Chapter 6. HOF Domain

Authors: Edward A. Lee

Other Contributors: Wan-Teh Chang
Christopher Hylands
Tom Lane
Alan Kamas
Karim Khiar
Thomas M. Parks

6.1 Introduction

A function is higher-order if it takes a function as an argument and/or returns a function. A classic example is mapcar in Lisp, which takes two arguments, a function and a list. Its behavior is to apply the function to each element of the list and to return a list of the results. The HOF domain implements a similar function, in the form of a star called Map, that can apply any other star (or galaxy) to the sequence(s) at its inputs. Many other useful higher-order functions are also provided by this domain.

The HOF domain provides a collection of stars designed to be usable in all other Ptolemy domains. To preserve this generality, not all interesting higher-order functions can be implemented in this domain. As a consequence, some individual domains may also define higher-order functions. In fact, any higher-order function with domain-specific behavior must be implemented in its respective domain. The HOF domain is included as a subdomain by all other domains. In Ptolemy 0.7 and later, HOF can be used in both graphical and non-graphical Ptolemy Tcl interpreters.

A common feature shared by all the stars in this domain is that they perform all of their operations in the preinitialize method. Moreover, their basic operation is always to disconnect themselves from the graph in which they appear and then to self-destruct. Since the preinitialization method of the stars in a universe is invoked before the preinitialization method of the scheduler, the scheduler never sees the HOF stars. They will have self-destructed by the time the scheduler is invoked. This is why these stars will work in any domain. In code generation domains, an important feature of the HOF stars is that they add no run-time overhead at all, since they self-destruct before code generation begins, and therefore do not appear in any form in the generated code.

Many of the HOF stars will replace themselves with one or more instances of another star or galaxy, called the replacement block. Replacement blocks generally go into the graph in the same position originally occupied by the HOF star, but different HOF stars will connect these replacement blocks in different ways.

Some HOF stars have no replacement block. Before they self destruct, they will typically only alter the connections in the graph without adding any new blocks. An example is the BusMerge block, which merges two busses into one wider bus. These stars are called bus
manipulation stars.

The experienced reader may have some difficulty connecting the concept of higher-order functions, as implemented in this domain, to that used in functional programming. This issue is covered in some depth in [Lee95], but we can nonetheless give a brief motivation here. In functional languages, there is no syntactic difference between a function argument that is a data value, one that is a stream (an infinite sequence of data values), and one that is a function. In visual programming, however, functions typically have two very different syntaxes for their arguments. Ptolemy is no exception. Stars and galaxies in Ptolemy are functions with two kinds of arguments: input streams and parameters. The HOF domain only contains stars where a parameter may be function. It does not contain any stars that will accept functions at their input portholes as part of an input stream, or produce functions at their output portholes. Although in principle such higher-order functions can be designed in Ptolemy, their behavior would not be independent of their domain, so the HOF domain would be the wrong place for them.

6.2 Using the HOF domain

The HOF stars are found in the main palettes of the domains that use them. For example, the HOF stars used in the SDF domain are found in the main SDF palette. Typically, domains that include the HOF stars will also include demos that use those stars in their demo palette. Thus, the DE demo palette contains a section of Higher Order Function demonstrations. The HOF stars can be used just as if they belonged to the domain in which you are working. Although the examples given below are drawn from the SDF domain, please keep in mind this versatility.

6.2.1 The Map star and its variants

The Map star is the most basic of all HOF stars. Its icon is shown below:

![Map icon]

It has the following parameters:

- `blockname`: The name of the replacement block.
- `where_defined`: The full path and facet name for the definition of blockname.
- `parameter_map`: How to set the parameters of the replacement block.
- `input_map`: How to connect the inputs.
- `output_map`: How to connect the outputs.

The name of the replacement block is given by the `blockname` parameter. If the replacement block is a galaxy, then the `where_defined` parameter should give the full name (including the full path) of a facet that, when compiled, will define the block. This path name may (and probably should) begin with the environment variable $PTOLEMY or ~username. This lends a cer-
tain immunity to changes in the filesystem organization. Currently, the file specified must be an oct facet, although in the future, other specifications (like ptcl files) may be allowed. Usually, the oct facet simply contains the definition of the replacement galaxy. If the replacement block is a built-in star, then there is no need to give a value to the \textit{where_defined} parameter.

The \texttt{Map} star replaces itself in the graph with as many instances of the replacement block as needed to satisfy all of the inputs to the Map star. Consider the example shown in figure 6-1. The replacement block is specified to be the built-in \texttt{RaisedCosine} star. Since this is built-in, there is no need to specify where it is defined, so the \textit{where_defined} parameter is blank. The \texttt{RaisedCosine} star has a single input named \textit{signalIn} and a single output named \textit{signalOut}, so these names are given as the values of the \textit{input_map} and \textit{output_map} parameters. The \textit{parameter_map} parameter specifies the values of the \textit{excessBW} parameter for each instance of the replacement block to be created; \textit{excessBW} specifies the excess bandwidth of the raised cosine pulse generated by the star. The syntax of the \textit{parameter_map} parameter is discussed in detail below, but we can see that the value of the \textit{excessBW} parameter will be 1.0 for the first instance of the \texttt{RaisedCosine} star, 0.5 for the second, and 0.33 for the third.

The horizontal slash through the last connection on the right in figure 6-1 is a \texttt{Bus}, which is much like a delay in that the icon is placed directly over the arc without any connections. Its single parameter specifies the number of connections that the single wire represents. Here, the bus width has to be three or the \texttt{Map} star will issue an error message. This is because there are three inputs to the \texttt{Map} star, so three instances of the \texttt{RaisedCosine} star will be created. The three outputs from these three instances need somewhere to go. The result of running this system is shown in figure 6-2.

The block diagram in figure 6-1 is equivalent to that in figure 6-3. Indeed, once the preinitialization method of the \texttt{Map} star has run, the topology of the Ptolemy universe will be exactly as figure 6-3. The \texttt{Map} star itself will not appear in the topology, so examining the topology with, for example, the \texttt{ptcl print} command will not show a \texttt{Map} star instance.

In both figures 6-1 and 6-3, the number of instances of the \texttt{RaisedCosine} star is

\begin{verbatim}
blockname: RaisedCosine
where_defined:
parameter_map: excessBW = 1.0/instance_number
input_map: signalIn
output_map: signalOut
\end{verbatim}

\textbf{FIGURE 6-1:} An example of the use of the \texttt{Map} star to plot three different raised cosine pulses.
specified graphically. In figure 6-1, it is specified by implication, through the number of instances of the Impulse star. In figure 6-3 it is specified directly. Neither of these really takes advantage of higher-order functions. The block diagram in figure 6-4 is equivalent to both 6-1 and 6-3, but can be more easily modified to include more or fewer instances of the RaisedCosine star. It is only necessary to modify parameters, not the graphical representation. For example, if the value of the bus parameters in figure 6-4 were changed from 3 to 10, the system would then plot ten raised cosines instead of three.

The left-most star in figure 6-4 is a variant of the Map star called Src. It has no inputs, and is used when the replacement block is a pure source block with no input. (This is a separate star type only for historical reasons; a Map icon with zero inputs would work as well.

Raised Cosine Pulses with Various Excess Bandwidths

![Graph of Raised Cosine Pulses](image)

FIGURE 6-2: The plot that results from running the system in figure 6-1.

FIGURE 6-3: A block diagram equivalent to that in figure 6-1, but without higher-order functions.
Indeed, for the case of a pure sink replacement block, a Map icon with zero outputs is used.

Graphical versions of the Map star

Variants of the Map and Src stars, called MapGr and SrcGr, have the following icons:

It is important to realize that MapGr and SrcGr are single icons, each representing a single star. The complicated shape of the icon is intended to be suggestive of its function when it is found in a block diagram. The MapGr and SrcGr stars work just like the Map and Src stars, except that the user specifies the replacement block graphically rather than textually. For example, the system in figure 6-4 can be specified as shown in figure 6-5. Notice that replacement blocks Impulse and RaisedCosine each have one instance wired into the block diagram as an example. Thus, there is no reason for the blockname, where_defined, input_map, or output_map parameters. The MapGr and SrcGr stars have only a single parameter, called parameter_map. The syntax for this parameter is the same as for the Map star, and is fully explained below.

A variant of the MapGr star has the icon shown below:

FIGURE 6-4: A block diagram equivalent to that in figures 6-1 and 6-3, except that the number of instances of the RaisedCosine and Impulse stars can be specified by a parameter.
This version just represents a MapGr star with no outputs.

A more complex application of the MapGr star is shown in figure 6-6. Here, the replacement block is a Commutator, which can take any number of inputs. The bus connected to its input multiporthole determines how many inputs will be used in each instance created by the MapGr star. In the example in figure 6-6, it is set to 2. Thus, each instance of the replacement block processes two input streams and produces one output stream. Consequently, the input bus must be twice as wide as the output bus, or the MapGr star will issue an error message. This example produces the plot shown in figure 6-7. A key advantage of higher-order functions becomes apparent when we realize that these parameters can be changed. If the parameters are modified to generate 8 instances of the Commutator star, then the output plot will be as shown in figure 6-8.

Setting parameter values

The parameter_map parameter of the Map star and related stars can be used to set parameter values in the replacement blocks. The parameter_map is a string array, a list of

![Diagram](image1)

FIGURE 6-5: A block diagram equivalent to that in figure 6-4 except that the replacement blocks for the two higher-order stars are specified graphically rather than textually.

![Diagram](image2)

FIGURE 6-6: A more complicated example using higher-order functions.
strings. The strings are in pairs, where the pairs are separated by spaces, and there are four acceptable forms for each pair:

- name value
- name(number) value
- name = value
- name(number) = value

There should be no spaces between name and (number), and the name cannot contain spaces, =, or (. In all cases, name is the name of a parameter in the replacement block. In the first and third cases, the value is applied to all instances of the replacement block. In the second and fourth cases, it is applied only to the instance specified by the instance number, (which starts with 1). The third and fourth cases just introduce an optional equal sign, for readability. If the = is used, there must be spaces around it.

The value can be any usual Ptolemy expression for giving the value of a parameter. If this expression has spaces in it, however, then the value should appear in quotation marks so that the whole expression is kept together. If the string instance_number appears anywhere

![Interleaved Ramps with Different Slopes](image1)

FIGURE 6-7: The plot created by running the system in figure 6-6.

![Interleaved Ramps with Different Slopes](image2)

FIGURE 6-8: If the parameters in figure 6-6 are modified to double the number of plots, we get this output.
in value, it will be replaced with the instance number of the replacement block. Note that it need not be a separate token. For example, the value xxxinstance_numberyyy will become xxx1yyyy for the first instance, xxx2yyyy for the second, etc. After all appearances of the string instance_number have been replaced, value is evaluated using the usual Ptolemy expression evaluator for initializing String Array states.

For example, in figure 6-1, the Map star has a blockname of RaisedCosine, and a parameter_map of

\[\text{excessBW} = 1.0/\text{instance_number} \]

When the system is run, the Map star will create three instances of RaisedCosine. The first instance will have its excessBW parameter set to 1.0 (which is 1/1), the second instance of RaisedCosine will have a excessBW of 0.5 (1/2), and the third will have a excessBW of 0.33 (1/3). Since the other RaisedCosine parameters are not mentioned in the parameter_map, they are set to their default values.

As a further example, suppose parameter_map of the Map star in figure 6-1 were set to

\[\text{excessBW(1)} = 0.6 \quad \text{excessBW(2)} = 0.5 \quad \text{excessBW(3)} = 0.4 \quad \text{length} = 128 \]

The first RaisedCosine would then have an excessBW of 0.6, the second would have an excessBW of 0.5 and the third would have 0.4 for its excessBW. All three of the RaisedCosine stars would have a length of 128 instead of the default length.

Number of replacement blocks

The number of instances of the replacement block is determined by the number of input or output connections that have been made to the Map star. Suppose the Map star has \(M_1 \) inputs and \(M_O \) outputs connected to it. Suppose further that the replacement block has \(B_I \) input ports and \(B_O \) output ports. Then

\[N = \frac{M_1}{B_I} = \frac{M_O}{B_O} \]

is the number of instances that will be created. This must be an integer. Moreover, the number of input and output connections must be compatible (must satisfy the above equality), or you will get an error message like: “too many inputs for the number of outputs.”

How the inputs and outputs are connected

The first \(B_I \) inputs to the Map star will be connected to the inputs of the first instance of the replacement block. To determine in what order these \(B_I \) connections should be made, the names of the inputs to the replacement block should be listed in the input_map parameter in the order in which they should be connected. There should be exactly \(B_I \) names in the input_map list. The next \(B_I \) inputs to the Map star will be connected to the next replacement block, again using the ordering specified in input_map. Similarly for the outputs. If there are no inputs at all, then the number of instances is determined by the outputs, and vice versa.

For MapGr and its variants, there is no input_map or output_map parameter; all connections are specified graphically. If the replacement block has more than one input or more than one output port, these connections must be grouped into a bus connection to the appropriate port of the MapGr star. A HOFNop star (see “Bus manipulation stars” on page 6-13) can be inserted between the MapGr star and the replacement block to perform this grouping. The order of the connections to the Nop star then determines the precise order in which MapGr
makes connections. In this way the Nop star’s icon provides the same control graphically that input_map and output_map do textually. (By the way, this use of Nop is the only exception to the normal rule that only a single replacement-block icon can be connected to a MapGr star. For both Map and MapGr, if you want to replicate a multiple-star grouping then you need to create a galaxy representing the group to be replicated. The same is true of the remaining HOF stars that generate multiple instances of a block.)

Substituting blocks with multiple input or output ports

When the replacement block has a multiple input port or a multiple output port (shown graphically as a double arrowhead), the name given in the input_map parameter should be the name of the multiple port, repeated for however many instances of the port are desired.

For example, the Add star has a multiple input port named “input”. If we want the replacement Add star(s) to have two inputs each, then input_map should be input input. If we want three inputs in each replacement block, then input_map should be input input input. Note that input_map and output_map are both of the String Array type. Thus one can use the shortcut string input[3] instead of the cumbersome input input input string. These two forms are equivalent as input[3] is converted automatically to input input input when the parameter is initialized by Ptolemy.

For MapGr and its variants, the number of connections to a multiporthole of the replacement block is controlled by placing a bus icon on the connection, as was illustrated earlier.

A note about data types

All the HOF stars show their input and output datatypes as ANYTYPE. In reality, the type constraints are those of the replacement blocks, which might have portholes of specific types.

The HOF stars rewire the schematic before any attempt is made to determine porthole types, so the actual assignment of particle types is the same as if the schematic had been written out in full without using any HOF stars.

This was not true in Ptolemy versions prior to 0.7. In prior versions, porthole type assignment occurred before HOF star replacement, which had various unpleasant consequences. For example, the Map star used to constrain its input and output particle types to be the same, which interfered with using a replacement block that changed particle types. Also, it was necessary to have numerous variants of the Src and SrcGr stars, one for each possible output particle type. (If you have any old schematics that contain the type-specific Src or SrcGr variants, you’ll need to use masters or ptfixtree to replace them with the generic Src or SrcGr icons.)

6.2.2 Managing multidimensional data

There are many alternatives in Ptolemy for managing multidimensional data. One simple possibility is to use the MatrixParticle class. This encapsulates a matrix into a single particle. Another alternative is to use the Message class to define your own multidimensional data structure. A third alternative (which is still highly experimental) is to use the multidimensional synchronous dataflow (MDSDF) domain. A fourth alternative, discussed here, is to
embed your multidimensional data into one-dimensional streams. Higher-order functions become extremely useful in this case. Our discussion will center on using the SDF domain, although the same principles could be applied in other domains as well.

A two-dimensional array of data can be embedded in a one-dimensional stream by rasterizing it. This means that the sequence in the stream consists of the first row first, followed by the second row, followed by the third, etc. This is one example of a multiprojection, so called because higher-dimensional data is projected onto a one-dimensional sequence. Typically, however, we wish to perform some operations row-wise, and others column-wise, so the rasterized format can prove inconvenient. Row-wise operations are easy if the data is rasterized, but column-wise operations are awkward. Fortunately, in the SDF domain, we can transpose the data with a cascade of two stars, a Distributor and a Commutator, as shown below:

If the input is row-wise rasterized, then the output will be column-wise rasterized, meaning that the first column will come out first, then the second column, then the third, etc. It has been shown that any transposition of any arbitrary multiprojection can be accomplished with such a cascade [Khi94].

As an example of the use of a multi-projection transformation, consider the two-dimensional FFT shown in figure 6-9. Recall that a two-dimensional discrete Fourier transform can be implemented by first applying a one-dimensional DFT to the rows and then applying a one-dimensional DFT to the columns. The system in figure 6-9 does exactly this. To see how it works, recall that the FFTCx star in the SDF domain has two key parameters, the order and the size. The size is the number of input samples read each time the FFT is computed. For the row FFT, this should be equal to the number of columns. These samples are then padded with zeros (if necessary) to get a total of 2^{order} samples. The FFTCx star then computes a 2^{order} point FFT, producing 2^{order} complex outputs. In figure 6-9, these outputs are then transposed so that they are column-wise rasterized. The second FFTCx star then computes the FFT of the columns. The output is column-wise rasterized.

![Figure 6-9: A two-dimensional FFT operating on rasterized input data and using the Distributor and Commutator stars to transpose one multiprojection into another.](image-url)
The effect of a transposition can be accomplished using higher-order functions in a way that is sometimes more intuitive. In particular, a matrix can be represented as a bus, where each connection in the bus carries one row, and the width of the bus is the number of rows. To make this concrete, the same two-dimensional FFT is re-implemented in figure 6-10 using this representation. The rasterized input is first converted into a bus, where each connection in the bus represents one row. The MapGr star is then used to apply the FFT to each signal in the bus. The results are recombined in column-wise rasterized format, and the column FFT is computed.

These examples are meant to illustrate the richness of possibilities for manipulating data. A more complete discussion of these issues and their application to radar signal processing are given in [Khi94].

6.2.3 Other higher-order control structures

The Map star and its variants apply instances of their replacement block in parallel to the set of input streams. Another alternative is provided by the Chain star, which strings together some specified number of instances of the replacement block in series. The parameters are similar to those of the Map star, except for the addition of `internal_map`. The `internal_map` parameter specifies connections made between successive instances of the replacement block in the cascade. It should consist of an alternating list of output and input names for the replacement block.

An example of the use of the Chain star is a string of biquad filters in series. The IIR filter star, which can be used to create a biquad filter, has an input named “signalIn” and an output named “signalOut.” To have a string of these stars in series, one would want the output of the first IIR star in the series to be connected to the input of the second star. And the output of the second star should be connected to the input of the third, etc. Thus, a Chain star that is a series of biquad filters would have an `internal_map` of

```
signalOut signalIn
```

to specify that the output of one block is connected to the input of the next.

Another variant is the If Else block. This star is just like Map, except that it has two possible replacement blocks. If the `condition` parameter is TRUE, then the `true_block` is used. Otherwise, the `false_block` is used. It is important to realize that the `condition` parameter is

![FIGURE 6-10: A two-dimensional FFT implemented using a higher-order function for the row FFTs.](image-url)
evaluated at preinitialization time. Once a replacement block has been selected, it cannot be changed. There are two uses for this block. It can be used to parameterize a galaxy in such a way that the parameter determines which of two functions is used within the computation. More interestingly, it can be used to implement statically-evaluated recursion.

6.2.4 Statically evaluated recursion

The Map star and its variants replace themselves with an instance of the block specified as the replacement block. What if that block is a galaxy within which the very Map star in question sits? This is a recursive reference to the galaxy, but a rather awkward one. In fact, in such a configuration, the preinitialization phase of execution will never terminate. The user has to manually abort such an execution in order to get it to terminate.

The ElseIf star, however, can conditionally specify one of two replacement blocks. The condition parameter determines which block. One of the two replacement blocks can be a recursive reference to a galaxy as long as the condition parameter is modified. When the condition parameter changes state, going from TRUE to FALSE or FALSE to TRUE, then the choice of replacement block inside the new galaxy instance will change. This can be used to terminate the recursion.

Consider the example shown in figure 6-11. This galaxy has a single parameter, \(\log_2\text{framesize} \). It will read \(2^{\log_2\text{framesize}} \) input particles and rearrange them in bit reversed order. That is, they will emerge from the galaxy as if their binary address had been interpreted with the high-order bit reinterpreted as a low-order bit, and vice versa. Suppose for example that \(\log_2\text{framesize} = 3 \), and that the input sequence is 10,11,12,13,14,15,16,17. Then the output sequence will be 10,14,12,16,11,15,13,17. To accomplish this, the bit_reverse galaxy uses two IfElse stars, each with a conditional recursive reference to the bit_reverse galaxy.

FIGURE 6-11: A recursive galaxy, where the IfElse HOF star replaces itself with an instance of the same galaxy until its condition parameter gets to zero.

1. For those unfamiliar with bit-reversed addressing, here is a quick introduction. Since \(\log_2\text{framesize} \) is 3, galaxy will read \(2^{3} = 8 \) values at a time. The first value (10) has address 0 (since computers always seem to count from zero) which is 000 in binary. Reversed, its address is still 000 so it is output first. The second value (11) has address 1 which is 001 in binary. Reversed, its address is 100 binary which is 4. Thus the value (11) is output in the fifth spot. As a final example, the seventh value (16) has address 6 which is 110 in binary. Reversed, its binary value is 011 which is 3 and the value (16) is output forth. After the first 8 values are read, the cycle is repeated for the next 8 values.
The condition is \(\log_2 \text{framesize} - 1 \), and the \(\log_2 \text{framesize} \) parameter for the inside instances of the galaxy is set to \(\log_2 \text{framesize} - 1 \). When \(\log_2 \text{framesize} \) gets to zero, the replacement block becomes a \text{Gain} star with unity gain (which of course has no effect). This terminates the recursion.

With \(\log_2 \text{framesize} = 3 \), after the preinitialization phase, the topology of the galaxy will have become that shown in figure 6-12. It is much easier to see by inspection of this topology how the bit reversal addressing is accomplished. It is also easier to see how this operation could be made more efficient (the innermost cluster of \text{Distributors}, \text{Gains}, and \text{Commutators} has no effect at all). Unfortunately, we currently have no mechanism for automatically displaying this expanded graph visually. It can, however, be examined using \text{ptcl}.

The \text{bit_reverse} galaxy performs the sort of data manipulation that is at the heart of the decimation-in-time FFT algorithm. See [Lee94] for an implementation of that algorithm using these same techniques (or see the demos).

6.2.5 Bus manipulation stars

One consequence of the introduction of higher-order functions into Ptolemy is that busses have suddenly become much more useful than they used to be. Recall that the bus icon resembles a diagonal slash, as shown in figure 6-1, and is placed over a connection, much like a delay. Its single parameter specifies the width of the bus.

Fortunately, while increasing the demand for busses, higher-order functions also provide a cost effective way to manipulate busses. Like the \text{Map} star and its variants, the bus manipulation stars in the HOF domain modify the graph at preinitialization time and then self-destruct. Thus, they can operate in any domain, and they introduce no run-time overhead.

An example of the use of the \text{BusSplit} star is shown in figure 6-13. A bank of 12 random number generators produces its output on a bus. The bus is then split into two busses of

![Diagram of bus manipulation stars](image)

FIGURE 6-12: An expansion of the graph in figure 6-11, representing its topology after the preinitialization phase assuming \(\log_2 \text{blocksize} \) at the top level is 3.
width 6 so that subsets of the signals can be displayed together. The BusSplit star rewrites the graph at preinitialization time and then self-destructs. Thus, it introduces zero run-time overhead.

A more interesting bus manipulation star is the Nop star, so called because it really performs no function at all. It can have any number of inputs, but the number of outputs must be the same as the number of inputs. All it does is connect its inputs to its outputs (at preinitialization time) and the self-destruct. It has many icons, four of which are shown below:

The icon on the left has three individual input ports, and simply combines them into an output multiporthole. This multiporthole would normally be connected to a bus, which must be of width three. Thus, this icon provides a way to create a bus from individual connections. The next icon is similar, except that it has five input lines. The next two icons do the reverse. They are used to break out a bus into its individual components.

Examples of the uses of Nop stars are shown in figure 6-14. Three signals are individually generated at the left by three different source stars. These signals are then combined into a bus of width three using a Nop star. The bus is then broken out into three individual lines, which are fed to three Gain stars. The most interesting use of the Nop star, however, is the one on the right. The XMgraph star shown there has a multiporthole input. The Nop star is simply deposited on top of the multiporthole to provide it with three individual inputs. Why do this? Because when connecting multiple signals to a multiporthole input, as done for example in figure 6-3, it is difficult to control which input line goes to which specific porthole in the multiporthole set. Putting the Nop star on the porthole gives us this control with no additional run-time cost.

Recall that many stars in Ptolemy that have multiportholes have multiple icons, each

FIGURE 6-13: A BusSplit star is used to divide a set of signals into two subsets for separate display.
icon configured with a different number of individual ports. This proliferation of icons is no longer necessary, and these icons will disappear from the palettes in future versions of Ptolemy. This will considerably reduce clutter in the Ptolemy palettes.

6.3 An overview of the HOF stars

The Higher Order Function stars are accessed through the main palette of the domains that support HOF. For example, the HOF stars are a sub-palette of the SDF star palette since the SDF domain supports HOF. The top-level palette for the HOF domain is shown in figure 6-15.

6.3.1 Bus manipulation stars

The top group in the main HOF palette are the bus manipulation stars, summarized below:

<table>
<thead>
<tr>
<th>Star</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BusMerge</td>
<td>Bridge inputs to outputs and then self-destruct. This star merges two input busses into a single bus. If the input bus widths are M_1 and M_2, and the output bus width is N, then we require that $N = M_1 + M_2$. The first M_1 outputs come from the first input bus, while the next M_2 outputs come from the second input bus.</td>
</tr>
<tr>
<td>BusSplit</td>
<td>Bridge inputs to outputs and then self-destruct. This star splits an input bus into two. If the input bus width is N, and the output bus widths are M_1 and M_2, then we require that $N = M_1 + M_2$. The first M_1 inputs go to the first output bus, while the next M_2 inputs go to the second output bus.</td>
</tr>
<tr>
<td>BusInterleave</td>
<td>Bridge inputs to outputs and then self-destruct. This star interleaves two input busses onto a single bus. The two input busses must have the same width, which must be half the width of the output bus. The input signals are connected to the output in an alternating fashion.</td>
</tr>
<tr>
<td>BusDeinterleave</td>
<td>Bridge inputs to outputs and then self-destruct. This star</td>
</tr>
</tbody>
</table>

FIGURE 6-14: The Nop star is used to create busses from individual connections, to break busses down into individual lines, and to break out multiportholes into individual ports.
deinterleaves a bus, producing two output busses of equal width. The input bus must have even width. The even numbered input signals are connected to the first output bus, while the odd numbered input signals are connected to the second output bus.

Bridge inputs to outputs and then self-destruct. This star is used to split a bus into individual lines or combine individual lines into a bus. It is also used to break out multi-inputs and multi-outputs into individual ports. These icons are labeled “BusCreate” and “BusSplit”, suggesting their usual function.

If you look inside the icon labeled “Nop” to the right of the above stars, you will open another palette with more icons for the Nop stars, shown in figure 6-16.

6.3.2 Map-like stars

Map

(Two icons.) Map one or more instances of the named block to the input stream(s) to produce the output stream(s). This is implemented by replacing the Map star with one or more instances of the named block at preinitialization time. The replacement block(s) are connected as specified by input_map

FIGURE 6-15: The top-level palette for the higher-order function stars. The icon labeled “Nop” points to more variants of bus create and bus break out
and output_map, using the existing connections to the Map star. Their parameters are determined by parameter_map. See “Setting parameter values” on page 6-6 for examples of the use of parameter_map.

Src
This is identical to the Map star, except that the replacement block is a source block (it has no inputs).

MapGr
A variant of the Map star where the replacement block is specified by graphically connecting it. There must be exactly one block connected in the position of the replacement block. The Nop stars are the only exception: they may be used in addition to the one replacement block in order to control the order of connection.

SrcGr
This is identical to the MapGr star, except that the replacement block is a source block (it has no inputs).

Chain
Create one or more instances of the named block connected in a chain. This is implemented by replacing the Chain star with instances of the named blocks at preinitialization time. The replacement block(s) are connected as specified by input_map, internal_map, and output_map. Their parameters are determined by parameter_map. If pipeline is YES, then a unit delay is put on all internal connections.

IfElse
This star is just like Map, except that it chooses one of two named blocks to replace itself. If the condition parameter is TRUE, then the true_block is used. Otherwise, the false_block is used. This can be used to parameterize the use of a given block, or, more interestingly, for statically evaluated recursion.

IfElseGr
A variant of the IfElse star where the two possible replace-

These icons can be used to split a bus into individual lines or combine individual lines into a bus. They can be connected directly to multiPortHoles, in which case the bus width is set automatically.

FIGURE 6-16: A secondary palette with a more complete set of icons for the Nop star. This palette is accessed by looking inside the icon labeled “Nop” in figure 6-15.
ment blocks are specified graphically rather than textually. There must be exactly one block connected in the position of each of the two the replacement blocks. The \texttt{Nop} stars are the only exception: they may be used in addition to the two replacement blocks in order to control the order of connection. As of this writing, this star cannot be used with recursion, because pigi will attempt to compile the sub-galaxy before it can be deleted from the schematic by \texttt{IfElseGr}.

6.4 An overview of HOF demos

The HOF demos are divided by domain, and are accessed through the demo palette of the individual domain. As of this writing, only the SDF, DDF, DE, and CGC domains have HOF demo palettes.

6.4.1 HOF demos in the SDF domain

The top-level demo palette for the HOF/SDF demos is shown in figure 6-17. The icon labeled “test” points to a set of demos that are not documented here and are used as part of the regression tests in Ptolemy.

\texttt{addingSinWaves}
This demo generates a number of sine waves given by the parameter \texttt{number_of_sine_waves} and adds them all together. The amplitude of each sine wave is controlled by a Tk slider that is inserted into the control panel when the system is run. The frequency in radians of each sine wave (relative to a sample rate of 2π) is \texttt{instance_number} multiplied by $\pi/32$. Thus, the first sine wave will have a period of 64 samples. The second will have a period of 32. The third will have a period of 16, etc. The sum of these sine waves is displayed in bar-graph form.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6_17.png}
\caption{The top level palette of the HOF demos in the SDF domain.}
\end{figure}
This demo is shown above in figure 6-14 and explained in the accompanying text.

The Chain HOF star is used to construct a cascade of two second-order direct-form recursive filters (biquads). The frequency response of the cascade is compared against the frequency response of a direct-form fourth-order filter with the same transfer function.

This system implements a recursive definition of a decimation-in-time fast Fourier transform, comparing its output against that of a direct implementation in C++. The system is configured to use 32 point FFTs to implement a 256 point FFT. The granularity is controllable with the parameters, and can be taken all the way down to the level of multipliers and adders. This system is discussed in detail in [Lee94].

This system generates the same square as in the square demo, and then computes its two-dimensional FFT using the method given in figure 6-10.

This system generates a number of sinusoids as given by the number_of_terms parameter. These are then weighted by the appropriate Fourier series coefficients so that the sum of the sinusoids gives the finite Fourier series approximation for a square wave with period given by the period parameter.

This system is similar to the fourierSeries system above, but uses Mathematica to calculate parameter values. Mathematica must be licensed on the local workstation for this demo to run.

This system models a planar array of sensors with beamforming and steering, such as might be used with a microphone array or a radar system. The sensors can be positioned arbitrarily in a plane. With the default parameters, 16 sensors are uniformly spaced along the vertical axis, half a wavelength apart, except for one, the fourth, which is offset along the horizontal axis by one tenth of a wavelength. The gain of the array as a function of direction is plotted in both polar and rectangular form (the latter in dB). A Hamming window is applied to the sensor data, as is a steering vector which directs the beam downwards. Zoom into the center of the polar plot to see the effect of the offset sensor. Try changing the parameter_map of the left-most MapGr higher-order function to realign the offset sensor, and observe the effect on the gain pattern.

This system simulates radar without beamforming. In this simulation, we simulate the effect of an electromagnetic signal traveling from a transmitter to targets and going back to receivers. The delay of the returned signal is used to provide information on the range of the target. The frequency shift, or Doppler effect, is used to provide information on the speed of the target.
Thus, with these parameters, we estimate the target’s properties as in a narrow band radar.

The system has been converted from a data parallel form that uses a five-dimensional data array to a functional parallel form that uses higher-order functions to produce streams of streams. The five dimensions are range bin, doppler filters, number of sensors, number of targets and number of pulses. For more information, see http://ptolemy.eecs.berkeley.edu/papers/Radarsimu.ps.Z.

sawtooth
This demo is shown above in figure 6-6 and explained in the accompanying text.

scramble
This system demonstrates the *bit_reverse* galaxy shown above in figure 6-11 and explained in the accompanying text.

square
This system demonstrates the *BusMerge* HOF star. It generates an image consisting of a light square on a dark background. The image is first represented using a bus, where each connection in the bus represents one row. The *Commutator* star then rasterizes the image.

wildColors
This demo is shown above in figure 6-13 and explained in the accompanying text.

6.4.2 HOF demos in the DE domain

At this time, there are only two simple demos in the DE domain.

poisson
This system generates any number of Poisson processes (default 10) and displays them together. To distinguish them, each process produces events with a distinct value.

exponential
Combine a number of Poisson processes and show that the interarrival times are exponentially distributed by plotting a histogram. Notice that the histogram bin centered at zero is actually only half as wide as the others (since the interarrival time cannot be negative), so the histogram displays a value for the zero bin that is half as high as what would be expected.

6.4.3 HOF demos in the CGC domain

The top-level demo palette for the HOF demos in the C Code generation domain (CGC) is shown in figure 6-18.

busses
Create a set of ramps of different slopes and display them in both a bar...
chart and using pxgraph.

scrambledCGC This system demonstrates recursion in code generation by taking a ramp in and reordering samples in bit-reversed order.

soundHOF This system produces a sound made by adding a fundamental and its harmonics in amounts controlled by sliders. This demo will work only on Sun workstations.

wildColorsCGC This system is a CGC version of the SDF demo wildColors. It creates a number of random sequences and plots them in a pair of bar graphs.