Chapter 8. BDF Domain

Authors: Joseph T. Buck
Other Contributors: Edward A. Lee

8.1 Introduction

Boolean-controlled dataflow (BDF) is a domain that can be thought of as a generaliza-
tion of synchronous dataflow (SDF). It supports dynamic flow of control but still permits
much of the scheduling work to be performed at compile time. The dynamic dataflow (DDF)
domain, by contrast, makes all scheduling decisions at run time. Thus, while BDF is a gener-
alization of SDF, DDF is still more general. Accordingly, the BDF domain permits SDF actors
to be used, and the DDF domain permits BDF actors to be used. This chapter will assume that
the reader is familiar with the SDF domain.

The BDF domain can execute any actor that falls into the class of Boolean-controlled
dataflow actors. For an actor to be SDF, the number of particles read by each input porthole, or
written by each output porthole, must be constant. Under BDF, a generalization is permitted:
the number of particles read or written by a porthole may be either a constant or a two-valued
function of a particle read on a control porthole for the same star. One of the two values of the
function must be zero. The effect of this is that a porthole might read tokens only if the corre-
sponding control particle is zer6ALSE) or nonzero TRUB. The control porthole is always
of type integer, and it must read or write exactly one particle. Although the particles on the
control porthole are of integer type, we treat them as Booleans, using the C/C++ convention
that zero is false and nonzero is true.

We say that a porthole that conditionally transfers data based on a control token is a
conditional porthole. A conditional input porthole must be controlled by a control input. A
conditional output porthole may be controlled by either a control input or a control output.
These restrictions permit the run-time flow of control to be determined by looking only at the
values of particles on control ports. The compile-time scheduler determines exactly how the
flow of control will be altered at run time by the values of these particles. It constructs what
we call anannotated schedulevhich is a compile-time schedule where each firing is anno-
tated with the run-time conditions under which the firing should occur.

The theory that describes graphs of BDF actors and their properties is called the token
flow model. Its properties are summarized in [Buc93b] and developed in much more detail in
[Buc93c].

The BDF scheduler performs the following functions. First, it performs a consistency
check analogous to the one performed by the SDF scheduler to detect certain types of errors
corresponding to mismatches in particle flow rates [Lee9la]. Assuming that no error is
detected, it then applies a clustering algorithm to the graph, attempting to map it into tradi-
tional control structures such as if-then-else and do-while. If this clustering process succeeds
in reducing the entire graph to a single cluster, the graph is then executed with the quasi-static

8-2 BDF Domain

schedule corresponding to the clusters. (It is not completely static since some actors will be
conditionally executed based on control particle values, but the result is “as static as possi-
ble.”) If the clustering does not succeed, then the resulting clusters may optionally be executed
by the same dynamic scheduler as is used in the DDF domain. Dynamic execution of clusters
is enabled or disabled by setting the “allowDynamic” parameter of the default-BDF target.

8.2 The default-BDF target
At this time, there is only one BDF target. The parameters of the target are:

logFile (STRING) Default =
The default is the empty string. The filename to which to report
various information about a run. If this parameter is empty (the
default), there will be no reporting. If the parameter is “<cerr>"
or “<cout>", messages will go to the Unix standard error or
standard output, respectively.

allowDynamic (INT) Default =NO
If TRUEor YES then dynamic scheduling will be used if the
compile-time analysis fails to completely cluster the graph. As
shown in [Buc93c], there will always be some valid graphs that
cannot be clustered.

requireStronglyConsistent
(INT) Default =NO
If TRUE or YES then a graph will be rejected if it is not
“strongly consistent” [Lee91a]. This will cause some valid sys-
tems, even systems that can be successfully statically sched-
uled, to be rejected.

schedulePeriod (FLOAT) Default =10000.0
This defines the amount of time taken by one iteration of the
BDF schedule. The notion of “iteration” is defined in the SDF
chapter, in the section 5.1.3.

8.3 An overview of BDF stars

The “open-palette” command in pigi (“O”) will open a checkbox window that you can
use to open the standard palettes in all of the installed domains. At the current time, the BDF
star library is small enough that it is contained entirely in one palette, shown in figure 8-1.

CondGate If the value on the “control” input is nonzero, the input particle
is copied to output. Otherwise, no input is consumed (except the
control particle) and no output is produced. This is effectively
one half of &Select .

Fork (Two icons.) Copy the input particle to each output. The SDF
fork is not used here because the BDF domain requires some
extra steps to assert that each output of a fork is logically equiv-
alent if the input is a Boolean signal.

U. C. Berkeley Department of EECS

The Almagest 8-3

Not Output the logical inverse of the Boolean input. Again, the
equivalent SDF logic block is not adequate because extra steps
are needed to assert the logical relationship between the input
and the output.

Select If the value on the “control” porthole is nonzekbtokens (from
the parameteN) from “truelnput” are copied to the output; oth-
erwise,N tokens from “falselnput” are copied to the output.

Switch Switch input particles to one of two outputs, depending on the
value of the control input. The parametegives the number of
particles read in one firing. If the particle read from the control
input iIsTRUE then the values are written to “trueOutput”; oth-
erwise they are written to “falseOutput”.

The Higher Order Functions icon leads to the HOF palette that contains HOF stars that
can be used within BDF.

8.4 An overview of BDF demos

The demos with icons shown in figure 8-2 illustrate Boolean-controlled dataflow prin-
ciples. A useful way to understand these principles when running BDF demos is to display the
schedule after a run. This can be done from pigi using the display-schedule command under

2 O o

CondGate Fork Fork
Functions
FL\O o—F—>
Select Switch H hof.pal

FIGURE 8-1: The palette of stars for the BDF domain. All SDF stars may also be used.

(@]
bdfTimin datalter ifThenElse
Insantx Ioog IoogTheLooP Imandebrot

FIGURE 8-2: The BDF demos.

Ptolemy Last updated: 12/1/97

8-4

the Exec menu. It must be done before the control panel is dismissed, because dismissing the

BDF Domain

control panel destroys the scheduler.

bdfTiming

datalter

ifThenElse

insanity

loop

loopTheLoop

mandelbrot

U. C. Berkeley

This demo is identical to the DDF timing demo, except that it
uses BDFSwitch andSelect stars instead of DDEase and
EndCase. The static schedule has some simple if-then con-
structs to implement conditional firing.

This simple system, which does nothing interesting, is surpris-
ingly difficult to schedule statically. It requires nesting an if-
then within a do-while within a manifest iteration.

This simple system us&svitch andSelect stars to construct
an if-then-else.

This peculiar system applies two functions, log and cosine, but
the order of application is chosen at random. The BDF cluster-
ing algorithm fails to complete on this graph. If @dléowDy-
namic parameter of the target is setMBS then the scheduler
will construct four SDF subschedules, which must then be
invoked dynamically.

This system illustrates the classic dataflow mechanism for
implementing data-dependent iteration (a do-while). A
sequence of integers (a ramp) is the overall input. Each input
value gets multiplied by 0.5 inside the loop until its magnitude
is smaller than 0.5. Then that smaller result is sent to the output.

This system is similar to theop demo, except that a second
do-while loop is nested within the first.

This system calculates the Mandelbrot set and uses Matlab to
plot the output. Matlab must be installed on the local worksta-
tion to view the output of this demo, or Matlab must be avail-
able on a machine that is accessible via the Unix rsh command.
See “Matlab stars” on page 5-26 for more information.

Department of EECS

