
Chapter 10. PN domain

Authors: Thomas M. Parks

Other Contributors: Brian Evans

10.1 Introduction
The Process Network (PN) domain is an implementation of the theory presented in

Thomas M. Parks’ thesis [Par95]. The PN domain includes the Synchronous Dataflow (SDF),
Boolean Dataflow (BDF), and Dynamic Dataflow (DDF) domains as subdomains. This hierar-
chical relationship among the domains is shown in theUser’s Manual in Figure 1-2. The
model of computation for each domain is a strict subset of the model for the domain that con-
tains it.

The nodes of a program graph, which correspond to processes or dataflow actors, are
implemented in Ptolemy by objects derived from the classStar . The firing function of a data-
flow actor is implemented by therun method ofStar . The edges of the program graph,
which correspond to communication channels, are implemented by the classGeodesic . A
Geodesic is a first-in first-out (FIFO) queue that is accessed by theput andget methods.
The connections between stars and geodesics are implemented by the classPortHole . Each
PortHole has an internal buffer. The methodssendData andreceiveData transfer data
between this buffer and aGeodesic using theput andget methods.

Several existing domains in Ptolemy, such as SDF and BDF, implement dataflow pro-
cess networks by scheduling the firings of dataflow actors. The firing of a dataflow actor is
implemented as a function call to therun method of aStar object. A scheduler executes the
system as a sequence of function calls. Thus, the repeated actor firings that make up a data-
flow process are interleaved with the actor firings of other dataflow processes. Before invoking
the run method of aStar , the scheduler must ensure that enough data is available to satisfy
the actor’s firing rules. This makes it necessary for aStar object to inform the scheduler of
the number of tokens it requires from its inputs. With this information, a scheduler can guar-
antee that an actor will not attempt to read from an empty channel.

By contrast, the PN domain creates a separate thread of execution for each node in the
program graph. Threads are sometimes calledlightweight processes. Modern operating sys-
tems, such as Unix, support the simultaneous execution of multiple processes. There need not
be any actual parallelism. The operating system can interleave the execution of the processes.
Within a single process, there can be multiple lightweight processes or threads, so there are
two levels of multi-threading. Threads share a single address space, that of the parent process,
allowing them to communicate through simple variables. There is no need for more complex,
heavyweight inter-process communication mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive access
to shared data and cannot interfere with one another to corrupt shared data structures. Moni-
tors and condition variables are available to synchronize the execution of threads. A monitor is

10-2 PN domain

U. C. Berkeley Department of EECS

an object that can be locked and unlocked. Only one thread may hold the lock on a monitor. If
a thread attempts to lock a monitor that is already locked by another thread, it is suspended
until the monitor is unlocked. At that point it wakes up and tries again to lock the monitor.
Condition variables allow threads to send signals to each other. Condition variables must be
used in conjunction with a monitor; a thread must lock the associated monitor before using a
condition variable.

The scheduler in the PN domain creates a thread for each node in the program graph.
Each thread implements a dataflow process by repeatedly invoking therun method of aStar
object. The scheduler itself does very little work, leaving the operating system to interleave
the execution of threads. Theput andget methods of the classGeodesic have been re-
implemented using monitors and condition variables so that a thread attempting to read from
an empty channel is automatically suspended, and threads automatically wake up when data
becomes available.

The classesPtThread , PtGate , andPtCondition define the interfaces for threads,
monitors, and condition variables in Ptolemy. Different implementations can be used as long
as they conform to the interfaces defined in these base classes. At different points in the devel-
opment of the PN domain, we experimented with implementations based on Sun’s Light-
weight Process library, AWESIME (A Widely Extensible Simulation Environment) by Dirk
Grunwald [Gru91}, and Solaris threads [Pow91,Eyk92,Kha92,Kle92a,Kle92b,Ste92,Sun94].
The current implementation is based on a POSIX thread library by Frank Mueller
[Mue92,Mue93,Gie93,Mue95]. This library, which runs on several platforms, is based on
Draft 6 of the POSIX standard. Parts of our implementation will need to be updated to be
compliant with the final POSIX thread standard.

By choosing the POSIX standard, we improve the portability of our code. Sun and
Hewlett Packard already include an implementation of POSIX threads in their operating sys-
tems, Solaris 2.5 and HPUX 10. Having threads built into the kernel of the operating system,
as opposed to a user library implementation, offers the opportunity for automatic paralleliza-
tion on multiprocessor workstations. Thus, the same program runs properly on uniprocessor
workstations and multiprocessor workstations without needing to be recompiled. This is
important because it would be impractical to maintain different binary executables of Ptolemy
for each workstation configuration.

The Almagest 10-3

Ptolemy Last updated: 10/17/97

10.2 Processes
Figure 10-1 shows the class derivation hierarchy for the classes that implement the

processes of Kahn process networks. The abstract base classPtThread defines the interface
for threads in Ptolemy. The classPosixThread provides an implementation based on the
POSIX thread standard. Other implementations using AWESIME [Gru91] or Solaris [Pow91]
are possible. The classPNThread is a typedef that determines which implementation is
used in the PN domain. Changing the underlying implementation simply requires changing
this typedef . The classDataFlowProcess , which is derived fromPNThread , implements
a dataflow process. TheStar object associated with an instance ofDataFlowProcess is
activated repeatedly, just as a dataflow actor is fired repeatedly to form a process.

10.2.1 The PtThread Class

PtThread is an abstract base class that defines the interface for all thread objects in
Ptolemy. Because it has pure virtual methods, it is not possible to create an instance of
PtThread . All of the methods are virtual so that objects can be referred to as a generic
PtThread , but with the correct implementation-specific functionality.

The classPtThread has three public methods.

virtual void initialize() = 0;
This method initializes the thread and causes it to begin execu-
tion.

FIGURE 10-1: The class derivation hierarchy for threads.PtThread is an abstract base
class with several possible implementations. EachDataFlowProcess
refers to aDataFlowStar .

PtThread

SyncDataFlowProcess

SolThread
AweThread

PosixThread

PNThread

DataFlowStarDataFlowProcess

10-4 PN domain

U. C. Berkeley Department of EECS

virtual void runAll();
This method causes all threads to begin (or continue) execution.

virtual void terminate() = 0;
This method causes execution of the thread to terminate.

The classPtThread has one protected method.

virtual void run() = 0;
This method defines the functionality of the thread. It is invoked
when the thread begins execution.

10.2.2 The PosixThread Class

The classPosixThread provides an implementation for the interface defined by
PtThread . It does not implement the pure virtual methodrun , so it is not possible to create
an instance ofPosixThread . This class adds one protected method, and one protected data
member to those already defined inPtThread .

static void* runThis(PosixThread*);
This static method invokes therun method of the referenced
thread. This provides a C interface that can be used by the
POSIX thread library.

pthread_t thread;
A handle for the POSIX thread associated with the
PosixThread object.

pthread_attr_t attributes;
A handle for the attributes associated with the POSIX thread.

int detach;
A flag to set the detached state of the POSIX thread.

The initialize method shown below initializes attributes, then creates a thread.
The thread is created in a non-detached state, which makes it possible to later synchronize
with the thread as it terminates. The controlling thread (usually the main thread) invokes the
terminate method of a thread and waits for it to terminate. The priority and scheduling pol-
icy for the thread are inherited from the thread that creates it, usually the main thread. A func-
tion pointer to therunThis method and thethis pointer, which points to the current
PosixThread object, are passed as arguments to thepthread_create function. This cre-
ates a thread that executesrunThis , and passesthis as an argument torunThis . Thus, the
run method of thePosixThread object is the main function of the thread that is created. The
runThis method is required because it would not be good practice to pass a function pointer
to therun method as an argument topthread_create . Although therun method has an
implicit this pointer argument by virtue of the fact that it is a class method, this is really an
implementation detail of the C++ compiler. By using therunThis method, we make the
pointer argument explicit and avoid any dependencies on a particular compiler implementa-
tion.

void PosixThread::initialize()
{

The Almagest 10-5

Ptolemy Last updated: 10/17/97

// Initialize attributes.
pthread_attr_init(&attributes);

// Detached threads free up their resources as soon
// as they exit; non-detached threads can be joined.
detach = 0;
pthread_attr_setdetachstate(&attributes, &detach);

// New threads inherit their priority and scheduling policy
// from the current thread.
pthread_attr_setinheritsched(&attributes,

PTHREAD_INHERIT_SCHED);

// Set the stack size to something reasonably large. (32K)
pthread_attr_setstacksize(&attributes, 0x8000);

// Create a thread.
pthread_create(&thread, &attributes,

(pthread_func_t)runThis, this);
// Discard temporary attribute object.
pthread_attr_destroy(&attributes);

}

The runAll method, which is shown below, allows all threads to run by lowering the
priority of the main thread. If execution of the threads ever stops, control returns to the main
thread and its priority is raised again to prevent other threads from continuing.

// Start or continue the running of all threads.
void PosixThread::runAll()
{

// Lower the priority to let other threads run. When control
// returns, restore the priority of this thread to prevent
// others from running.

pthread_attr_t attributes;
pthread_attr_init(&attributes);
pthread_getschedattr(mainThread, &attributes);

pthread_attr_setprio(&attributes, minPriority);
pthread_setschedattr(mainThread, attributes);

pthread_attr_setprio(&attributes, maxPriority);
pthread_setschedattr(mainThread, attributes);

pthread_attr_destroy(&attributes);
}

The terminate method shown below causes the thread to terminate before deleting
thePosixThread object. First it requests that the thread associated with thePosixThread
object terminate, using thepthread_cancel function. Then the current thread is suspended
by pthread_join to give the cancelled thread an opportunity to terminate. Once termination

10-6 PN domain

U. C. Berkeley Department of EECS

of that thread is complete, the current thread resumes and deallocates resources used by the
terminated thread by callingpthread_detach . Thus one thread can cause another to termi-
nate by invoking theterminate method of that thread.

void PosixThread::terminate()
{

// Force the thread to terminate if it has not already done so.
// Is it safe to do this to a thread that has already
// terminated?
pthread_cancel(thread);

// Now wait.
pthread_join(thread, NULL);
pthread_detach(&thread);

}

10.2.3 The DataFlowProcess Class

The classDataFlowProcess is derived fromPosixThread . It implements themap
higher-order function (see the PN Domain chapter in theUser’s Manual). A DataFlowStar
is associated with eachDataFlowProcess object.

DataFlowStar& star;
This protected data member refers to the dataflow star associ-
ated with theDataFlowProcess object.

The constructor, shown below, initializes thestar member to establish the association
between the thread and the star.

DataFlowProcess(DataFlowStar& s)
: star(s) {}

The run method, shown below, is defined to repeatedly invoke therun method of the
star associated with the thread, just as themap function forms a process from repeated firings
of a dataflow actor. Some dataflow stars in the BDF domain can operate with static scheduling
or dynamic, run-time scheduling. Under static scheduling, a BDF star assumes that tokens are
available on control inputs and appropriate data inputs. This requires that the scheduler be
aware of the values of control tokens and the data ports that depend on these values. Because
our scheduler has no such special knowledge, these stars must be properly configured for
dynamic, multi-threaded execution in the PN domain. Stars in the BDF domain that have been
configured for dynamic execution, and stars in the DDF domain dynamically inform the
scheduler of data-dependent firing rules by designating a particular inputPortHole with the
waitPort method. Data must be retrieved from the designated input before invoking the
star’srun method. The star’srun method is invoked repeatedly, until it indicates an error by
returningFALSE.

void DataFlowProcess::run()
{

// Configure the star for dynamic execution.
star.setDynamicExecution(TRUE);

The Almagest 10-7

Ptolemy Last updated: 10/17/97

// Fire the Star ad infinitum.
do
{

if (star.waitPort()) star.waitPort()->receiveData();
} while(star.run());

}

10.3 Communication Channels
Figure 10-2 shows the class derivation hierarchy for the classes that implement the

communication channels of Kahn process networks. The classes that implement the commu-
nication channels provide the synchronization necessary to enforce the blocking read seman-
tics of Kahn process networks. The classesPtGate , PosixMonitor and
CriticalSection provide a mutual exclusion mechanism. The classesPtCondition and
PosixCondition provide a synchronization mechanism. The classPNGeodesic uses these
classes to implement a communication channel that enforces the blocking read operations of
Kahn process networks and the blocking write operations required for bounded scheduling.

The abstract base classPtGate defines the interface for mutual exclusion objects in
Ptolemy. The classPosixMonitor provides an implementation ofPtGate based on the
POSIX thread standard. Other implementations are possible. The classPNMonitor is a
typedef that determines which implementation is used in the PN domain. Changing the
underlying implementation simply requires changing thistypedef .

The abstract base classPtCondition defines the interface for condition variables in
Ptolemy. The classPosixCondition provides an implementation based on the POSIX
thread standard. Other implementations are possible. The classPNCondition is atypedef
that determines which implementation is used in the PN domain. Changing the underlying
implementation simply requires changing thistypedef .

The classCriticalSection provides a convenient method for manipulating

FIGURE 10-2: The class derivation hierarchy for monitors and condition variables.
PtGate and PtCondition are abstract base classes, each with several
possible implementations. EachCriticalSection and PtCondition
refers to aPtGate .

SolMonitor
AweMonitor

PosixMonitor

PNMonitor

CriticalSection PtCondition

SolCondition
AweCondition

PosixCondition

PNCondition

PtGate

10-8 PN domain

U. C. Berkeley Department of EECS

PtGate objects, preventing some common programming errors. The classPNGeodesic uses
all of these classes to implement a communication channel.

10.3.1 PtGate

A PtGate can be locked and unlocked, but only one thread can hold the lock. Thus if
a thread attempts to lock aPtGate that is already locked by another thread, it is suspended
until the lock is released.

virtual void lock() = 0;
This protected method locks thePtGate object for exclusive
use by one thread.

virtual void unlock() = 0;
This protected method releases the lock on thePtGate object.

10.3.2 PosixMonitor

The classPosixMonitor provides an implementation for the interface defined by
PtGate . It has a single protected data member.

pthread_mutex_t thread;
A handle for the POSIX monitor associated with thePosix-
Monitor object.

The implementations of thelock andunlock methods are shown below.

void PosixMonitor::lock()
{

pthread_mutex_lock(&mutex);
}

void PosixMonitor::unlock()
{

pthread_mutex_unlock(&mutex);
}

10.3.3 CriticalSection

The classCriticalSection provides a convenient mechanism for locking and
unlockingPtGate objects. Its constructor, shown below, locks the gate. Its destructor, also
shown below, unlocks the gate. To protect a section of code, simply create a new scope and
declare an instance ofCriticalSection . ThePtGate is locked as soon as theCritical-
Section is constructed. When execution of the code exits scope, theCriticalSection
destructor is automatically invoked, unlocking thePtGate and preventing errors caused by
forgetting to unlock it. Examples of this usage are shown in Section 10.3.6. Because only one
thread can hold the lock on aPtGate , only one section of code guarded in this way can be
active at a given time.

CriticalSection(PtGate* g) : mutex(g)
{

if (mutex) mutex->lock();

The Almagest 10-9

Ptolemy Last updated: 10/17/97

}

~CriticalSection()
{

if (mutex) mutex->unlock();
}

10.3.4 PtCondition

The classPtCondition defines the interface for condition variables in Ptolemy. A
PtCondition provides synchronization through thewait andnotify methods. A condi-
tion variable can be used only when executing code within a critical section (i.e., when a
PtGate is locked).

PtGate& mon;
This data member refers to the gate associated with thePtCon-
dition object.

virtual void wait() = 0;
This method suspends execution of the current thread until noti-
fication is received. The associated gate is unlocked before exe-
cution is suspended. Once notification is received, the lock on
the gate is automatically reacquired before execution resumes.

virtual void notify() = 0;
This method sends notification to one waiting thread. If multi-
ple threads are waiting for notification, only one is activated.

virtual void notifyAll() = 0;
This method sends notification to all waiting threads. If multiple
threads are waiting for notification, all of them are activated.
Once activated, all of the threads attempt to reacquire the lock
on the gate, but only one of them succeeds. The others are sus-
pended again until they can acquire the lock on the gate.

10.3.5 PosixCondition

The classPosixCondition provides an implementation for the interface defined by
PtCondition . The implementations of thewait , notify and notifyAll methods are
shown below.

void PosixCondition::wait()
{

// Guarantee that the mutex will not remain locked
// by a cancelled thread.
pthread_cleanup_push((void(*)(void*))pthread_mutex_unlock,

 &mutex);

pthread_cond_wait(&condition, &mutex);

// Remove cleanup handler, but do not execute.
pthread_cleanup_pop(FALSE);

10-10 PN domain

U. C. Berkeley Department of EECS

}

void PosixCondition::notify()
{

pthread_cond_signal(&condition);
}

void PosixCondition::notifyAll()
{

pthread_cond_broadcast(&condition);
}

10.3.6 PNGeodesic

The classPNGeodesic , which is derived from the classGeodesic defined in the
Ptolemy kernel, implements the communication channels for the PN domain. In conjunction
with thePtGate member provided in the base classGeodesic , two condition variables pro-
vide the necessary synchronization for blocking read and blocking write operations.

PtCondition* notEmpty;
This data member points to a condition variable used for block-
ing read operations when the channel is empty.

PtCondition* notFull;
This data member points to a condition variable used for block-
ing write operations when the channel is full.

int cap;
This data member represents the capacity of the communication
channel and determines when it is full.

static int numFull;
This static data member records the number of full geodesics in
the system.

TheslowGet method, shown in below, implements the get operation for communica-
tion channels. The entire method executes within a critical section to ensure consistency of the
object’s data members. If the buffer is empty, then the thread that invokedslowGet is sus-
pended until notification is received onnotEmpty . Data is retrieved from the buffer, and if it
is not full notification is sent onnotFull to any other thread that may have been waiting.

Particle* PNGeodesic::slowGet()
{

// Avoid entering the gate more than once.
CriticalSection region(gate);
while (sz < 1 && notEmpty) notEmpty->wait();
sz--;
Particle* p = pstack.get();
if (sz < cap && notFull) notFull->notifyAll();
return p;

}

The Almagest 10-11

Ptolemy Last updated: 10/17/97

TheslowPut method, shown below, implements the put operation for communication
channels. The entire method executes within a critical section to ensure consistency of the
object’s data members. If the buffer is full, then the thread that invokedslowPut is suspended
until notification is received onnotFull . Data is placed in the buffer, and notification is sent
on notEmpty to any other thread that may have been waiting.

// Block when full.
// Notify when not empty.
void PNGeodesic::slowPut(Particle* p)
{

// Avoid entering the gate more than once.
CriticalSection region(gate);
if (sz >= cap && notFull)
{

{
CriticalSection region(fullGate);
numFull++;

}
while (sz >= cap && notFull) notFull->wait();
{

CriticalSection region(fullGate);
numFull--;

}
}
pstack.putTail(p); sz++;
if (notEmpty) notEmpty->notifyAll();

}

ThesetCapacity method, shown below, is used to adjust the capacity limit of com-
munication channels. If the capacity is increased so that a channel is no longer full, notifica-
tion is sent onnotFull to any thread that may have been waiting.

void PNGeodesic::setCapacity(int c)
{

CriticalSection region(gate);
cap = c;
if (sz < cap && notFull) notFull->notifyAll();

}

10-12 PN domain

U. C. Berkeley Department of EECS

10.4 Scheduling
Figure 10-3 shows the class derivation hierarchy for the classes that implement the

dynamic scheduling of Kahn process networks. The classThreadList provides mechanisms
for terminating groups of threads. This class is used byPNScheduler to create threads for
each node in the program graph. The classSyncDataFlowProcess implements the threads
for the nodes.

10.4.1 ThreadList

The classThreadList implements a container class for manipulating groups of
threads. It has two public methods.

virtual void add(PtThread*);
This method adds aPtThread object to the list.

virtual ~ThreadScheduler();
This method terminates and deletes all threads in the list.

10.4.2 PNScheduler

The classPNScheduler controls the execution of a process network. Three data
members support synchronization between the scheduler and the processes.

ThreadList* threads;
A container for the threads managed by the scheduler.

PNMonitor* monitor;
A monitor to guard the scheduler’s condition variable.

PNCondition* start;
A condition variable for synchronizing with threads.

FIGURE 10-3: The class derivation hierarchy for schedulers.ThreadList is a container
class for threads. EachPNScheduler uses aThreadList .

ThreadScheduler

SolScheduler
AweScheduler

PosixScheduler

PNThreadScheduler PNScheduler

The Almagest 10-13

Ptolemy Last updated: 10/17/97

int iteration;
A counter for regulating the execution of the processes.

ThecreateThreads method, shown below, creates one process for each node in the
program graph. ASyncDataFlowProcess is created for eachDataFlowStar and added to
theThreadList container.

// Create threads (dataflow processes).
void PNScheduler::createThreads()
{

if (! galaxy()) return;
GalStarIter nextStar(*galaxy());
DataFlowStar* star;
LOG_NEW; threads = new ThreadList;

// Create Threads for all the Stars.
while((star = (DataFlowStar*)nextStar++) != NULL)
{

LOG_NEW; SyncDataFlowProcess* p
= new SyncDataFlowProcess(*star,*start,iteration);

threads->add(p);
p->initialize();

}
}

It is often desirable to have a partial execution of a process network. The classSync-
DataFlowProcess , which is derived fromDataFlowProcess , supports this by synchro-
nizing the execution of a thread with theiteration counter that belongs to the
PNScheduler . The run methods ofPNScheduler and SyncDataFlowProcess imple-
ment this synchronization. ThePNScheduler run method, shown below, increments the
iteration count to give every process an opportunity to run. TheSyncDataFlowProcess
run method, shown below, ensures that the number of invocations of the star’srun method
does not exceed theiteration count.

// Run (or continue) the simulation.
int PNScheduler::run()
{

if (SimControl::haltRequested() || ! galaxy())
{

Error::abortRun("cannot continue");
return FALSE;

}

while((currentTime < stopTime) && !SimControl::haltRequested())
{

// Notify all threads to continue.
{

CriticalSection region(start->monitor());
iteration++;
start->notifyAll();

}
PNThread::runAll();

10-14 PN domain

U. C. Berkeley Department of EECS

while (PNGeodesic::blockedOnFull() > 0
&& !SimControl::haltRequested())

{
increaseBuffers();
PNThread::runAll();

}
currentTime += schedulePeriod;

}

return !SimControl::haltRequested();
}

void SyncDataFlowProcess::run()
{

int i = 0;
// Configure the star for dynamic execution.
star.setDynamicExecution(TRUE);

// Fire the star ad infinitum.
do
{

// Wait for notification to start.
{

CriticalSection region(start.monitor());
while (iteration <= i) start.wait();
i = iteration;

}
if (star.waitPort()) star.waitPort()->receiveData();

} while (star.run());
}

The increaseBuffers method is used during the course of execution to adjust the
channel capacities according to the theory presented in [Par95, ch. 4]. Each time execution
stops, the program graph is examined for full channels. If there are any full channels, then the
capacity of the smallest one is increased.

// Increase buffer capacities.
// Return number of full buffers encountered.
int PNScheduler::increaseBuffers()
{

int fullBuffers = 0;
PNGeodesic* smallest = NULL;

// Increase the capacity of the smallest full geodesic.
GalStarIter nextStar(*galaxy());
Star* star;
while ((star = nextStar++) != NULL)
{

BlockPortIter nextPort(*star);
PortHole* port;
while ((port = nextPort++) != NULL)
{

PNGeodesic* geo = NULL;

The Almagest 10-15

Ptolemy Last updated: 10/17/97

if (port->isItOutput() &&
 (geo = (PNGeodesic*)port->geo()) != NULL)
{

if (geo->size() >= geo->capacity())
{

fullBuffers++;
if (smallest == NULL ||
 geo->capacity() <

smallest->capacity())
smallest = geo;

}
}

}
}
if (smallest != NULL)

smallest->setCapacity(smallest->capacity() + 1);

return fullBuffers;
}

10.5 Programming Stars in the PN Domain
Unlike portholes in the SDF domain, the number of tokens consumed by an input or

produced by an output can be dynamic in the PN domain. This is indicated with the
P_DYNAMIC porthhole attribute.

input {
name { a }
type { int }
attributes { P_DYNAMIC }

}

For dynamic ports, it is necessary to invoke thereceiveData andsendData meth-
ods explicitly. Note that thereceiveData method must be used to initialize outputs. For
static ports, thereceiveData andsendData methods are invoked implicitly and should not
be used in the go method.

Because a separate thread of execution is created for each star, thego method of a PN
star is not required to terminate. As a programmer, you are free to use infinite loops, such as
while(TRUE) { ... } within thego method of your PN stars. This may be necessary if
you access a porthole (requiring a blocking read) before entering the main loop of the process.
In the future, such code could be placed in the star’sbegin method, but currently (as of
release 0.6) thebegin method is executed before the star’s thread is created.

go {
// Read both inputs the first time.
a.receiveData();
b.receiveData();
while (TRUE) {

output.receiveData();// Initialize the output.
if (int(a%0) < int(b%0)) {

10-16 PN domain

U. C. Berkeley Department of EECS

output%0 = a%0;
output.sendData();
a.receiveData();

}
else if (int(a%0) > int(b%0)) {

output%0 = b%0;
output.sendData();
b.receiveData();

}
else { // Remove duplicates.

output%0 = a%0;
output.sendData();
a.receiveData();
b.receiveData();

}
}

}

Instead of using an infinite loop, most PN stars rely on therun method ofDataFlow-
Process to repeatedly invoke the star’sgo method.

