2.0
-1.0
>> -3.0 % -2.0
-1.0
>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right
argument). Note that when this operator is used on doubles, the result is not the same as
that produced by the remainder function (see Table 13.6). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder function calculates the IEEE 754 standard remainder operation. It uses
a rounding division rather than a truncating division, and hence the sign can be positive
or negative, depending on complicated rules (see Section 13.4.8). For example, counter-
intuitively,

454 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

>> remainder(3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a
decision about which type to use to implement the operation. If one of the two types can
be converted without loss into the other, then it will be. For instance, int can be converted
losslessly to double, so 1.0/2 will result in 2 being first converted to 2.0, so the result will
be 0.5. Among the scalar types, unsignedByte can be converted to anything else, short can
be converted to int, int can be converted to double, float can be converted to double and
double can be converted to complex. Note that long cannot be converted to double without
loss, nor vice versa, so an expression like 2.0/2L yields the following error message:

Error evaluating expression "2.0/2L"
in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken
’2.0’ and ptolemy.data.LongToken ’2L’ because the types are
incomparable.

Just as long cannot be cast to double, int cannot be cast to float and vice versa.

All scalar types have limited precision and magnitude. As a result of this, arithmetic
operations are subject to underflow and overflow.

• For double numbers, overflow results in the corresponding positive or negative in-
finity. Underflow (i.e. the precision does not suffice to represent the result) will
yield zero.

• For int and fixedpoint types, overflow results in wraparound. For instance, the value
of MaxInt is 2147483647, but the expression MaxInt + 1 yields -2147483648.
Similarly, while MaxUnsignedByte has value 255ub, MaxUnsignedByte + 1ub

has value 0ub. Note, however, that MaxUnsignedByte + 1 yields 256, which is
an int, not an unsignedByte. This is because MaxUnsignedByte can be losslessly
converted to an int, so the addition is int addition, not unsignedByte addition.

The bitwise operators are &, |, # and ˜. They operate on boolean, unsignedByte, short,
int and long (but not fixedpoint, float, double or complex). The operator & is bitwise
AND, ˜ is bitwise NOT, and | is bitwise OR, and # is bitwise XOR (exclusive or, after
MATLAB).

Ptolemaeus, System Design 455

http://Ptolemy.org

13.2. USES OF EXPRESSIONS

The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that
these relational operators check the values when possible, irrespective of type. So, for
example,

1 == 1.0

returns true. If you wish to check for equality of both type and value, use the equals

method, as in

>> 1.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for this is

boolean ? value1 : value2

If the boolean is true, the value of the expression is value1; otherwise, it is value2. The
logical boolean operators are &&, ||, !, & and |. They operate on type boolean and return
type boolean. The difference between logical && and logical & is that & evaluates all the
operands regardless of whether their value is now irrelevant. Similarly for logical || and
|. This approach is borrowed from Java. Thus, for example, the expression false && x

will evaluate to false irrespective of whether x is defined. On the other hand, false & x

will throw an exception if x is undefined.

The << and >> operators performs arithmetic left and right shifts respectively. The >>>
operator performs a logical right shift, which does not preserve the sign. They operate on
unsignedByte, short, int, and long.

13.1.4 Comments

In expressions, anything inside /*...*/ is ignored, so you can insert comments.

13.2 Uses of Expressions

Expressions are used in Ptolemy II to assign values to parameters, to specify the input-
output function realized by an Expression actor, and to specify guards and actions in state
machines.

456 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.2.1 Parameters

The values of most parameters of actors can be given as expressions†. The variables
in the expression refer to other parameters that are in scope, which are those contained
by the same container or some container above in the hierarchy. They can also refer-
ence variables in a scope-extending attribute, which includes variables defining units,
as explained below in section 13.7. Adding parameters to actors is straightforward, as
explained in chapter 2.

13.2.2 Port Parameters

It is possible to define a parameter that is also a port. Such a PortParameter provides
a default value, which is specified like the value of any other parameter. When the cor-
responding port receives data, however, the default value is overridden with the value
provided at the port. Thus, this object functions like a parameter and a port. The current
value of the PortParameter is accessed like that of any other parameter. Its current value
will be either the default or the value most recently received on the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one
in a composite actor, drag it into a model from the Utilities library, as shown in Figure
13.2.

To be useful, a PortParameter has to be given a name (the default name, “portParam-
eter,” is not very compelling). To change the name, right click on the icon and select
[Customize→Rename], as shown in Figure 13.2. In the figure, the name is set to “noise-
Level.” Then set the default value by double clicking. In the figure, the default value is
set to 10.0.

An example of a library actor that uses a PortParameter is the Sinewave actor, which is
found in the Sources→SequenceSources library in Vergil. It is shown in Figure 13.3.
If you double click on this actor, you can set the default values for frequency and phase.
But both of these values can also be set by the corresponding ports, which are shown with
grey fill.

† The exceptions are parameters that are strictly string parameters, in which case the value of the parameter
is the literal string, not the string interpreted as an expression, as for example the function parameter of the
TrigFunction actor, which can take on only “sin,” “cos,” “tan”, “asin”, “acos”, and “atan” as values.

Ptolemaeus, System Design 457

http://Ptolemy.org

13.2. USES OF EXPRESSIONS

13.2.3 String Parameters

Some parameters have values that are always strings of characters. Such parameters sup-
port a simple string substitution mechanism where the value of the string can reference
other parameters in scope by name using the syntax $name or ${name} where name is the
name of the parameter in scope. For example, the StringCompare actor in Figure 13.4 has
as the value of firstString “The answer is $PI”. This references the built-in constant PI.
The value of secondString is “The answer is 3.1415926535898”. As shown in the figure,
these two strings are deemed to be equal because $PI is replaced with the value of PI.

Customize the name:

Figure 13.2: A PortParameter is both a port and a parameter. To use it in a
composite actor, drag it into the actor, change its name to something meaningful
and set its default value.

458 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Figure 13.3: Sinewave actor, showing its port parameters, and their use at the
lower level of hierarchy.

Ptolemaeus, System Design 459

http://Ptolemy.org

13.2. USES OF EXPRESSIONS

Figure 13.4: String parameters are indicated in the parameter editor boxes by a
light blue background. A string parameter can include references to variables in
scope with $name, where name is the name of the variable. In this example, the
built-in constant $PI is referenced by name in the first parameter.

13.2.4 Expression Actor

The Expression actor is a particularly useful actor found in the Math. By default, it has
one output and no inputs, as shown in Figure 13.5(a). The first step in using it is to add
ports, as shown in (b) and (c). Click on Add to add a port, and then type in a unique name
for the port. You then specify an expression using the port names as variables, as shown
in (d), resulting in the icon shown in (e).

13.2.5 State Machines

Expressions give the guards for state transitions, as well as the values used in actions that
produce outputs and actions that set values of parameters in the refinements of destination
states. This mechanism was explained in the previous chapter.

460 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

(a)

(b)

(c)

(e)

(d)

Figure 13.5: Illustration of the Expression actor.

13.3 Composite Data Types

A composite data type is a data type that aggregates some collection of other data types.
The composite data types in the expression language include arrays, matrices, records,
and union types.

13.3.1 Arrays

Arrays are specified with curly brackets, e.g., {1, 2, 3} is an array of int, while {"x",
"y", "z"} is an array of type string. The types are denoted arrayType(int,3) and
arrayType(string,3) respectively. An array is an ordered list of tokens of any type,
with the primary constraint being that the elements all have the same type. If an array
is given with mixed types, the expression evaluator will attempt to losslessly convert the
elements to a common type. Thus, for example,

{1, 2.3}

Ptolemaeus, System Design 461

http://Ptolemy.org

13.3. COMPOSITE DATA TYPES

has value

{1.0, 2.3}

Its type is arrayType(double,2). The common type might be arrayType(scalar),
which is a union type (a type that can contain multiple distinct types). For example,

{1, 2.3, true}

has value

{1, 2.3, true}

The value is unchanged, but the type of the array is now arrayType(scalar,3).

In Figure 13.5(c), the “Type” column may be used to specify the type of a port. Usually,
it is not necessary to set the type, since the type inference mechanism will determine the
type from the connections (see Chapter 14). Occasionally, however, it is necessary or
helpful to force a port to have a particular type.

The Type column accepts expressions like arrayType(int), which specifies an array
with an unknown length. It is better, however, to specify an array length, if it is known.
To do that, use an expression like arrayType(int,n), where n is a positive integer that
is the length of the array that is expected on the port.

The elements of the array can be given by expressions, as in the example {2*pi, 3*pi}.
Arrays can be nested; for example, {{1, 2}, {3, 4, 5}} is an array of arrays of inte-
gers. The elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

Note that indexing begins at 0. Of course, if name is the name of a variable in scope
whose value is an array, then its elements may be accessed similarly, as shown in this
example:

>> x = {1.0, 2.3}

462 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

{1.0, 2.3}
>> x(0)
1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the fol-
lowing examples:

>> {1, 2}*{2, 2}
{2, 4}
>> {1, 2}+{2, 2}
{3, 4}
>> {1, 2}-{2, 2}
{-1, 0}
>> {1, 2}ˆ2
{1, 4}
>> {1, 2}%{2, 2}
{1, 0}

Addition, subtraction, multiplication, division, and modulo of arrays by scalars is also
supported, as in the following examples:

>> {1.0, 2.0} / 2.0
{0.5, 1.0}
>> 1.0 / {2.0, 4.0}
{0.5, 0.25}
>> 3 * {2, 3}
{6, 9}
>> 12 / {3, 4}
{4, 3}

Arrays of length 1 are equivalent to scalars, as illustrated below:

>> {1.0, 2.0} / {2.0}
{0.5, 1.0}
>> {1.0} / {2.0, 4.0}
{0.5, 0.25}
>> {3} * {2, 3}

Ptolemaeus, System Design 463

http://Ptolemy.org

13.3. COMPOSITE DATA TYPES

{6, 9}
>> {12} / {3, 4}
{4, 3}

A significant subtlety arises when using nested arrays. Note the following example:

>> {{1.0, 2.0}, {3.0, 1.0}} / {0.5, 2.0}
{{2.0, 4.0}, {1.5, 0.5}}

In this example, the left argument of the divide is an array with two elements, and the right
argument is also an array with two elements. The divide is thus element wise. However,
each division is the division of an array by a scalar.

An array can be checked for equality with another array as follows:

>> {1, 2}=={2, 2}
false
>> {1, 2}!={2, 2}
true

For other comparisons of arrays, use the compare function (see Table 13.5). As with
scalars, testing for equality using the == or != operators tests the values, independent of
type. For example,

>> {1, 2}=={1.0, 2.0}
true

You can obtain the length of an array as follows,

>> {1, 2, 3}.length()
3

You can extract a subarray by invoking the subarray method as follows:

>> {1, 2, 3, 4}.subarray(2, 2)
{3, 4}

464 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

The first argument is the starting index of the subarray, and the second argument is the
length.

You can also extract non-contiguous elements from an array using the extract method.
This method has two forms. The first form takes a boolean array of the same length as
the original array which indicates which elements to extract, as in the following example:

>> {"red", "green", "blue"}.extract({true,false,true})
{"red", "blue"}

The second form takes an array of integers giving the indices to extract, as in the following
example:

>> {"red","green","blue"}.extract({2,0,1,1})
{"blue", "red", "green", "green"}

You can create an empty array with a specific element type using the function emptyArray.
For example, to create an empty array of integers, use:

>> emptyArray(int)
{}

You can combine arrays into a single array using the concatenate function. For exam-
ple,

>> concatenate({1, 2}, {3})
{1, 2, 3}

You can update an element of an array using the update function, for example,

>> {1, 2, 3}.update(0, 4)
{4, 2, 3}

The update function creates a new array‡

‡Actually, update creates a new token of type UpdatedArrayToken which keeps track of updated el-
ements in a token while preserving the unchanged elements. The alternative would be to produce a new
ArrayToken, which would result allocating memory and copying the entire source array.

Ptolemaeus, System Design 465

http://Ptolemy.org

13.3. COMPOSITE DATA TYPES

13.3.2 Matrices

In Ptolemy II, arrays are ordered sets of tokens. Ptolemy II also supports matrices, which
are more specialized than arrays. They contain only certain primitive types, currently
boolean, complex, double, fixedpoint, int, and long. Currently float, short and unsigned-
Byte matrices are not supported. Matrices cannot contain arbitrary tokens, so they cannot,
for example, contain matrices. They are intended for data intensive computations. Ma-
trices are specified with square brackets, using commas to separate row elements and
semicolons to separate rows. E.g., [1, 2, 3; 4, 5, 5+1] gives a two by three inte-
ger matrix (2 rows and 3 columns). Note that an array or matrix element can be given by
an expression. A row vector can be given as [1, 2, 3] and a column vector as [1; 2;

3]. Some MATLAB-style array constructors are supported. For example, [1:2:9] gives
an array of odd numbers from 1 to 9, and is equivalent to [1, 3, 5, 7, 9]. Similarly,
[1:2:9; 2:2:10] is equivalent to [1, 3, 5, 7, 9; 2, 4, 6, 8, 10]. In the
syntax [p:q:r], p is the first element, q is the step between elements, and r is an upper
bound on the last element. That is, the matrix will not contain an element larger than r.
If a matrix with mixed types is specified, then the elements will be converted to a com-
mon type, if possible. Thus, for example, [1.0, 1] is equivalent to [1.0, 1.0], but
[1.0, 1L] is illegal (because there is no common type to which both elements can be
converted losslessly, see Chapter 14).

Elements of matrices are referenced using matrixname(n, m), where matrixname is
the name of a matrix variable in scope, n is the row index, and m is the column index.
Index numbers start with zero, as in Java, not 1, as in MATLAB. For example,

>> [1, 2; 3, 4](0,0)
1
>> a = [1, 2; 3, 4]
[1, 2; 3, 4]
>> a(1,1)
4

Matrix multiplication works as expected. For example,

>> [1, 2; 3, 4]*[2, 2; 2, 2]
[6, 6; 14, 14]

466 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Of course, if the dimensions of the matrix don’t match, then you will get an error message.
To do element wise multiplication, use the multipyElements function (see Table 13.8).
Matrix addition and subtraction are element wise, as expected, but the division operator
is not supported. Element wise division can be accomplished with the divideElements
function, and multiplication by a matrix inverse can be accomplished using the inverse
function (see Table 13.8). A matrix can be raised to an int, short or unsignedByte power,
which is equivalent to multiplying it by itself some number of times. For instance,

>> [3, 0; 0, 3]ˆ3
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, as follows:

>> [3, 0; 0, 3]*3
[9, 0; 0, 9]

A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar
subtracted from it. For instance,

>> 1-[3, 0; 0, 3]
[-2, 1; 1, -2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare function (see Table 13.7). As with
scalars, testing for equality using the == or != operators tests the values, independent of
type. For example,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals method, as in the following examples:

Ptolemaeus, System Design 467

http://Ptolemy.org

13.3. COMPOSITE DATA TYPES

>> [1, 2].equals([1.0, 2.0])
false
>> [1.0, 2.0].equals([1.0, 2.0])
true

13.3.3 Records

A record token is a composite type containing named fields, where each field has a value.
The value of each field can have a distinct type. Records are delimited by curly braces,
with each field given a name. For example, {a=1, b="foo"} is a record with two fields,
named “a” and “b”, with values 1 (an integer) and “foo” (a string), respectively. The key
of a field can be an arbitrary string, provided that it is quoted. Only strings that qualify
as valid Java identifiers can be used without quotation marks. Note that quotation marks
within a quoted string must be escaped using a backslash. The value of a field can be an
arbitrary expression, and records can be nested (a field of a record token may be a record
token).

An ordered record is similar to a normal record except that it preserves the original
ordering of the labels. Ordered records are delimited using square brackets rather than
curly braces. For example, [b="foo", a=1] is an ordered record token in which “b”
will remain the first label.

Fields that are valid Java identifiers may be accessed using the period operator, optionally
with braces—as if it were a method call. For example, the following two expressions:

{a=1,b=2}.a
{a=1,b=2}.a()

both yield 1.

An alternative syntax to access fields uses the get() method. Note that this is the only
way to access fields for which the key demands the use of quotation marks. For example:

{" a"=1, "\"b"=2}.get("\"b")

yields 2.

468 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

The arithmetic operators +, -, *, /, and % can be applied to records. If the records do
not have identical fields, then the operator is applied only to the fields that match, and the
result contains only the fields that match. Thus, for example,

{foodCost=40, hotelCost=100}
+ {foodCost=20, taxiCost=20}

yields the result

{foodCost=60}

You can think of an operation as a set intersection, where the operation specifies how
to merge the values of the intersecting fields. You can also form an intersection without
applying an operation. In this case, using the intersect function, you form a record
that has only the common fields of two specified records, with the values taken from the
first record. For example,

>> intersect({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using
the merge function. This function takes two arguments, both of which are record tokens.
If the two record tokens have common fields, then the field value from the first record is
used. For example,

merge({a=1, b=2}, {a=3, c=3})

yields the result {a=1, b=2, c=3}.

Records can be compared, as in the following examples:

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true

Note that two records are equal only if they have the same field labels and the values
match. As with scalars, the values match irrespective of type. For example:

Ptolemaeus, System Design 469

http://Ptolemy.org

13.3. COMPOSITE DATA TYPES

>> {a=1, b=2}=={a=1.0, b=2.0+0.0i}
true

The order of the fields is irrelevant for normal (unordered) records. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, normal record fields are reported in alphabetical order, irrespective of the order
in which they are defined. For example,

>> {b=2, a=1}
{a=1, b=2}

Equality comparisons for ordered records respect the original order of the fields. For
example,

>> [a=1, b=2]==[b=2, a=1]
false

Additionally, ordered record fields are always reported in the order in which they are
defined. For example,

>> [b=2, a=1]
[b=2, a=1]

To get type-specific equality tests, use the equals method, as in the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.0i})
false
>> {a=1, b=2}.equals({b=2, a=1})
true

Finally, You can create an empty record using the emptyRecord function:

>> emptyRecord()
{}

470 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.3.4 Union Types

Occasionally, more than one distinct data type will be sent over the same connection, or a
variable may take on values with one of several data types. Ptolemy II provides a union
type to accommodate this. A union type is designated as in the following example:

{|a = int, b = complex |}

This indicates a port or variable that may have type int or complex. A typical use of union
types uses a UnionMerge and/or UnionDisassembler actor.

Figure 13.6: Union types allow types to resolve to more than one type. [online]

Ptolemaeus, System Design 471

http://ptolemy.org/systems/models/expressions/UnionTypes/index.html
http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

Example 13.1: Consider the example shown in Figure 13.6. This is a DE model
with two data sources, a DiscreteClock, which produces outputs of type int, and
a PoissonClock, which produces outputs of type boolean. These two streams of
values are merged by the UnionMerge, whose output type becomes a union type.
The names of the types in the union are determined by the names of the input ports
of the UnionMerge, which are added when building the model. The lower Display
actor displays the merged stream, showing that each token displayed has a single
value, either an int or a boolean.

Along the upper path, a UnionDisassembler actor is used to extract from the stream
the “b” types, which are boolean. Only those types are passed to the output, and
the type of the output is inferred to be boolean.

13.4 Operations on Tokens

Every element and subexpression in an expression represents an instance of the Token
class in Ptolemy II (or more likely, a class derived from Token). The expression language
supports a number of operations on tokens that give access to the underlying Java code.

13.4.1 Invoking Methods

The expression language supports invocation of any method of a given token, as long as
the arguments of the method are of type Token and the return type is Token (or a class
derived from Token, or something that the expression parser can easily convert to a token,
such as a string, double, int, etc.). The syntax for this is (token.methodName(args),
where methodName is the name of the method and args is a comma-separated set of ar-
guments. Each argument can itself be an expression. Note that the parentheses around the
token are not required, but might be useful for clarity. As an example, the ArrayToken
and RecordToken classes have a length method, illustrated by the following examples:

{1, 2, 3}.length()
{a=1, b=2, c=3}.length()

472 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

each of which returns the integer 3.

The MatrixToken classes have three particularly useful methods, illustrated in the follow-
ing examples:

[1, 2; 3, 4; 5, 6].getRowCount()

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns 1, 2, 3, 4, 5, 6. The latter function can be particularly useful for creating
arrays using MATLAB-style syntax. For example, to obtain an array with the integers
from 1 to 100, you can enter:

[1:1:100].toArray()

13.4.2 Accessing Model Elements

Expressions in a model can reference elements of the model and invoke methods on them.
The expression giving a parameter its value may reference by name any object that is
contained by the container of the parameter.

Example 13.2: Figure 13.7 shows a model with four parameters P1 through P4.
The parameter P1 has expression

Const2.value

The Const2 here refers to the actor named “Const2” that is contained by the con-
tainer of P1, and hence Const2.value refers to the value parameter of the actor
Const2. The value of the parameter P1 is therefore equal to the value of the value
parameter of Const2.

Ptolemaeus, System Design 473

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

The keyword this in a parameter expression refers to the object that contains the param-
eter.

Example 13.3: In Figure 13.7, Const2 has a value parameter with the expression
(shown in its icon):

this.getName() + ": " + P2

Here, this refers to Const2, so this.getName() returns a string that is the name
“Const2.” The rest of the expression performs string concatenation, appending a
colon and the value parameter P2.

The parameter P2 has expression

this.entityList().size()

In this case, this refers to the container of P2, which is the top-level model. Hence,
this.entityList() returns a list of entities (actors) contained by this top-level
model. And finally, this.entityList().size() returns the number of actors
contained by this top-level model, which is 5.

Now, the first two outputs of this model should be easy to understand:

Figure 13.7: Expressions can access elements of the model, as shown here.
[online]

474 Ptolemaeus, System Design

http://ptolemy.org/systems/models/expressions/This/index.html
http://Ptolemy.org

13. EXPRESSIONS

Const1: Const2: 5
Const2: 5

The second output is the value of P2 (namely 5) prepended by the name of the Const
actor generating the output and a colon. The first output is the value P1 (which is
the string "Const2: 5") prepended by the name of the Const actor generating
the output and a colon.

Parameters can use method invocation to traverse the connections in the model, as illus-
trated next.

Example 13.4: In Figure 13.7, parameter P3 has the expression:

Const2.output.connectedPortList().get(0)
.getFullName()

This gets the full name of the first port in the list of ports that the out-
put port of actor Const2 is connected to. Specifically, it returns the string
".This.Display.input", as displayed by actor Const3.

Similarly, P4 has expression

Display.input.connectedPortList().size()

which returns the number of sources connected to the Display input.

For an overview of some of the methods that can be invoked on actors, parameters, and
ports, see Chapter 12. For a complete listing, see the code documentation for Ptolemy II.

13.4.3 Casting

The cast function can be used to explicitly cast a value into a type. When the cast function
is invoked with cast(type, value), where type is the target type and value is the

Ptolemaeus, System Design 475

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

value to be cast, a new value is returned (if a predefined casting is applicable) that is in
the specified type. For example, cast(long, 1) yields 1L, which is equal to 1 but is in
the long data type, and cast(string, 1) yields "1", which is in the string data type.

13.4.4 Defining Functions

Users can define new functions in the expression language. The syntax is:

function(arg1:Type, arg2:Type...)
function body

where function is the keyword for defining a function. The type of an argument can
be left unspecified, in which case the expression language will attempt to infer it. The
function body gives an expression that defines the return value of the function. The return
type is always inferred based on the argument type and the expression. For example:

function(x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double.
The return value of the above expression is the function itself. Thus, for example, the
expression evaluator yields:

>> function(x:double) x*5.0
(function(x:double) (x*5.0))

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0

Alternatively, in the expression evaluator, you can assign the function to a variable, and
then use the variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0

476 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.4.5 Higher-Order Functions

Functions can be passed as arguments to certain higher-order functions that have been
defined (see Table 13.15). For example, the iterate function takes three arguments, a
function, an integer, and an initial value to which to apply the function. It applies the
function first to the initial value, then to the result of the application, then to that result,
collecting the results into an array whose length is given by the second argument. For
example, to get an array whose values are multiples of 3, try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the
specified initial value (0) followed by the result of applying the function once to that initial
value, then twice, then three times, etc.

Another useful higher-order function is the map function. This one takes a function and
an array as arguments, and simply applies the function to each element of the array to
construct a result array. For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

Ptolemy II also supports a fold function, which can be used to program a loop in an
expression. The fold function applies a function to each element of an array, accumulating
a result as it goes. The function that is folded over the array takes two arguments, the
accumulated result so far and an array element. When the function to be folded is applied
to the first element of the array, the accumulated result is an initial value.

Example 13.5:
fold(

function(x:int, e:int) x + 1,
0, {1, 2, 3}

)

This computes the length of array {1, 2, 3}. The result is 3, which is equal to
{1, 2, 3}.length(). Specifically, the function to be folded is function(x:int,

Ptolemaeus, System Design 477

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

e:int) x + 1. Given arguments x and e, it returns x + 1, ignoring the second
argument e. It is first applied to the initial value, 0, and the first element of the
array, 1, yielding 1. It is then applied to the accumulated result, 1, and the second
element of the array, the value of which it ignores, yielding 2. It is invoked the
number of times equal to the number of elements in array {1, 2, 3}. Therefore, x is
increased 3 times from the starting value 0.

Example 13.6: The following variant does not ignore the values of the array
elements:
fold(

function(x:int, e:int) x + e,
0, {1, 2, 3}

)

This computes the sum of all elements in array {1, 2, 3}, yielding 6.

Example 13.7:
fold(

function(x:arrayType(int), e:int)
e % 2 == 0 ? x : x.append({e}),

{}, {1, 2, 3, 4, 5}
)

This computes a subarray of array {1, 2, 3, 4, 5} that contains only odd numbers.
The result is {1, 3, 5}.

Example 13.8: Let C be an actor.

fold(
function(list:arrayType(string),

port:object("ptolemy.kernel.Port"))

478 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

port.connectedPortList().isEmpty() ?
list.append({port}) : list,

{}, C.portList()
)

This returns a list of C’s ports that are not connected to any other port (with
connectedPortList() being empty). Each port in the returned list is encapsu-
lated in an ObjectToken.

13.4.6 Using Functions in a Model

A typical use of functions in a Ptolemy II model is to define a parameter in a model whose
value is a function. Suppose that the parameter named f has value

function(x:double)x*5.0

Then within the scope of that parameter, the expression f(10.0) will yield result 50.0.

Functions can also be passed along connections in a Ptolemy II model.

Example 13.9: Consider the model shown in Figure 13.8. In that example, the
Const actor defines a function that simply squares the argument. Its output, there-
fore, is a token with type function. That token is fed to the “f” input of the Expres-
sion actor. The expression uses this function by applying it to the token provided
on the “y” input. That token, in turn, is supplied by the Ramp actor, so the result is
the curve shown in the plot on the right.

Example 13.10: A more elaborate use is shown in Figure 13.9 In that example,
the Const actor produces a function, which is then used by the Expression actor to
create new function, which is then used by Expression2 to perform a calculation.
The calculation performed here multiplies the output of the Ramp to the square of
the output of the Ramp, thus computing the cube.

Ptolemaeus, System Design 479

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9

SequencePlotter

Figure 13.8: Example of a function being passed from one actor to another.

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

x102

0 1 2 3 4 5 6 7 8

SequencePlotter

Figure 13.9: More elaborate example with functions passed between actors.

480 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.4.7 Recursive Functions

Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int)

(x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general) int)
(x<1)?1:(x*f((x-1), f)))(x, (function(x:int,
f:function(a0:general, a1:general) int) (x<1)?1:(x*f((x-1), f)))))

>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}

The first expression defines a function named “fact” that takes a function as an argument,
and if the argument is greater than or equal to 1, uses that function recursively. The second
expression defines a new function “factorial” using “fact.” The final command applies the
factorial function to an array to compute factorials.

13.4.8 Built-In Functions

The expression language includes a set of functions, such as sin, cos, etc. The functions
that are built in include all static methods § of the classes shown in Table 13.2, which
together provide a rich set ¶.

The functions currently available are shown in the tables at the end of this chapter, which
also show the argument types and return types. The argument and return types are the
widest type that can be used. For example, acos will take any argument that can be
losslessly cast to a double, such as unsigned byte, short, integer, float. long cannot be
cast losslessly cast to double, so acos(1L) will fail. Trigonometric functions are given
in Table 13.4. Basic mathematical functions are given in Tables 13.5 and 13.6. Func-
tions that take or return matrices, arrays, or records are given in Tables 13.7 through 13.9.
Utility functions for evaluating expressions are given in Table 13.10. Functions perform-
ing signal processing operations are given in Tables 13.11 through 13.13. I/O and other
miscellaneous functions are given in Tables 13.15 and 13.16.

§ Note that calling methods such as String.format() that have an argument of Object [] can be dif-
ficult because of problems specifying an array of Java Objects such as java.lang.Double instead of
ptolemy.data.type.DoubleToken
¶ Moreover, the set of available methods can easily be extended if you are writing Java code by registering

another class that includes static methods (see the PtParser class in the ptolemy.data.expr package).

Ptolemaeus, System Design 481

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

In most cases, a function that operates on scalar arguments can also operate on arrays
and matrices. Thus, for example, you can fill a row vector with a sine wave using an
expression like

sin([0.0:PI/100:1.0])

Or you can construct an array as follows,

sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int, short, or un-
signedByte, because these can be losslessly converted to double, but not generally on long
or complex. Tables of available functions are shown in the appendix. For example, Table
13.4 shows trigonometric functions. Note that these operate on double or complex, and
hence on int, short and unsignedByte, which can be losslessly converted to double. The
result will always be double. For example,

>> cos(0)
1.0

Table 13.2: The classes whose static methods are available as functions in the
expression language.

java.lang.Math ptolemy.math.IntegerMatrixMath
java.lang.Double ptolemy.math.DoubleMatrixMath
java.lang.Integer ptolemy.math.ComplexMatrixMath
java.lang.Long ptolemy.math.LongMatrixMath
java.lang.String ptolemy.math.IntegerArrayMath
ptolemy.data.MatrixToken. ptolemy.math.DoubleArrayStat
ptolemy.data.RecordToken. ptolemy.math.ComplexArrayMath
ptolemy.data.expr.UtilityFunctions ptolemy.math.LongArrayMath
ptolemy.data.expr.FixPointFunctions ptolemy.math.SignalProcessing
ptolemy.math.Complex ptolemy.math.FixPoint
ptolemy.math.ExtendedMath ptolemy.data.ObjectToken

482 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

These functions will also operate on matrices and arrays, in addition to the scalar types
shown in the table, as illustrated above. The result will be a matrix or array of the same
size as the argument, but always containing elements of type double.

Table 13.7 shows other arithmetic functions beyond the trigonometric functions. As with
the trigonometric functions, those that indicate that they operate on double will also work
on int, short and unsignedByte, and unless they indicate otherwise, they will return what-
ever they return when the argument is double. Those functions in the table that take scalar
arguments will also operate on matrices and arrays. For example, since the table indicates
that the max function can take int, int as arguments, then by implication, it can also take
int, int. For example,

>> max({1, 2}, {2, 1})
{2, 2}

Notice that the table also indicates that max can take int as an argument. E.g.

>> max({1, 2, 3})
3

In the former case, the function is applied pointwise to the two arguments. In the latter
case, the returned value is the maximum over all the contents of the single argument.

Table 13.7 shows functions that only work with matrices, arrays, or records (that is, there
is no corresponding scalar operation). Recall that most functions that operate on scalars
will also operate on arrays and matrices. Table 13.10 shows utility functions for evaluat-
ing expressions given as strings or representing numbers as strings. Of these, the eval

function is the most flexible.

A few of the functions have sufficiently subtle properties that they require further expla-
nation. That explanation is here.

eval() and traceEvaluation()

The built-in function eval will evaluate a string as an expression in the expression lan-
guage. For example,

eval("[1.0, 2.0; 3.0, 4.0]")

Ptolemaeus, System Design 483

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

will return a matrix of doubles. The following combination can be used to read parameters
from a file:

eval(readFile("filename"))

where the filename can be relative to the current working directory (where Ptolemy II
was started, as reported by the Java Virtual Machine property user.dir), a user’s home
directory (as reported by the property user.home), or the classpath, which includes the
directory tree in which Ptolemy II is installed. Note that if eval is used in an Expression
actor, then it will be impossible for the type system to infer any more specific output type
than general. If you need the output type to be more specific, then you will need to cast
the result of eval. For example, to force it to type double:

>> cast(double, eval("pi/2"))
1.5707963267949

The traceEvaluation function evaluates an expression given as a string, much like
eval, but instead of reporting the result, reports exactly how the expression was evalu-
ated. This can be used to debug expressions, particularly when the expression language is
extended by users.

random(), gaussian()

The random and gaussian functions shown in Table 13.5 and Table 13.6 return one or
more random numbers. With the minimum number of arguments (zero or two, respec-
tively), they return a single number. With one additional argument, they return an array
of the specified length. With a second additional argument, they return a matrix with the
specified number of rows and columns.

There is a key subtlety when using these functions in Ptolemy II. In particular, they are
evaluated only when the expression within which they appear is evaluated. The result of
the expression may be used repeatedly without re-evaluating the expression. Thus, for
example, if the value parameter of the Const actor is set to random(), then its output
will be a random constant, i.e., it will not change on each firing. The output will change,
however, on successive runs of the model. In contrast, if this is used in an Expression
actor, then each firing triggers an evaluation of the expression, and consequently will
result in a new random number.

484 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

property()

The property function accesses Java Virtual Machine system properties by name. Some
possibly useful system properties are:

• ptolemy.ptII.dir: The directory in which Ptolemy II is installed.

• ptolemy.ptII.dirAsURL: The directory in which Ptolemy II is installed, but repre-
sented as a URL.

• user.dir: The current working directory, which is usually the directory in which the
current executable was started.

For a complete list of Java Virtual Machine properties, see the Java documentation for
java.lang.System.getProperties.

remainder()

This function computes the remainder operation on two arguments as prescribed by the
IEEE 754 standard, which is not the same as the modulo operation computed by the %
operator. The result of remainder(x, y) is x − yn, where n is the integer closest to
the exact value of x/y. If two integers are equally close, then n is the integer that is even.
This yields results that may be surprising, as indicated by the following examples:

>> remainder(1,2)
1.0
>> remainder(3,2)
-1.0

Compare this to

>> 3%2
1

which is different in two ways. The result numerically different and is of type int, whereas
remainder always yields a result of type double. The remainder() function is imple-
mented by the java.lang.Math class, which calls it IEEEremainder(). The documenta-
tion for that class gives the following special cases:

Ptolemaeus, System Design 485

http://Ptolemy.org

13.4. OPERATIONS ON TOKENS

• If either argument is NaN, or the first argument is infinite, or the second argument
is positive zero or negative zero, then the result is NaN.

• If the first argument is finite and the second argument is infinite, then the result is
the same as the first argument.

DCT() and IDCT()

The discrete cosine transform (DCT) function can take one, two, or three arguments. In
all three cases, the first argument is an array of length N > 0 and the DCT returns an

Xk = sk

N−1∑
n=0

xn cos((2n+ 1)k
π

2D
) (13.1)

for k from 0 to D − 1, where N is the size of the specified array and D is the size of the
DCT. If only one argument is given, then D is set to equal the next power of two larger
than N . If a second argument is given, then its value is the order of the DCT, and the size
of the DCT is 2order. If a third argument is given, then it specifies the scaling factors sk
according to the following table:

Table 13.3: Normalization options for the DCT function.

Name Third argument Normalization

Normalized 0 sk =

{
1√
2
; k = 0

1, otherwise

Unnormalized 1 sk = 1

Orthonormal 2 sk =

1√
D

; k = 0√
2
D ; otherwise

The default, if a third argument is not given, is “Normalized.” The IDCT function is
similar, and can also take one, two, or three arguments. The formula in this case is

xn =

N−1∑
k=0

skXk cos((2n+ 1)k
π

2D
). (13.2)

486 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.5 Nil Tokens

Null or missing tokens are common in analytical systems like R and SAS where they are
used to handle sparsely populated data sources. In database parlance, missing tokens are
sometimes called null tokens. Since null is a Java keyword, we use the term “nil.” Nil
tokens are useful for analyzing real world data such as temperature where the value is not
measured during every interval. In principle, one may want, for example, a TolerantAver-
age actor that does not require all data values to be present — when the TolerantAverage
actor sees a nil token, it would ignore it. Note that this can lead to uncertainty. For exam-
ple, if average is expecting 30 values and 29 of them are nil, then the average will not
be very accurate.

In Ptolemy II, operations on tokens yield a nil token if any argument is a nil token. Thus,
the Average actor is not like TolerantAverage. Upon receiving a nil token, all subsequent
results will be nil. When an operation yields a nil value, the resulting nil token will
have the same type that would normally have resulted from the operation, so type safety
is preserved. Not all data types, however, support nil tokens. In particular, the various
matrix types cannot have nil values because the underlying matrices are Java native type
matrices that do not support nil.

The expression language defines a constant named nil that has value nil and type niltype
(see Chapter 14). The cast expression language function can be used to generate nil
values of other types. For example, “cast(int, nil)” will return a token with value
nil and type int.

13.6 Fixed Point Numbers

Ptolemy II includes a fixed point data type. We represent a fixed point value in the ex-
pression language using the following format:

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to
represent the (signed) integer part can be represented as:

fix(5.375, 8, 4)

Ptolemaeus, System Design 487

http://Ptolemy.org

13.6. FIXED POINT NUMBERS

The value can also be a matrix of doubles. The values are rounded, yielding the nearest
value representable with the specified precision. If the value to represent is out of range,
then it is saturated, meaning that the maximum or minimum fixed point value is returned,
depending on the sign of the specified value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.

In addition to the fix function, the expression language offers a quantize function.
The arguments are the same as those of the fix function, but the return type is a Double-
Token or DoubleMatrixToken instead of a FixToken or FixMatrixToken. This function
can therefore be used to quantize double-precision values without ever explicitly working
with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions
are available:

• To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit
representation with 4 bits used in the integer part. This may lead to quantization
errors. By default the round quantizer is used.

• To create a Matrix with FixPoint values using the expression language:

fix([-.040609, -.001628, .17853], 10, 2)

This will create a FixMatrixToken with 1 row and 3 columns, in which each element
is a FixPoint value with precision(10/2). The resulting FixMatrixToken will try to
fit each element of the given double matrix into a 10 bit representation with 2 bits
used for the integer part. By default the round quantizer is used.

• To create a single DoubleToken, which is the quantized version of the double value
given, using the expression language:

quantize(5.34, 10, 4)

488 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

This will create a DoubleToken. The resulting DoubleToken contains the double
value obtained by fitting the number 5.34 into a 10 bit representation with 4 bits
used in the integer part. This may lead to quantization errors. By default the round
quantizer is used.

• To create a Matrix with doubles quantized to a particular precision using the ex-
pression language:

quantize([-.040609, -.001628, .17853], 10, 2)

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of
the token are obtained by fitting the given matrix elements into a 10 bit representa-
tion with 2 bits used for the integer part. Instead of being a fixed point value, the
values are converted back to their double representation and by default the round
quantizer is used.

13.7 Units

Ptolemy II supports units systems, which are built on top of the expression language.
Units systems allow parameter values to be expressed with units, such as “1.0 * cm”,
which is equal to “0.01 * meters”. These are expressed this way (with the * for multi-
plication) because “cm” and “meters” are actually variables that become in scope when
a units system icon is dragged in to a model. A few simple units systems are provided
(mainly as examples) in the utilities library.

A model using one of the simple provided units systems is shown in Figure 13.10 This
unit system is called BasicUnits; the units it defines can be examined by double clicking
on its icon, or by invoking “Customize” |“Configure”, as shown in Figure 13.11. In
that figure, we see that “meters”, “meter”, and “m” are defined, and are all synonymous.
Moreover, “cm” is defined, and given value “0.01*meters”, and “in”, “inch” and “inches”
are defined, all with value “2.54*cm”.

In the example in Figure 13.10, a constant with value “1.0 * meter” is fed into a Scale actor
with scale factor equal to “2.0/ms”. This produces a result with dimensions of length over
time. If we feed this result directly into a Display actor, then it is displayed as “2000.0
meters/seconds”, as shown in Figure 13.12, top display. The canonical units for length
are meters, and for time are seconds.

Ptolemaeus, System Design 489

http://Ptolemy.org

13.7. UNITS

Figure 13.10: Example of a model that includes a unit system. [online]

In Figure 13.10, we also take the result and feed it to the InUnitsOf actor, which divides
its input by its argument, and checks to make sure that the result is unitless. This tells us
that 2 meters/ms is equal to about 78,740 inches/second.

The InUnitsOf actor can be used to ensure that numbers are interpreted correctly in a
model, which can be effective in catching certain kinds of critical errors. For example, if in
Figure 13.10, we had entered “seconds/inch” instead of “inches/second” in the InUnitsOf
actor, we would have gotten the exception in Figure 13.13 instead of the execution in
Figure 13.12.

Units systems are built entirely on the expression language infrastructure in Ptolemy II.
The units system icons actually represent instances of scope-extending attributes, which
are attributes whose parameters are in scope as if those parameters were directly contained
by the container of the scope extending attribute. That is, scope-extending attributes can
define a collection of variables and constants that can be manipulated as a unit. Two fairly
extensive units systems are provided, CGSUnitBase and ElectronicUnitBase. Nonethe-
less, these are intended as examples only, and can no doubt be significantly improved and
extended.

490 Ptolemaeus, System Design

http://ptolemy.org/systems/models/expressions/Units/index.html
http://Ptolemy.org

13. EXPRESSIONS

Figure 13.11: Units defined in a units system can be examined by double clicking
or by right clicking and selecting Customize and Configure.

Ptolemaeus, System Design 491

http://Ptolemy.org

13.7. UNITS

Figure 13.12: Result of running the model in Figure 13.10.

Figure 13.13: Example of an exception resulting from a units mismatch.

492 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

13.8 Tables of Functions

Table 13.4: Trigonometric functions.
Name Argument type(s) Return type Description

acos double in the range
[-1.0, 1.0] or com-
plex

double in the range
[0.0, π] or NaN
if out of range or
complex

arc cosine
complex case:
acos(z) = −i log(z + i

√
i− z2)

asin double in the range
[-1.0, 1.0] or com-
plex

double in the range
[−π/2, π/2] or
NaN if out of range
or complex

arc sine
complex case:
asin(z) = −i log(iz +

√
i− z2)

atan double or complex double in the range
[−π/2, π/2] or
complex

arc tangent
complex case: atan(z) = − i

2
log (i−z

i+z
)

atan2 double, double double in the range
[−π, π]

angle of a vector (note: the arguments are (y, x),
not (x, y) as one might expect).

acosh double greater than
1 or complex

double or complex hyperbolic arc cosine, defined for both dou-
ble and complex case by: acosh(z) =
log (z +

√
z2 − 1)

asinh double or complex double or complex hyperbolic arc sine complex case: asinh(z) =
log (z +

√
z2 + 1)

cos double or complex double in the range
[-1, 1], or complex

cosine
complex case: cos(z) = exp(iz)+exp(−iz)

2

cosh double or complex double or complex hyperbolic cosine, defined for double or com-
plex by: cosh(z) = exp(z)+exp(−z)

2

sin double or complex double or complex sine function complex case:
sin(z) = exp(iz)−exp(−iz)

2i

sinh double or complex double or complex hyperbolic sine, defined for double or complex
by: sinh(z) = exp(z)−exp(−z)

2

tan double or complex double or complex tangent function, defined for double or complex
by: tan(z) = sin(z)

cos(z)

tanh double or complex double or complex hyperbolic tangent, defined for double or com-
plex by: tanh(z) = sinh(z)

cosh(z)

Ptolemaeus, System Design 493

http://Ptolemy.org

13.8. TABLES OF FUNCTIONS

Table 13.5: Basic mathematical functions, part 1.
Function Argument type(s) Return type Description

abs double or complex double or int or
long(complex
returns double

absolute value
complex case:
abs(a+ ib) = |z| =

√
a2 + b2

angle complex double in the range
[−π, π]

angle or argument of the complex number: ∠z

ceil double or float double ceiling function, which returns the smallest
(closest to negative infinity) double value that
is not less than the argument and is an integer.

compare double, double int compare two numbers, returning -1, 0, or 1
if the first argument is less than, equal to, or
greater than the second.

conjugate complex complex complex conjugate
exp double or complex double in the range

[0.0, ∞] or com-
plex

exponential function (eargument) complex
case: ea+ib = ea(cos (b) + i sin (b))

floor double double floor function, which is the largest (closest to
positive infinity) value not greater than the ar-
gument that is an integer.

gaussian double, double or
double, double, int,
or double, double,
int, int

double or array-
Type(double) or
[double]

one or more Gaussian random variables with
the specified mean and standard deviation (see
13.4.8).

imag complex double imaginary part
isInfinite double boolean return true if the argument is infinite
isNaN double boolean return true if the argument is “not a number”
log double or complex double or complex natural logarithm complex case: log(z) =

log(abs(z) + i∠z)
log10 double double log base 10
log2 double double log base 2
max double, double or

double
a scalar of the same
type as the argu-
ments

maximum

min double, double or
double

a scalar of the same
type as the argu-
ments

minimum

pow double, double or
complex, complex

double or complex first argument to the power of the second

494 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Table 13.6: Basic mathematical functions, part 2.
Function Argument type(s) Return type Description

random no arguments or int
or int, int

double or double or
[double]

one or more random numbers between 0.0
and 1.0 (see 13.4.8)

real complex double real part
remainder double, double double remainder after division, according to the

IEEE 754 floating-point standard (see
13.4.8).

round double long round to the nearest long, choosing the next
greater integer when exactly in between, and
throwing an exception if out of range. If the
argument is NaN, the result is 0L. If the argu-
ment is out of range, the result is either Max-
Long or MinLong, depending on the sign.

roundToInt double int round to the nearest int, choosing the next
greater integer when exactly in between, and
throwing an exception if out of range. If the
argument is NaN, the result is 0. If the argu-
ment is out of range, the result is either Max-
Int or MinInt, depending on the sign.

sgn double int -1 if the argument is negative, 1 otherwise
sqrt double or complex double or complex square root. If the argument is double with

value less than zero, then the result is NaN.
complex case: sqrt(z) =

√
|z|(cos (∠z

2
) +

i sin (∠z
2
))

toDegrees double double convert radians to degrees
toRadians double double convert degrees to radians
within type, type, double boolean return true if the first argument is in the

neighborhood of the second, meaning that the
distance is less than or equal to the third ar-
gument. The first two arguments can be any
type for which such a distance is defined. For
composite types, arrays, records, and matri-
ces, then return true if the first two argu-
ments have the same structure, and each cor-
responding element is in the neighborhood.

Ptolemaeus, System Design 495

http://Ptolemy.org

13.8. TABLES OF FUNCTIONS

Table 13.7: Functions that take or return matrices, arrays, or records, part 1.
Function Argument type(s) Return type Description

arrayToMatrix arrayType(type), int, int [type] Create a matrix from the spec-
ified array with the specified
number of rows and columns

concatenate arrayType(type), array-
Type(type)

arrayType(type) Concatenate two arrays.

concatenate arrayType(
arrayType(type))

arrayType(type) Concatenate arrays in an array
of arrays.

conjugateTranspose [complex] [complex] Return the conjugate trans-
pose of the specified matrix.

createSequence type, type, int arrayType(type) Create an array with values
starting with the first argu-
ment, incremented by the sec-
ond argument, of length given
by the third argument.

crop [int], int, int, int, int or
[double], int, int, int, int or
[complex], int, int, int, int or
[long], int, int, int, int

[int] or [dou-
ble] or [com-
plex] or [long]
or

Given a matrix of any type,
return a submatrix starting at
the specified row and column
with the specified number of
rows and columns.

determinant [double] or [complex] double or com-
plex

Return the determinant of the
specified matrix.

diag arrayType(type) [type] Return a diagonal matrix with
the values along the diagonal
given by the specified array.

divideElements [type], [type] [type] Return the element-by-
element division of two
matrices

emptyArray type arrayType(type) Return an empty array whose
element type matches the
specified token.

emptyRecord record Return an empty record.
find arrayType(type), type arrayType(int) Return an array of the indices

where elements of the speci-
fied array match the specified
token.

find arrayType(boolean) arrayType(int) Return an array of the indices
where elements of the speci-
fied array have value true.

hilbert int [double] Return a square Hilbert ma-
trix, where Aij = 1

i+j+1
. A

Hilbert matrix is nearly, but
not quite singular.

496 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Table 13.8: Functions that take or return matrices, arrays, or records, part 2.
Function Argument type(s) Return type Description

identityMatrixComplex int [complex] Return an identity matrix with
the specified dimension.

identityMatrixDouble int [double] Return an identity matrix with
the specified dimension.

identityMatrixInt int [int] Return an identity matrix with
the specified dimension.

identityMatrixLong int [long] Return an identity matrix with
the specified dimension.

intersect record, record record Return a record that contains
only fields that are present
in both arguments, where the
value of the field is taken from
the first record.

inverse [double] or [complex] [double] or
[complex]

Return the inverse of the spec-
ified matrix, or throw an ex-
ception if it is singular.

matrixToArray [type] arrayType(type) Create an array containing the
values in the matrix

merge record, record record Merge two records, giving
priority to the first one when
they have matching record la-
bels.

multiplyElements [type], [type] [type] Multiply element wise the two
specified matrices.

orthonormalizeColumns [double] or [complex] [double] or
[complex]

Return a similar matrix with
orthonormal columns.

orthonormalizeRows [double] or [complex] [double] or
[complex]

Return a similar matrix with
orthonormal rows.

repeat int, type arrayType(type) Create an array by repeating
the specified token the speci-
fied number of times.

sort arrayType(string) or ar-
rayType(realScalar)

arrayType(string)
or array-
Type(realScalar)

Return the specified array, but
sorted in ascending order. re-
alScalar is any scalar token
except complex.

sortAscending arrayType(string) or ar-
rayType(realScalar)

arrayType(string)
or array-
Type(realScalar)

Return the specified array, but
sorted in ascending order. re-
alScalar is any scalar token
except complex.

Ptolemaeus, System Design 497

http://Ptolemy.org

13.8. TABLES OF FUNCTIONS

Table 13.9: Functions that take or return matrices, arrays, or records, part 3.
Function Argument type(s) Return type Description

sortDescending arrayType(string) or ar-
rayType(realScalar)

arrayType(string)
or array-
Type(realScalar)

Return the specified array, but
sorted in descending order. re-
alScalar is any scalar token ex-
cept complex.

subarray arrayType(type), int, int arrayType(type) Extract a subarray starting at the
specified index with the specified
length.

sum arrayType(type) or [type] type Sum the elements of the specified
array or matrix. This throws an
exception if the elements do not
support addition or if the array is
empty (an empty matrix will re-
turn zero).

trace [type] type Return the trace of the specified
matrix.

transpose [type] [type] Return the transpose of the spec-
ified matrix.

update int, arrayType(type) arrayType(type) Update an element in a an array.
zeroMatrixComplex int, int [complex] Return a zero matrix with the

specified number of rows and
columns.

zeroMatrixDouble int, int [double] Return a zero matrix with the
specified number of rows and
columns.

zeroMatrixInt int, int [int] Return a zero matrix with the
specified number of rows and
columns.

zeroMatrixLong int, int [long] Return a zero matrix with the
specified number of rows and
columns.

498 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Table 13.10: Utility functions for evaluating expressions
Function Argument type(s) Return type Description

eval string any type evaluate the specified expression
(see 13.4.8).

parseInt string or string, int int return an int read from a string,
using the given radix if a second
argument is provided.

parseLong string or string, int int return a long read from a string,
using the given radix if a second
argument is provided.

toBinaryString int or long string return a binary representation of
the argument

toOctalString int or long string return an octal representation of
the argument

toString double or int or int, int or
long

string return a string representation of
the argument, using the given
radix if a second argument is pro-
vided.

traceEvaluation string string evaluate the specified expression
and report details on how it was
evaluated (see 13.4.8).

Ptolemaeus, System Design 499

http://Ptolemy.org

13.8. TABLES OF FUNCTIONS

Table 13.11: Functions performing signal processing operations, part 1.
Function Argument type(s) Return type Description

close double, double boolean Return true if the first argument
is close to the second (within
EPSILON, where EPSILON is
a static public variable of this
class).

convolve arrayType(double),
arrayType(double) or
arrayType(complex),
arrayType(complex)

arrayType(double)
or array-
Type(complex)

Convolve two arrays and return
an array whose length is sum of
the lengths of the two arguments
minus one. Convolution of two
arrays is the same as polynomial
multiplication.

DCT arrayType(double) or
arrayType(double), int or
arrayType(double), int,
int

arrayType(double) Return the Discrete Cosine
Transform of the specified array,
using the specified (optional)
length and normalization strategy
(see 13.4.8).

downsample arrayType(double), int or
arrayType(double), int,
int

arrayType(double) Return a new array with every n-
th element of the argument array,
where n is the second argument.
If a third argument is given, then
it must be between 0 and n − 1,
and it specifies an offset into the
array (by giving the index of the
first output).

FFT arrayType(double)
or
arrayType(complex)
or
arrayType(double), int
arrayType(complex), int

arrayType(complex) Return the Fast Fourier Trans-
form of the specified array. If the
second argument is given with
value n, then the length of the
transform is 2n. Otherwise, the
length is the next power of two
greater than or equal to the length
of the input array. If the input
length does not match this length,
then input is padded with zeros.

generateBartlett
Window

int arrayType(double) Bartlett (rectangular) window
with the specified length. The
end points have value 0.0, and
if the length is odd, the center
point has value 1.0. For length
M + 1, the formula is: w(n) ={
2 n
M
; if0 ≤ n ≤ M

2

2− 2 n
M
; if M

2
≤ n ≤M

500 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Table 13.12: Functions performing signal processing operations, part 2.
Function Argument type(s) Return type Description

generateBlackman
Window

int arrayType(double) Return a Blackman window
with the specified length. For
length M + 1, the formula is:
w(n) = 0.42 + 0.5 cos (2πn

M
) +

0.08 cos (4πn
M

)

generateBlackman
HarrisWindow

int arrayType(double) Return a Blackman-Harris
window with the specified
length. For length M + 1,
the formula is: w(n) =
0.35875 + 0.48829 cos (2πn

M
) +

0.14128 cos (4πn
M

) +
0.01168 cos (6πn

M
)

generateGaussian
Curve

arrayType(double), ar-
rayType(double), int

arrayType(double) Return a Gaussian curve with the
specified standard deviation, ex-
tent, and length. The extent is
a multiple of the standard devi-
ation. For instance, to get 100
samples of a Gaussian curve with
standard deviation 1.0 out to four
standard deviations, use gener-
ateGaussianCurve(1.0, 4.0, 100).

generateHamming
Window

int arrayType(double) Return a Hamming window with
the specified length. For length
M + 1, the formula is:
w(n) = 0.54− 0.46 cos (2πn

M
)

generateHanning
Window

int arrayType(double) Return a Hanning window with
the specified length. For length
M + 1, the formula is:
w(n) = 0.5− 0.5 cos (2πn

/
M)

generatePolynomial
Curve

arrayType(double),
double, double, int

arrayType(double) Return samples of a curve spec-
ified by a polynomial. The first
argument is an array with the
polynomial coefficients, begin-
ning with the constant term, the
linear term, the squared term,
etc. The second argument is the
value of the polynomial variable
at which to begin, and the third
argument is the increment on this
variable for each successive sam-
ple. The final argument is the
length of the returned array.

Ptolemaeus, System Design 501

http://Ptolemy.org

13.8. TABLES OF FUNCTIONS

Table 13.13: Functions performing signal processing operations, part 3.
Function Argument type(s) Return type Description

generateRaised
CosinePulse

double, double, int arrayType(double) Return an array containing a symmet-
ric raised-cosine pulse. This pulse is
widely used in communication sys-
tems, and is called a “raised co-
sine pulse” because the magnitude its
Fourier transform has a shape that
ranges from rectangular (if the ex-
cess bandwidth is zero) to a cosine
curved that has been raised to be
non-negative (for excess bandwidth
of 1.0). The elements of the returned
array are samples of the function:

h(t) =
sin (πt

T
)

πt
T

× cos (xπt
T

)

1−(2xt
T

)2
, where x

is the excess bandwidth (the first ar-
gument) and T is the number of sam-
ples from the center of the pulse to
the first zero crossing (the second ar-
gument). The samples are taken with
a sampling interval of 1.0, and the
returned array is symmetric and has
a length equal to the third argument.
With an excess Bandwidth of 0.0, this
pulse is a sinc pulse.

generate
Rectangular
Window

int arrayType(double) Return an array filled with 1.0 of the
specified length. This is a rectangular
window.

IDCT arrayType(double) or
arrayType(double), int
or arrayType(double),
int, int

arrayType(double) Return the inverse discrete cosine
transform of the specified array,
using the specified (optional) length
and normalization strategy (see
13.4.8).

IFFT arrayType(double) or
arrayType(complex) or
arrayType(double), int
arrayType(complex),
int

arrayType(complex) inverse fast Fourier transform of the
specified array. If the second argu-
ment is given with value n, then the
length of the transform is 2n. Other-
wise, the length is the next power of
two greater than or equal to the length
of the input array. If the input length
does not match this length, then input
is padded with zeros.

502 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Table 13.14: Functions performing signal processing operations, part 4.
Function Argument type(s) Return type Description

nextPowerOfTwo double int Return the next power of two
larger than or equal to the argu-
ment.

poleZeroTo
Frequency

arrayType(complex),
arrayType(complex),
complex, int

arrayType(complex) Given an array of pole locations,
an array of zero locations, a gain
term, and a size, return an array
of the specified size represent-
ing the frequency response spec-
ified by these poles, zeros, and
gain. This is calculated by walk-
ing around the unit circle and
forming the product of the dis-
tances to the zeros, dividing by
the product of the distances to
the poles, and multiplying by the
gain.

sinc double double Return the sinc function,
sin(x)/x, where special care
is taken to ensure that 1.0 is
returned if the argument is 0.0.

toDecibels double double Return 20× log10 (z), where z is
the argument.

unwrap arrayType(double) arrayType(double) Modify the specified array to un-
wrap the angles. That is, if
the difference between succes-
sive values is greater than π in
magnitude, then the second value
is modified by multiples of 2π
until the difference is less than or
equal to π. In addition, the first
element is modified so that its
difference from zero is less than
or equal to π in magnitude.

upsample arrayType(double), int arrayType(double) Return a new array that is the re-
sult of inserting n− 1 zeroes be-
tween each successive sample in
the input array, where n is the
second argument. The returned
array has length nL, where L is
the length of the argument array.
It is required that n > 0.

Ptolemaeus, System Design 503

http://Ptolemy.org

13.8. TABLES OF FUNCTIONS

Table 13.15: Miscellaneous functions, part 1.
Function Argument type(s) Return type Description

asURL string string Return a URL representation of the ar-
gument.

cast type1, type2 type1 Return the second argument converted
to the type of the first, or throw an ex-
ception if the conversion is invalid.

constants none record Return a record identifying all the
globally defined constants in the ex-
pression language.

findFile string string Given a file name relative to the user
directory, current directory, or class-
path, return the absolute file name of
the first match, or return the name un-
changed if no match is found.

filter function,
arrayType(type)

arrayType(type) Extract a sub-array consisting of all of
the elements of an array for which the
given predicate function returns true.

filter function,
arrayType(type), int

arrayType(type) Extract a sub-array with a limited size
consisting of all of the elements of
an array for which the given predicate
function returns true.

freeMemory none long Return the approximate number of
bytes available for future memory al-
location.

iterate function, int, type arrayType(type) Return an array that results from first
applying the specified function to the
third argument, then applying it to the
result of that application, and repeat-
ing to get an array whose length is
given by the second argument.

map function, arrayType(type) arrayType(type) Return an array that results from ap-
plying the specified function to the el-
ements of the specified array.

property string string Return a system property with the
specified name from the environ-
ment, or an empty string if there
is none. Some useful proper-
ties are java.version, ptolemy.ptII.dir,
ptolemy.ptII.dirAsURL, and user.dir.

504 Ptolemaeus, System Design

http://Ptolemy.org

13. EXPRESSIONS

Table 13.16: Miscellaneous functions, part 2.
Function Argument type(s) Return type Description

readFile string string Get the string text in the specified file,
or throw an exception if the file can-
not be found. The file can be absolute,
or relative to the current working direc-
tory (user.dir), the user’s home direc-
tory (user.home), or the classpath. The
readfile function is often used with the
eval function.

readResource string string Get the string text in the specified re-
source (which is a file found relative to
the classpath), or throw an exception if
the file cannot be found.

totalMemory none long Return the approximate number of
bytes used by current objects plus those
available for future object allocation.

yesNoQuestion string boolean Query the user for a yes-no answer and
return a boolean. This function will
open a dialog if a GUI is available, and
otherwise will use standard input and
output.

Ptolemaeus, System Design 505

http://Ptolemy.org

