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Abstract

Order and Containment in Concurrent System Design

by

John Sidney Davis II

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Science

University of California at Berkeley

Professor Edward A. Lee, Chair

This dissertation considers the difficulty of modeling and designing complex, concurrent

systems. The term concurrent is used here to mean a system consisting of a network of commu-

nicating components. The term complex is used here to mean a system consisting of components

with different models of computation such that the communication between different components

has different semantics according to the respective interacting models of computation.

Modeling and designing a concurrent system requires a clear understanding of the types

of relationships that exist between the components found within a concurrent system. Two partic-

ularly important types of relationships found in concurrent systems are the order relation and the

containment relation. The order relation represents the relative timing of component actions within

a concurrent system. The containment relation facilitates human understanding of a system by ab-

stracting a system’s components into layers of visibility.

The consequence of improper management of the order and containment relationships in a

complex, concurrent system is deadlock. Deadlock is an undesirable halting of a system’s execution

and is the most challenging type of concurrent system error to debug. The contents of this disserta-

tion show that no methodology is currently available that can concisely, accurately and graphically
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model both the order and containment relations found in complex, concurrent systems. The result

of the absence of a method suitable for modeling both order and containment is that the prevention

of deadlock is very difficult. This dissertation offers a solution to this problem with the introduction

of the diposet.

Professor Edward A. Lee
Dissertation Committee Chair
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Chapter 1

Managing Inconsistency And

Complexity In Concurrent Systems

The first rule of using threads is this: avoid them if you can.
- The online JavaTMTutorial1

A concurrent system is a set of interacting components. A concurrent, computational sys-

tem consists of components that cooperate in computing data [Andrews, 1991; Milner, 1989; Hoare,

1985]. We find concurrent, computational systems all around us. For example, the operating systems

found on personal computers concurrently run browsers, word processors and database programs.

The embedded systems found in automobiles concurrently respond to the driver’s foot and the road

being travelled upon to properly operate an anti-lock braking system. State-of-the art cell phones

transfer the user’s voice into bits and bytes while simultaneously responding to call waiting requests

and input from the phone touch pad.

In some cases, concurrency is apparent, meaning that only one action happens at any given

time although a human would perceive different actions happening simultaneously. In other cases,

concurrency is actual, meaning that two or more actions occur simultaneously. In this latter category,

concurrent computation is supported by multiple processing units while in the former case a single

processing unit alternates between the actions of each component. Hence, an enterprise compute

1The online JavaTMTutorial can be found athttp://java.sun.com/docs/books/tutorial/index.html.
This quote can be found on the “Creating a GUI with JFC/Swing” trail in the “Using Other Swing Features” lesson
entitled “How to Use Threads.”
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server with multiple CPUs might perform actual concurrency while a desktop computer with a single

CPU performs apparent concurrency. Perhaps the Internet is the largest example of a computational

system that performs actual concurrency.

Concurrent, computational systems are very complex, and this has placed a great burden

on those who design such systems. I believe that much of the complexity associated with concur-

rent systems is based on the sequential style of thinking engaged in by humans. Human sequential

thought patterns are poorly matched for describing, comprehending and building concurrent systems,

especially given the magnitude of many of the concurrent computational systems being built.2

Perhaps the more practical difficulties with concurrent programming are related to the prob-

lem of guaranteeing that disparate components in a concurrent system have knowledge that is consis-

tent with the knowledge of other components. Consider a real world “soccer mom” example: mom,

her teenagers, the pets and other related persons are all components in a concurrent system. Incon-

sistent knowledge in such a system can lead to unwanted behavior: the soccer mom dropping the

dog off at the veterinarian on the wrong day because of a missed answering machine message from

the vet. Inconsistent knowledge can also lead to unnecessary wait periods: the teenager waiting for

mom to pick him up after soccer practice and not realizing that mom expects him to bike home.

Easing the burden of the designers by managing the complexity of concurrent system de-

sign has been, in part, the goal of the electronic design automation (EDA) community. One high level

technique for managing design complexity is through component-based design. Component-based

design leverages the natural partitioning of a concurrent system into components. A component-

based design approach presumes a mechanism for information transfer between components and a

mechanism for computation of the transferred information. The mechanisms for information com-

munication and computation vary across different types of systems that might be described by a

component-based design approach. For example, the communication style of components in a cel-

lular phone may be quite different from the communication style in a medical device control unit.

Informally, the characterization of information transfer and computation are jointly referred to as a

model of computation (MoC).

2I am confident that there are many who disagree with my assertion that humans think sequentially. If anyone in so-
ciety thinks concurrently, surely it is the soccer mom dealing with a long shopping list, rowdy teenagers, dinner time and
dirty pets; I contend that soccer moms are at best engaged in apparent concurrent thinking. Nevertheless, I will not vig-
orously argue this point and instead will let the copious literature on the difficulties of concurrent programming serve as
my evidence.
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In a typical computational system, the MoC associated with components of one part of

the system can be quite distinct from that of components in a different part of the system. For this

reason, a heterogenous set of MoCs is often necessary for specifying a complete system. While a

model of computation specifies how components of a particular MoC interact, it says little about

how interaction occurs across the boundary of two MoC’s. In this dissertation, I present a technique

for dealing with communication between components of different MoC’s. My approach applies to a

specific class of models of computation that are well suited for systems in which components have

autonomous control. In the remainder of this chapter, I will consider component-based design and

in so doing I will establish the background for heterogeneous MoCs and several other problems for

which my dissertation work provides a solution.

1.1 Component-Based Design

Component-based design is applied in many disparate fields including object oriented pro-

gramming, software engineering, formal semantics, and system level EDA. The various communi-

ties that use a component-based design approach tackle different problems with unique solutions.

Many of these solutions can be leveraged by multiple communities. Considering multiple commu-

nities and their varied techniques can provide the breadth upon which new solutions will arise.

1.1.1 Object-Oriented Programming

Object-oriented programming places components at the core by equating components with

software objects. An object is a set of variables with a set of methods that may operate on those

variables and/or parameter data. The application of object-oriented techniques to a software system

results in a system of interacting objects. Each object maintains state based on the values of the

variables it contains. The behavior of an object represents how its functions can be invoked and

whether such invocations impact the object’s state. Note that variables may be objects themselves.

The decomposition of a system into objects is fundamentally about managing complex-

ity by dividing and conquering. Grady Booch, a pioneer in object-oriented design, cites two ba-

sic approaches for dividing and conquering through decomposition: algorithmic decomposition and

object-oriented decomposition. Algorithmicdecompositionbreaks a system into modules where each
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module is a step in a logically sequential process. In object-oriented decomposition, objects each

have independent behavior and state and hence need not operate in any logically sequential manner.

Booch argues that while object-oriented models may not be superior to algorithmic decomposition

models for all systems, they are superior more often then not [Booch, 1994].

Booch defines object-oriented techniques as having four major elements and three minor

elements. I will present five elements that are most relevant to this work.

1. Abstraction

An abstraction focuses on a set of essential characteristics of an object relative to a given

perspective. Abstraction results in a particular interface for an object where the interface is

amenable to a relevant perspective. The notion of abstraction is used in everyday life when-

ever people agree to focus on certain similarities and ignore certain differences for comparing a

set of entities. Hence, we apply abstraction when, for example, we define the notion of house-

hold pets. There are clearly many differences between dogs and cats, but from the perspective

of domestication and animal companionship, dogs and cats both can be defined as household

pets.

Abstraction plays a central role in the object-oriented design process. Abstraction impacts the

particular details that need to be implemented for a given system being designed. Consider

how abstraction might impact the design of a database for storing music. One perspective

might place emphasis on the song artists. Another perspective might emphasize the genre of

the songs in the database. Still another perspective might focus on the title of the songs. Dif-

ferent perspectives impact the database’s interface design.

2. Encapsulation

While abstraction determines an interface, encapsulation determines the implementation of

an interface. Through encapsulation, an interface is separated from its implementation. One

technique for accomplishing encapsulation is information hiding. In essence, the details of

an interface’s implementation are hidden from view. Semantically, encapsulation results in a

has-a relationship. A typical object has-a variable.

A real world example of encapsulation is realized whenever there is a spokesperson for a cor-

poration or political body. When the press questions a large corporation about recent profits or
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about its role in legal proceedings, the question is typically answered by a single spokesper-

son. Even though the single spokesperson gives a statement, we know that this statement is the

result of numerous meetings, phone calls and board room debates. Nevertheless, these details

are hidden from the view of the press to simplify the process.

3. Modularity

Modularity is where the notion of objects enter into object-oriented design. Modularity is

where we decompose a system. In so doing, we partition an abstraction into discrete units:

objects. An object serves as a boundary within which a single abstraction lives. Given the

use of objects, it is often advantageous to maximize reuse. The reuse of an object is possible

if it can be used by different applications. Efficient reuse can play a powerful role in object-

oriented design because it allows the time spent on implementating an object to be amortized

over several applications.

Closely related to the notion of an object is the notion of a class. An object is an implementa-

tion while its class is the blueprint. Presumably, the class for a human being is realized in that

person’s DNA. The class for a bicycle is realized in the design specs stating the characteristics

of its tires, gears, pedals and handlebars. For a single class, several objects can be realized and

each object has its own identity. Two bikes might be designed from the same blueprints but

they are distinct bikes that can exist on different corners of the globe.

4. Hierarchy

Hierarchy prioritizes a set of abstractions. Such a prioritization is necessary because for most

systems, a large number of abstractions are possible and it is necessary to organize the ab-

stractions. Let’s return to our household pets, the cat and dog. Aside from household pet, it is

possible to abstract cats and dogs according to their mammalian characteristics, the number of

limbs they have, and the color of their fur. Hierarchy orders these different abstractions. Each

abstraction may result in a different set of classes. The household pet classes are cats, dogs

and perhaps goldfish and turtles. The mammalian classes include cats, dogs, cows, whales

and human beings among other mammals.

Semantically, hierarchy results in an is-a relationship. An is-a relationship is typically real-

ized through inheritance. Inheritance prioritizes abstractions by hierarchically layering them
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on top of one another. Basic or more fundamental abstractions exist towards the top of the hi-

erarchy while more refined and detailed abstractions exist toward the bottom of the hierarchy.

Note that in general, there is not necessarily one top or one bottom of the hierarchy. If a class

inherits characteristics from another class due to their relative positions in a class hierarchy,

then we say that the former is a subclass and the latter is a superclass. A possible hierarchy

might be mammal ! household pet ! dog ! light brown dog. Thus, a household pet

is-a mammal; likewise a dog is-a household pet; and so forth.

Hierarchy can also be viewed as a has-a relationship. A has-a relationship focuses on con-

tainment and in object-oriented programming considers how objects contain one another. If

objectA has objectB as one of its variables than A containsB. The has-a hierarchy found in

government systems serves as a good example: nations have states have counties have cities

have neighborhoods. In this example hierarchy, nation is the superclass with its immediate

subclass being state.

5. Type

Type is closely related to the notion of class. Typing places constraints on how abstractions

can be combined and allows the designer to enforce design decisions. Unlike the four major

elements presented above, Booch describes type as a minor element of object-oriented design.

He considers it important but non-essential. There are examples of object-oriented languages

that are not typed (e.g., Smalltalk).

There are two key concepts in typing. The first concept is related to rigor: how rigorously is

typing enforced. A strongly typed language detects at compile time whether typing constraints

are violated. A weakly typed or untyped language loosens (to a small or large degree, respec-

tively) this detection. The second concept determines how the names of variables are bound

to (or associated with) types. Static binding means that variables are bound at compile time.

Dynamic binding (or late binding) means that the types of some variables are not known un-

til a program is actually run. The interaction of typing and inheritance is polymorphism. In

polymorphism, a single variable name may represent objects of many different classes that all

have a common superclass.

Object-oriented techniques are generally applied within the context of software. Nevertheless, the
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term “object” was originally used within a hardware context and was first associated with descriptor-

based architectures and later capability-based architectures in the early 1970’s. These architectures

served to close the gap between high level languages and the low level hardware that was being con-

trolled. Many fundamental ideas of object oriented programming first appeared in Simula 67 [see

Booch, 1994, pg. 37]. Smalltalk evolved the concepts in Simula by requiring all objects to instan-

tiate a class. Dijkstra was the first researcher to formally speak of composing systems as layers of

abstractions [Dijkstra, 1968a]. Parnas introduced the idea of information hiding [Yourdon, 1979].

Hoare contributed with his theory of types [Nygaard and Dahl, 1981, pg. 460]. Object-oriented pro-

gramming is experiencing a high point of sorts as we exit the 20th century through the Java program-

ming language which enforces object-oriented programming in a manner that has not widely been

seen prior.

1.1.2 Software Engineering

Software engineering is the organized production of software using a collection of prede-

fined techniques and notational conventions [Rumbaugh et al., 1991]. Although software engineer-

ing as a community is very diverse, a great deal of effort has been expended on extending and refining

object-oriented techniques. In particular, there has been emphasis on specifying object models and

in formalizing their reuse.

The Unified Modeling Language (UML) is an attempt at facilitating the specification of

an object model [Booch, Rumbaugh, and Jacobson, 1999]. The UML is a graphical language for

specifying an object-oriented model. The building blocks of UML are things, relationships between

things and diagrams. Things are the objects that make up a model. Examples of relationships be-

tween things are the is-a and has-a relationships between objects. Diagrams serve as graphical tools

for representing a set of things. Different diagrams are employed depending on the types of things

being represented. Example diagrams include class diagrams, object diagrams and statechart dia-

grams.

Design patterns are object-oriented solution templates; they are methodologies for reusing

tried and true design approaches. In a sense, design patterns extend the fruits of UML by canonizing

them. Design patterns have evolved from years of object-oriented design. It became apparent over

time that certain common designs were being applied over and over to different problems that shared
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essential qualities. Design patterns encourage design reuse. Objects that are good implementations

of a particular design can potentially be reused as well. A design pattern has four essential elements

[Gamma et al., 1995].

1. Pattern Name

The pattern name allows us to refer to a particular design and serves as a member of a vocab-

ulary of patterns. Ideally, the name should be succinct but meaningful.

2. Problem

The problem provides context and determines when a pattern should be used.

3. Solution

The solution describes the elements of the particular pattern, their relationships, and collabo-

rations.

4. Consequences

When choosing any design pattern there are always trade-offs. The designer is made explicitly

aware of the trade-offs by a listing of pattern consequences.

Software engineering as a field subsumes the field of object-oriented techniques. Boehm wrote a

classic survey paper that brings to light the problematic trends of software design [Boehm, 1976].

The UML evolved from Booch and Jacobson’s Object-Oriented Software Engineering (OOSE) ap-

proach and Rumbaugh’s Object Modeling Technique (OMT) in the mid-1990’s. The notion of soft-

ware design patterns was borrowed from the field of architecture. Christopher Alexander recognized

the existence of design patterns in building houses and towns [Alexander et al., 1977]. The “gang

of four” (Gamma, Helm, Johnson and Vlissides) adapted patterns to software by codifying 23 com-

monly used patterns [Gamma et al., 1995]. There have been several extensions of their initial set.

A picture is worth a thousand words and one of the key benefits of the UML community

as well as the gang of four is their emphasis on graphical representations. Unfortunately, none of the

23 patterns offered by the gang of four are explicitly intended for concurrent systems. Although it is

true that each pattern offers structure that can be used to specify relationships between components

within a concurrent system they include no description of how execution should occur. Concurrent

systems are often dealt with independent of the structure of a system and often books on concurrent
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systems emphasize logic [Andrews, 1991; Schneider, 1997]. Graphical representations of concur-

rent systems can help to clarify meaning and serve to convey ideas between designers. There are

very few well accepted graphical techniques in the concurrent programming community and cer-

tainly there are no canonical techniques. In Chapter 2, I offer a graphical technique that is easy to

understand and suitable for richly representing concurrent programs.

1.1.3 Formal Semantics

In the formal semantics (or formal methods) community, what would be considered a com-

ponent is referred to as a process, agent or actor. The formal semantics community typically reverses

the efforts of the other communities spoken of thus far. Rather than emphasizing the decomposition

of a system, formal semanticists study the systems that result from compositions of processes. For

this reason, a formal semantics system is often referred to as a process algebra - the elements of a

process algebra are processes and the algebra consists of operations for composing processes. The

desired goal of a process algebra is to show that properties about a composition are guaranteed given

that the processes being composed satisfy certain criteria. The attainment of this goal means that

process algebra can be used to mathematically verify characteristics about a system being designed.

Unfortunately, the degree to which process algebra are successful at attaining this goal is limited.

Formal semantics comes in many different flavors with each flavor represented by a partic-

ular modeling system. Examples include Tony Hoare’s CommunicatingSequential Processes (CSP),

Robin Milner’s Calculus of Communicating Systems (CCS) and Gul Agha’s Actor’s Model. A con-

cept that is shared by most systems of formal methods is the separation of communication from con-

current computation. This separation is made clear by the words of Robin Milner:

“Each action of an agent is either an interaction with its neighbouring agents, and then
it is a communication, or it occurs independently of them and then it may occur concur-
rently with their actions [Milner, 1989].”

Communication is an action that is shared between a set of processes. Computation is an internal

action that is independent of other processes. The separation of communication from computation is

a very powerful abstraction and can be thought of as extending an object by partitioning its functions

into an external/internal dichotomy. Formal semantics give meaning to objects.
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At the highest level there are two mechanisms by which processes or components commu-

nicate. Shared variable communication involves a globally accessible repository of data that pro-

cesses write to and read from. A process makes a portion of its state available to other processes

through this shared variable. The critical concern in this mechanism is in how to make sure that the

state of the shared variable is consistent with the intentions of the processes. A real world example

of this is realized in a joint bank account shared by a husband and wife. If the husband and wife si-

multaneously attempt to retrieve money from the single account from separate branch locations, the

bank must make sure that it does not give out more money then is available. The fundamental solu-

tion to this problem is based on mutual exclusion. Only one patron can gain retrieval access from a

bank account at a time.

Message passing is the second fundamental style of communication. In message passing,

components communicate through channels. A component must have a channel for each other com-

ponent it wants to communicate with. Communication through a channel falls into two categories:

asynchronous and synchronous. Synchronous message passing requires both the sender and receiver

connected by a channel to be synchronized when a communication occurs. In synchronous message

passing, the notion of communication is atomic. Both the sender and receiver must be simultane-

ously engaged during the duration of the communication. An example of this style of communication

occurs with the passing of the baton during a relay race. Asynchronous message passing does not re-

quire sender and receiver to be simultaneously engaged. As long as room is available in the channel,

a sender may place a message in the channel and then continue with other activities independent of

whether the receiver reads the message. CCS and CSP are both examples of synchronous message

passing systems. Gilles Kahn’s Process Networks model is an example of asynchronous message

passing.

Computation deals with two questions: when? and how? The when question addresses

how tightly coupled the concurrent activities of processes are with one another. At one extreme,

processes execute their computations in lock-step. This approach is referred to as the synchrony hy-

pothesis and assumes that processes alternate between phases of simultaneously computing and then

simulateously communicating with one another. The opposite extreme assumes that the timing of the

computation of one process does not necessarily overlap at all with the computation of other compo-

nents. Some systems fall in the middle between the synchronous and asynchronous extremes. The
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notions of synchrony and asynchrony mentioned in this paragraph should not be confused with those

associated with communication. Here we are simply considering whether processes jointly enter

their computation or communication phases. A system of processes could adhere to the synchrony

assumption yet communicate through asynchronous message passing.

Formal methods have roots in the study of concurrent systems and programming language

semantics. Dijkstra can be credited as one of the founding pioneers of both of these communities.

Dijkstra [1965] introduced the notion of a critical section. A critical section is a region of a pro-

gram that accesses a shared variable and requires an entry/exit protocol. The entry/exit protocols

typically require some sort of mutual exclusion. Dijkstra also introduced guarded commands and

non-deterministic control, both of which are instrumental in many process algebras.

Kahn’s Process Networks model was first introduced in 1974. A key feature of process net-

works is the guarantee of determinacy given that certain reasonable constraints are obeyed. Hoare’s

CSP and Milner’s CSP independently offered very similar semantics to one another and were pre-

sented in the late 70’s. A host of derivatives of both CSP and CCS sprouted in response. Recent activ-

ity in formal verification has been valuable within the formal semantics community. As an example,

Alur and Henzinger [1996] proposed the Reactive Modules model as a system using the synchrony

hypothesis but with the possibility of modeling a variety of systems with different communication

and computation schemes.

1.1.4 System Level EDA

The system level EDA community brings interoperability and heterogeniety to the table.

While process algebras generally incorporate a single model of computation (MoC), system level de-

signers make no such assumptions. System level designers focus at the highest level and therefore

require meta-models for describing systems. From the point of view of the system level designer, a

complete system requires a variety of communication and computation styles. For this reason, the

toolset of the system level designer typically consists of a framework for incorporating heteroge-

neous semantics. A framework is a language for describing languages. An example framework is

the Tagged Signal Model [Lee and Sangiovanni-Vincentelli, 1997]. The tagged signal model uses a

set theoretic approach for describing communication and computation of components.

The use of multiple MoCs increases the richness of a system level design tool, but at the
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expense of certain costs: multiple MoCs require MoC interaction and this interaction must be well

defined. The question of heterogeneous semantics is one of the central concerns of system level EDA

and I address this issue heavily in Chapter 3.

System level design is arguably the least well understood design community of those dis-

cussed. System level designers borrow techniques from each of the other communities and integrate

the fruits of each community’s harvest. For this reason, the boundaries of system level EDA are par-

ticularly malleable. The indefiniteness of system level design offers both a great challenge as well

as a great opportunity.

1.2 Abstracting Component-Based Design

At this point we can digest a broad set of information associated with each of the previ-

ous design communities. Indeed, it is worthwhile to apply some of the techniques we’ve learned to

manage the material just presented. One way to organize the information is to consider how reuse

ability evolves with the progression of the four communities presented.

� Object-Oriented Programming

Reuse of objects is enabled.

� Software Engineering

Reuse of object specifications is enabled.

� Formal Semantics

Reuse of communication and computation primitives is enabled.

� System Level EDA

Reuse of models of computation is enabled.

An equally insightful way to organize the communities is to consider their results with respect to

syntax and semantics:

� Object-Oriented Programming

Syntax: Structure over space.
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� Software Engineering

Syntax: Structure over time.

� Formal Semantics

Semantics: The meaning of object to object interaction.

� System Level EDA

Semantics: The meaning of MoC to MoC interaction.

Component-based design as an umbrella term can leverage results from each of the design communi-

ties above. Based on the layered abstractions according to reuse or syntax/semantics, the component-

based design community can select the appropriate level at which to focus. I will be doing precisely

this throughout my dissertation.

1.3 Dissertation Outline

This dissertation describes three research accomplishments. The first contribution is pre-

sented in Chapter 2 and addresses the difficulty of modelling concurrent systems. Modelling concur-

rent, computational systems is difficult and there are no graphical tools that sufficiently characterize

even the simplest concurrent systems. In Chapter 2, I introduce the diposet. A diposet is a formal,

mathematical structure that is similar in nature to a partially ordered set. The rigorous characteri-

zation of a diposet facilitates mathematical proofs and allows the diposet to serve as a foundation

for precise description of semantics. In particular, a diposet is suitable for describing concurrent,

computational systems. Using a diposet to represent concurrent systems is distinct from traditional

concurrency methods that instead focus on logic. Diposets use an order-centric approach that offers

insight into the relative timing of events in a concurrent system. A key advantage of the diposet is

that it is amenable to simple and intuitive graphical depiction.

An example of a sequential, nested diposet can be found in Figure 1.1. Each node in a di-

poset represents an event in a concurrent, computational system. The arrows with black arrowheads

represent an order relationship between events. In Figure 1.1, the arrow between nodes d and f in-

dicates that event d precedes event f . The arrows with white arrowheads represent a containment

relationship between events. The arrow between nodes c and d in Figure 1.1 indicates that event d
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Figure 1.1. A Sequential Nested Diposet

is contained in event c.

While the contribution of Chapter 2 is oriented towards the formal semantics community,

Chapter 3 presents a system level EDA contribution related to the interaction of heterogeneous mod-

els of computation. A difficulty in the execution of a network of components with heterogeneous

models of computation is how much the order of execution impacts the computed results. More

specifically, how much does the order of data consumption on input channels by message passing

components impact the execution of a network of such components. It is known, for example, that

Gilles Kahn’s Process Networks (PN) model of computation is such that the order of execution of

components has no impact on the resulting stream of output data [Kahn, 1974]. It was not clear

whether the order of data consumption on input channels would alter the execution output in a net-

work of PN components.

Unfortunately, unlike PN, most other models of computation offer very little insight into

the relation between execution order and execution output. My contribution in Chapter 3 is the devel-

opment of a way for characterizing this relation. I refer to the characterization as reorder invariance.

As discussed in Section 3.3.2, a model of computation is reorder invariant if the process of reordering

a component’s communications with neighboring components will not impact the safety or liveness
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of the network of components. Chapter 3 leverages the work of Chapter 2 by using diposets.

Chapter 4 presents my third and final contribution by describing my implementation of

the work found in Chapter 3. The results of this chapter involve extensive use of software engineer-

ing and object-oriented programming techniques. My implementation is part of the UC Berkeley

Ptolemy II project under the leadership of Professor Edward A. Lee. Ptolemy II is a modelling and

design tool written in the JavaTMProgramming Language. Chapter 5 concludes the dissertation with

references following.
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Chapter 2

The Semantics of Concurrent Systems

Semantics is a strange kind of applied mathematics; it seeks profound definition rather
than difficult theorems.
- J.C. Reynolds, 19801

Ensuring proper execution of complex, concurrent, computational systems requires great

care. Such care can be realized through formal semantics. In this chapter, I present an approach

to formal semantics that focuses on the types of relationships that occur between components in a

complex, concurrent system. The relationships I am concerned with are the order relationship and

the containment relationship. The primary contribution of this chapter is the diposet. I created the

diposet to facilitate modeling order and containment in a single mathematical entity. The diposet is

compact, precise and amenable to graphical representation.

My emphasis on order and containment is distinct from other expositions on concurrent

systems and programming language semantics that instead choose to focus on logic [Andrews, 1991;

Magee and Kramer, 1999]. For convenience, I provide an overview of traditional approaches to se-

mantics in Appendix A.

2.1 The Semantics of Concurrent Programs

A concurrent program specifies a set of two or more processes that are coordinated to per-

form a task and a set of resources that are shared by the processes [Milner, 1989; Andrews, 1991;

1R. D. Tennent, Semantics of Programming Languages, (Prentice Hall: London, 1991), p. 3.
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Magee and Kramer, 1999; Schneider, 1997]. Each process consists of a sequential program made up

of a sequence of instructions and this sequence is often referred to as a thread of control or thread

for short. Because each thread is a sequence, the instructions contained within a thread are totally

ordered; i.e., given two distinct instructions, a and b, either a is before b or b is before a.

The coordination of threads requires communication between them so that when appro-

priate, threads may modify their activites based on information from other threads. Communication

is accomplished by the shared resources and is realized through communication instructions or syn-

chronization. In some cases a shared resource might be a conduit through which communication

messages are transferred. In other cases a shared resource might be a memory location that multiple

threads have read/write access to. While communication is necessary to coordinate threads, undis-

ciplined communication can lead to major problems. If two or more threads access the same shared

resource, they can potentially interfere with one another. There are many different types of inter-

ference but at its core, interference occurs when two or more processes attempt to simultaneously

change the state of a shared resource.

Interference is one of the fundamental problems faced in concurrent programming. The

possibility of interference results in great emphasis being placed on the ordering of instructions in

concurrent programming. If two instructions from different threads modify a common resource,

it is essential that one instruction happen before the other so that interference is avoided. Adding

order constraints can be effective in preventing interference; unfortunately, lavish use of ordering

constraints can result in incomplete execution of a concurrent program. Consider for example two

threads, A and B, such that thread A is instructed to wait on a particular instruction of thread B. If

threadB decides to not invoke the instruction, perhaps in lieu of a more favorable option, then thread

A will end up waiting forever - an undesirable result. For these reasons, concurrent programming

can be viewed as the application of techniques and methodologies for enforcing an appropriate level

of ordering on a set of multithreaded instructions.

The above discussion of ordering constraints in concurrent programming highlights two

fundamental classes of problems: safety and liveness. Safety is the property that no bad thing hap-

pens during the execution of a program [Andrews, 1991; Schneider, 1997]. Interference is an ex-

ample of a bad thing. Liveness is the property that something good eventually happens [Andrews,

1991; Schneider, 1997]. Liveness is violated if a program’s execution terminates prematurely. All
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errors found in a concurrent program can be stated in terms of safety and liveness. These definitions

of safety and liveness have a foundation in mathematical logic. I prefer to cast the definitions into a

framework based on ordering. In the context of ordering, safety is violated in a concurrent program

with too few ordering constraints; liveness is violated in a concurrent program with too many order-

ing constraints. In the following we will discuss methodologies for describing concurrent systems.

2.1.1 Concurrency and Order

Figure 2.1 can be thought of as a simple concurrent program in that it specifies the ordering

of instructions in a concurrent program. Thread A consists of instructionsa; b; c; dand ewhile thread

B consists of instructions f; g; h; i and j. Note that the arrows indicate instruction ordering such

that the arrowhead indicates the preceding instruction; e.g., in the figure, instruction a occurs before

instruction b.

The angled arrow in Figure 2.1 indicates an ordering constraint imposed by communica-

tion. The arrow does not indicate polarity of the communication but rather serves to illustrate the or-

dering constraint that the communication imposes. As shown, instructionhmust occur after instruc-

tion b. Implicitly, instructions i and j must also occur after instruction b. Such constraints between

instructions in separate threads would not exist if not for the communication between the threads.

Note that it is not possible to determine the relative ordering of all of the instructions in Figure 2.1.
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In particular, we can not determine whether instruction c occurs before or after instruction g. In gen-

eral, a concurrent program will specify ordering constraints on only a subset of thread instructions.

If all instructions between distinct threads were totally ordered, the result would be a single thread.

The absence of an ordering specification is usually taken to indicate that relative ordering

is inconsequential. In other words, the specification in Figure 2.1 indicates that instructions c and g

can be realized as c followed by g or g followed by c; either realization is allowed and the choice is

arbitrary. The notion of arbitrary ordering of unordered instructions can be applied to all of the in-

structions of a set of threads and results in an interleaving. An interleaving is a sequential realization

of a set of threads that does not violate any of the ordering constraints of the threads. Figure 2.2 is an

example of an interleaving. Note that threads A and B can be interleaved in either of the five ways

shown. What this means is that if the concurrent program specified by Figure 2.2 were executed,

any of the five sequential orderings could represent the actual execution. In fact, each execution can

randomly turn out to be any of the five orderings even without changing parameters! Multiple inter-

leavings facilitate both apparent and actual concurrency. In both cases, the goal is to ensure that the

sequential realization/model is correct; i.e., equivalent to what the designer wants.

Unfortunately the existence of multiple interleavings for a single concurrent program spec-

ification leads to a major difficulty with concurrent programming. The size of the set of interleavings

for a given program is typically unmanageably large. In general, given N threads that each execute

M distinct non-communication instructions, there are

(NM)!

(M !)N

possible interleavings. Five threads with ten non-communication instructions result in over 4:83�
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1031 possible interleavings.

2.1.2 Representing Concurrent Systems

A key difficulty in designing and implementing concurrent systems is the absence of ef-

fective tools for specifying and representing such systems. Representation tools are extremely im-

portant in the design process. Representation tools aid designers in communicating with each other

about a given design as well as in finding errors. Graphical representation tools are especially help-

ful in designing software. For example, graphical representation is the primary thrust of the UML

movement [Booch, 1994; Rumbaugh et al., 1991]. I will consider graphical representation tools for

concurrent programming. In previous sections I have shown several figures (e.g., Figures 2.1 and

2.2) in an attempt to graphically represent concurrent programs. Unfortunately, these graphs have

significant shortcomings.

In this section, I survey four approaches that are used to graphically model concurrent

systems and discuss the pros and cons of each. The four approaches I survey are partially ordered

sets, interval orders, graphs and Petri nets. I chose these four modeling techniques because of their

widespread use and mathematical rigor [West, 1996; Neggers and Kim, 1998; Peterson, 1981]. My

metric for measuring these four approaches will be their ability to represent both containment and

order simultaneously. I will show that using this metric, each of these techniques falls short. I will

then propose a new formalism for more effectively representing concurrent systems with contain-

ment and order; I refer to this formalism as a diposet.

Partially Ordered Sets

Definition 2.1. PARTIALLY ORDERED SET

Let X be a set. A partial order, R, on X is a binary relation that is reflexive, anti-symmetric and

transitive. An ordered pair (X;R) is said to be a partially ordered set or a poset if R is a partial

order on the set X . 2

The three conditions on R hold for all x; y; z 2 X as follows

� Reflexive: (x; x) 2 R

� Anti-Symmetric: (x; y) 2 R; (y; x) 2 R implies x = y
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� Transitive: (x; y) 2 R; (y; z) 2 R implies (x; z) 2 R

I will write � for R such that (x; y) 2 R if and only if x � y; similarly (y; x) 2 R if and only if

y � x.2 Other common notations for R includev and�. If x � y or y � x we say that x and y are

comparable. If x and y are incomparable we write x k y. We say that y covers x if x � y and there

is no element z 2 X such that x � z � y. The set X of a partially ordered set is called the ground

set. If all elements of the ground set are comparable, then the set is called a totally-ordered set or a

chain. If none of the elements of the ground set are comparable, then the set is called an anti-chain.

The up-set, Q � X , of element y is defined such that x 2 Q =) y � x. We write the up-set of

element y as yup�set. The down-set is defined in a similar fashion.

Partially ordered sets can be graphically represented by Hasse diagrams. A Hasse diagram

is a graph in which each vertex or point corresponds to one element of the ground set. An arrowed-

line is drawn from point x to point y if y covers x.3 If we interpret the partial order as representing

precedence such that x � y if y precedes x, then Figures 2.1 and 2.2 are examples of Hasse diagrams.

For clarification, note that b is covered by a in Figure 2.1.

Program 2.1. EXAMPLE SEQUENTIAL CODE

public void start() {
a = val;

}
public void compute() {

do();
undo();

}
public void finish() {

a = 0;
}

It would seem that partially ordered sets are a natural way to express the ordering rela-

tionships in concurrent programming systems. If we let each element of a set represent a method or

2Note that I have chosen to use reflexive notation so that � reads “less than or equal.” Alternatively I could use ir-
reflexive notation such as <, read “less than.” Reflexive notation as given in the definition of partially ordered set defines
the relation, R, as a weak inclusion while irreflexive notation defines the relation, R, as a strong inclusion. In some cases
the relation associated with strong inclusion is called an order as opposed to a partial order.

3Alternatively, Hasse diagrams can be drawn with arrows from x to y if x covers y. Pay attention to the orientation
when viewing a Hasse diagram.
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Figure 2.3. Insufficient Poset Representations of Program 2.1

function, then partially ordered sets can represent a program of method calls. Unfortunately, posets

are not expressive enough to accurately represent even very simple programs. Consider the code

fragment found in Program 2.1 (written in JavaTMsyntax) where we assume that the methods do()

and undo() do not call any other methods.

Assume a thread that invokes start(), compute() and then finish(). A poset is not able

to model the complete relationship between start(), compute(), finish(), do() and undo(). More

specifically, how do we relate do() and undo() to compute(). Both of the Hasse diagrams in Fig-

ure 2.3 are less than accurate. The method compute() is neither before or after do() and undo(),

yet to say that compute() is incomparable to do() and undo() is not quite right either. The method

compute() is non-atomic in that it contains do() and undo(). The problem illustrated by this exam-

ple is that partially ordered sets can not represent both the notion of order and the notion of contain-

ment. Order is necessary to relate start() and compute() while containment is necessary to show

that compute() is non-atomic.

Interval Orders

An interval order is a special class of partially ordered sets. The name implies that interval orders

are amenable to graphical representation, and on the surface an interval order seems suitable for de-
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finish()undo()do()start()

compute()

Figure 2.4. An Interval Order Representation of Program 2.1

scribing elements that are non-atomic. Nevertheless, interval orders can not describe containment

and indeed they are less expressive then posets.

Definition 2.2. INTERVAL ORDER

A poset (X;�) is an interval order if there is a function I : X ! [i(x); t(x)]where i(x); t(x) 2 <

so that x < y in X iff t(x) < i(y) in <. 2

An interval order corresponding to Program 2.1 is shown in Figure 2.4. The primary prob-

lem with interval orders is that they can not represent certain posets. In particular, while interval

orders can represent incomparable points, they can not represent incomparable chains. Figure 2.5

illustrates the inability of interval order to represent chains. Given that the intervals of a; b and c are

as shown, where do we place the interval for d? Interval dmust intersect a and bwithout intersecting

c: an impossible constraint. Hence, an interval order must be free of the poset shown in Figure 2.5.

This precludes a large set of posets and renders interval orders insufficient for our purposes.

ba

c d

?

a

b

c

d

Figure 2.5. A Parallel Chain Poset With No Corresponding Interval Order

Graphs

A graph, as its name implies, is a mathematical structure that naturally lends itself to visual repre-

sentation. Graphs are used extensively within the field of computer science. Examples include the

representation of language grammars and network connectivity diagrams.
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Graph Directed Graph

Figure 2.6. An Example Graph and Directed Graph

Definition 2.3. GRAPH

A graph G with n vertices and m edges consists of a vertex set V (G) = fv1; :::; vng and an edge

set E(G) = fe1; :::; emg. Each edge is a set of two (possibly equal) vertices called its endpoints.

We write uv for an edge e = fu; vg. If uv 2 E(G), then u and v are adjacent. 2

Graphs are illustrated by diagrams in which a point is assigned to each vertex and a curve

is assigned to each edge such that the curve is drawn between the points of the edge’s endpoints. An

example graph is shown in Figure 2.6 (on the left). In some cases, it is useful to add directionality

to the edges of a graph. A directed graph models such directionality and is defined in the following

definition. An example directed graph can be found in Figure 2.6 (on the right) where arrowed curves

indicate direction.

Definition 2.4. DIRECTED GRAPH

A directed graph is a graph in which each edge is an ordered pair of vertices. We write uv for the

edge (u; v) with u being the tail and v being the head. 2

The definitions above are consistent with that used in many texts on the subject [West,

1996; Chen, 1997]. Note that the edge set of a directed graph is simply a relation; e.g., E(G) �

V (G) � V (G). Focusing on the fact that the edge set of a directed graph is a relation emphasizes

the shared traits between directed graphs and many other mathemathical structures. In particular, a

relation-oriented definition of directed graph makes it clear that a partially ordered set is a special

case of a directed graph.

Graphs and directed graphs both have definitions for several useful characteristics. For our

purposes, two particularly useful definitions are path and cycle. Informally, a path in a graph is an

ordered list of distinct vertices v1; :::; vn such that vi�1vi is an edge for all 2 � i � n. A path may
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consist of a single vertex. A cycle is a path v1; :::; vn in which vnv1 is an edge. The length of a path

(cycle) v1; :::; vn is n.

In their basic form, directed graphs and graphs are insufficient for modelling software sys-

tems for reasons similar to those cited for partially ordered sets. A directed graph only has a single

relation on its set of vertices. A single relation will not sufficiently describe both the order and con-

tainment characteristics that are found in the typical object-oriented software program since order

and containment are distinct qualities that require individual representation.

Petri Nets

Carl Adam Petri developed Petri theory with a concern for asynchronous communication between

components and the causal relationships between events. The basic theory from which Petri nets

developed can be found in the dissertation of Carl Petri [Petri, 1962]. The definition of a Petri net

structure is found below.

Definition 2.5. PETRI NETS

A Petri net structure, C, is a four-tuple, C = (P; T; I;O). P = fp1; p2; :::png is a finite set of

places, n � 0. T = ft1; t2; :::; tmg is a finite set of transitions, m � 0. The set of places and the

set of transitions are disjoint, P \ T = ;. I : T ! P1 is the input function, a mapping from

transitions to bags4 of places. O : T ! P1 is the output function, a mapping from transitions to

bags of places. 2

Tokens can reside in (or are assigned to) the places of a Petri net. A marking � is an as-

signment of a nonnegative number of tokens to the places of a Petri net. The number of tokens that

may be assigned is unbounded. Hence, there are an infinite number of markings for a Petri net.

A Petri net executes by firing its transitions. A transition fires by removing tokens from

its input places and creating new tokens in its output places. A transition may fire if it is enabled. A

transition is enabled if each of its input places contains at least as many tokens as connection arcs

from the place to the transition. Tokens that cause a transition to be enabled are called enabling

tokens. When a transition fires, it removes all of its enabling tokens from its input places and then

deposits into its output places one token for each output arc.

4A bag is like a set except that it allows multiple occurrences of elements.
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Figure 2.7. An Example Petri Net With Firing

A Petri net is often graphically displayed as shown in Figure 2.7. In fact, a Petri net is a

directed, bipartite multigraph. A bipartite graph is a graph that consists of two classes of nodes such

that each edge connects a node from one class to a node in the other class. In a Petri net, every arc

(edge) connects a place to a transition. A multigraph is a graph that allows multiple edges from one

node to another. As shown in Figure 2.7, several arcs may connect a place/transition pair.

A Petri net is not sufficient for representing order and containment. Even though it con-

sists of two classes of nodes, its bipartite nature would constrain the order and containment relations

to occur adjacently. It is not obvious how the containment relation could be graphically displayed

using a Petri net, thus making it difficult to represent hierarchy. In addition, Petri nets assume an

asynchronous style of communication. While it is true that asynchronous communication can serve

as a foundation for synchronous communication [Brookes, 1999], asynchronous primitives can not

represent synchronous communication in a succinct manner.

2.1.3 Diposets

In the previous sections I have summarized several mathematical formalisms and critiqued their use-

fulness in the context of describing object-oriented software systems. In each case, I showed that

these formalisms were not sufficient for describing the richness of simple software systems. I have

developed a new mathematical structure that I refer to as a diposet. In the remainder of this section I

will define diposet and in subsequent sections I will make a case that diposets are suitable for robustly
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describing software systems.

The key observation with each of the mathematical structures presented thus far is that a

single relation is not satisfactory for describing software systems. One way to deal with this problem

is to use a pair of structures for describing software systems. Consider a pair of directed graphs G1

and G2 such that V (G1) = V (G2). For convenience I will refer to this paired directed graph as

fG1; G2g. Associated with the pair of directed graphs are two relations, E(G1) and E(G2). Each

relation spawns various characteristics. For example, fG1; G2gmay have two distinct paths, p1 and

p2, such that p1 is associated with E(G1) and p2 is associated with E(G2).

A paired directed graph fG1; G2g offers the beginnings of a tool equipped for describing

a variety of systems that require two types of relations (e.g., order and containment) over a set of

elements. In order to make a paired directed graph completely useful, more structure must be added.

I created the diposet to fill the need for just such a structure.

Definition 2.6. DIPOSET

Let X be a set. A diorder on X is a pair of binary relations on X referred to, respectively, as the

order relation, RO, and the containment relation, RC , such that RC and RO are both reflexive,

anti-symmetric and transitive. For all x; y 2 X , if (x; y) 2 RO then (x; y); (y; x) =2 RC . Similarly,

for all x; y 2 X , if (x; y) 2 RC then (x; y); (y; x) =2 RO. A set X that is equipped with a diorder is

said to be a diposet and is denoted (X;RO; RC). 2

It is immediately obvious that a diposet is a special case of a paired directed graph. It is

also clear that (X;RO) and (X;RC) are both partially ordered sets with a common ground set. The

ground set X of a diposet is equivalent to the set of vertices V (= V (G1) = V (G2)) of a paired

directed graph. The containment and order relations of a diposet, fRC ; ROg, are equivalent to the

two sets of edges in a paired directed graph fE(G1); E(G2)g.

We say that the ground set,X , of a diposet consists of events. The order relation determines

how events are ordered with respect to one another. Consider events a; b 2 X . If (a; b) 2 RO then

we say that a �O b. I.e., event a precedes event b. If (a; b); (b; a) =2 RO then we say that a kO b;

e.g., a and b are incomparable. The containment relation facilitates non-atomic events and event

containment. An event is non-atomic if it contains another event. If (a; b) 2 RC then we say that

a �C b. I.e., event b is non-atomic and contains event a. If (a; b); (b; a) =2 RC then we say that a kC
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b; e.g., a and b are mutually non-inclusive. Note the distinction between incomparable and mutually

non-inclusive. In the context of diposets, incomparability refers to the order relation; mutual non-

inclusiveness refers to the containment relation. Up-set is defined both for order and containment

and is denoted as such; e.g., up � setO and up� setC (similar definitions exist for down-set). An

order (containment) path in a diposet is a sequence of events e1; :::; en such that e1 �O ::: �O en

(e1 �C ::: �C en).

Note that a direct result of Definition 2.6 is that RO \RC = ;. The fact that RO and RC

of a diposet do not intersect leads to two results that hold for all diposets:

i) An event can not contain an event that it precedes or that it is preceded by.

ii) An event can not be contained by an event that it precedes or that it is preceded by.

The disjointness of RO and RC in a diposet serves as one of the key distinctions between a diposet

and a paired directed graph. In a paired directed graph fG1; G2g it is sufficient for G1 and G2 to

share a common set of vertices but there is no constraint on the two sets of edges associated with a

paired directed graph. For example, it is completely admissable for the edge sets of a paired directed

graph to be identical; i.e., E(G1) = E(G2). The intuition behind the disjointness of RO and RC is

that each relation should provide orthogonal information. If the order and containment relations of

a diposet provide redundant information, then the usefulness of distinct relations is undermined.

Partially ordered sets are graphically represented via Hasse diagrams. Hasse diagrams

serve as a simple way to represent posets with directed graphs where an arrow is drawn from element

a to element b if b covers a. Diposets utilize Hasse diagrams as well, with the notion of covering be-

ing extended to containment. I.e., b covers a if there does not exist q such that a �C q �C b. Given

that b covers a according to a containment relation, we say that b is a cover container of a. To ac-

comodate both relations in a diposet, diposet Hasse diagrams require two types of arrows. I will use

a black arrow head to represent the the order relation and a white arrow head to represent the con-

tainment relation. Figure 2.8 displays an example diposet. From this figure we can see that event a

is contained by event c and is incomparable to event d. Event b is preceded by event a and event f

is preceded by event d.

In many systems, the kind of containment that can be modelled by a diposet is not suffi-

ciently constrained. Most software systems require that containment be nested. I add this additional
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Figure 2.8. An Example Diposet

constraint with the following principle.

Definition 2.7. THE NESTED CONTAINMENT RULE

A diposet, (X;RO; RC), satisfies the nested containment rule if 8x; y; z 2 X , the following con-

ditions are adhered to:

Condition I: If x kC y, then (z �C x =) z 6�C y) and (z �C y =) z 6�C x).

Condition II: If x �O y, then (z �C x =) z �O y) and (z �C y =) x �O z).

A diposet that satisfies the nested containment rule is called a nested diposet. 2

In plain English, Condition I says that an event can have at most one cover container. Condition

II says that each event precedes (is preceded by) each event that its container events precede (are

preceded by). An example nested diposet can be found in Figure 2.9.

A key distinction between the Hasse diagrams of diposets and nested diposets can be seen

when comparing Figures 2.8 and 2.9. In Figure 2.9 it is implicit that a �O d by Condition II of Defi-

nition 2.7. In a similar fashion, we see that g �O e. These assumptions can not be made in a general

diposet, and hence in Figure 2.8 a and d are incomparable while in Figure 2.9 they are compara-

ble. This distinction between the Hasse diagram for diposets versus nested diposets requires that one

clearly state which type of diagram is being displayed, so that confusion can be avoided. Nested di-

posets are generally more useful than diposets. For example, most computer programs have a nested

structure. For this reason, I will focus solely on nested diposets from this point on and I will use the

term nested diposet and diposet interchangeably to mean nested diposet. Several interesting results
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Figure 2.9. An Example Nested Diposet

can be derived based on the nested containment rule, as the Weighted Chain Theorem5 illustrates.

Theorem 2.1. WEIGHTED CHAIN THEOREM

For nested diposet, (X;RO; RC), if there exists x0 2 X s.t. 8x 2 X; x0 �C x then all events in X

are incomparable.

Proof by Contradiction Suppose that not all events in X are incomparable. Then there must exist

two events y; z 2 X such that either y �O z or z �O y. Consider the former case. We have

y �O z. Since x0 �C y by the theorem statement, then we know from Condition II of Definition

2.7 that x0 �O z. Again referring to the theorem statement we have x0 �C z. This contradicts

Definition 2.6 since an event can not be contained by an event that it precedes; e.g., the disjointness

of RO and RC has been violated. Hence our supposition was false. The alternative cases follow in

a similar manner. 2

In considering the nested containment rule, it is important to be clear on what it does not

imply. In particular, note that for a given nested diposet, (X;RO; RC), with x; y; z 2 X

x �O y �C z 6=) x �O z

The simplest counter example that satisfies the above statement is the following three event nested

5The intuition behind the name “Weighted Chain” is that if ever a subset of a diposet contains a minimum contained
element (e.g., an element contained by all other members of the subset), then the minimum forces the elements in the
subset to be pulled down like a hanging chain with a weight tied at the bottom.
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Figure 2.10. A Sequential Nested Diposet (Explicit Representation)

diposet, x; y; z 2 X :

x �C z

y �C z

x �O y

Note that if x �O y �C z =) x �O z then Def. 2.6 would be violated; i.e., RO \ RC 6= ;.

Definition 2.8. SEQUENTIAL NESTED DIPOSET (THREAD)

A sequential nested diposet or thread is a nested diposet,XND = fX;RO; RCg, for which 9x0 2

X , called the maximum container of X , such that x �C x0; 8x 2 X and such that 8x; y 2 X , if

x and y have a common cover container, then x �O y or y �O x. 2

An example thread is shown in Figure 2.10. It is drawn in an explicit graphical format. Explicit

graphical format will be explained in Section 2.1.4.

Given that each event in a thread has at most one cover container,6 it is useful to develop

6A characteristic that is true of all nested diposets.
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a notion of depth. We define depth recursively. The depth of the maximum container in a thread is

0. For any event x contained within a thread other than the maximum container, the depth of x is the

depth of its cover container plus 1.

Theorem 2.2. CONNECTED THREAD THEOREM

Any two events in a sequential nested diposet (thread) are either related by the order relation or the

containment relation but never both.

Direct Proof Consider any two events x; y contained in a sequential nested diposet with ground set

X . We know that x and y can not be related by both the order and containment relations by Definition

2.6. In terms of the rest of the proof there are three possible cases as listed below.

i) If x and y are not mutually non-inclusive then x and y must be related by the containment

relation and we are done.

ii) If x and y are mutually non-inclusive and have a common cover container then by Defini-

tion 2.8 x and y must be related by the order relation and we are done.

iii) If x and y are mutually non-inclusive and do not have a common cover container then ap-

ply the following step. Select the event (either x or y) that has the greatest depth.7 Without

loss of generality assume that x has a greater depth then y. If the cover container of x is com-

parable to y than we are done by virtue of Condition II of Definition 2.7. Otherwise, repeat

this step.

2

Theorem 2.3. ACYCLIC DIPOSET THEOREM

A diposet can not contain order or containment cycles of length 2 or more.

Proof by Contradiction Suppose that a diposet (X;RO; RC) contains an order cycle of length 2 or

more. Then there must exist a path e1; :::; en with e1 6= ::: 6= en such that e1 �O ::: �O en �O e1.

By the anti-symmetry property of partially ordered sets, this implies that e1 = ::: = en. Hence,

our supposition must be false and the diposet does not contain a cycle of length 2 or more. Similar

reasoning applies to containment cycles of length 2 or more. This completes our proof. 2

Note that in general a paired directed graph can contain both order and containment cycles
7If x and y have the same depth then arbitrarily choose one or the other.
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of any length. As will be shown in subsequent sections, the existence of a cycle indicates that a

system can not be modelled by a diposet but perhaps can be modelled by a paired directed graph.

In many situations it is useful to label the events of a diposet. For example, multiple events

in a diposet’s ground set may each share a common label indicating that they represent a common

entity or labels may serve as a basis for relating a class of events. A labelling function facilitates this

process.

Definition 2.9. LABELLED DIPOSETS

A diposet labelling function, f : X ! L, maps the ground set of a diposet to a label set, L. A

diposet that is associated with a labelling function and label set is referred to as a labelled diposet.

2

Many of the example diposets that have been previously shown were labelled. For example, in Figure

2.9 the label set is L = fa; b; c; d; e; f; gg and the labelling function is bijective.

2.1.4 Types of Order

Thus far I have presented three partially ordered structures: diposet, nested diposet and

sequential nested diposet (thread). Nested diposets and sequential nested diposets are especially im-

portant for our purposes because of the abundance of nested structures in the field of computer sci-

ence. When considering a nested diposet, it is always the case that the order relation of a nested

diposet can be separated into two subsets: CO [ TO � RO. CO is referred to as the set of com-

munication order relations and TO is referred to as the set of threaded order relations. For any two

events, x; y 2 X , CO(x; y) represents a subset of order relations that are associated with x and y;

i.e., CO(x; y) � CO. In a similar fashion TO(x; y) � TO.

The threaded order relation TO relates events that are in the same thread. For any nested

diposet (X;RO; RC), we have TO(x; y) = ; if x; y 2 X are not part of the same sequential nested

diposet. The communication order relation CO relates events that are not in the same thread. We

have CO(x; y) = ; if x; y 2 X are part of the same sequential nested diposet.

A simple communication order relation is CO(x; y) = (x; y). As will be shown in Sec-

tion 2.2.4, this order relation is equivalent to asynchronous communication between two threads in

which the thread containing event y receives from the thread containing event x. A more elaborate
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communication order relation is

CO(x; y) =
f(x; y0)jy0 2 yup�setO g [ f(y

0; x)jy0 2 ydown�setO g

[f(x0; y)jx0 2 xdown�setO g [ f(y; x
0)jx0 2 xup�setOg

(2.1)

I will show that the communication order relation of Equation 2.1 is a precise characterization of syn-

chronous message passing communication in which x and y represent the sending/receiving events

of two communicating threads (See Section 2.2.4).

Given nested diposet (X;RO; RC) we can write

RO =

2
4 [
(x;y)2X�X

CO(x; y)

3
5[

2
4 [
(x;y)2X�X

TO(x; y)

3
5 (2.2)

We can leverage the dichotomy found in Equation 2.2 to simplify our nested diposet Hasse diagrams.

Recall that Figure 2.10 is drawn in an explicit graphical format. By explicit I mean that all cover con-

tainer relationshipsare explicitlyshown. Alternatively a sequential nested diposet can be represented

in an implicit graphical format. The implicit graphical representation of a nested diposet relies on

the following three rules.

i) Order relations associated with TO are drawn with a vertical line.

ii) Order relations associated with CO are drawn with a non-vertical curve.

iii) Containment relations are drawn with a horizontal line.

An example sequential nested diposet that is drawn in an implicit format is shown in Figure

2.11. The thread drawn in Figure 2.10 is identical to that of Figure 2.11. The only difference is that

the former is represented explicitly while the latter is represented implicitly. In the remainder of this

dissertation, I will use implicit representation of sequential nested diposets.

2.2 Diposets and Concurrent Programming

Diposets are amenable to modeling a wide variety of systems including manufacturing

schedules, distributed transactions and hardware systems. Given our interests, we will use nested

diposets to model concurrent software systems. In a concurrent system, the ground set of our nested

diposet consists of method invocations or code blocks. The label of an invocation is simply the
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Key:

TO

CO

RC

CO relations are not
present in this diposet.

Figure 2.11. A Sequential Nested Diposet (Implicit Representation)
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method’s name. Hence, multiple invocations of a method share a common label. Note that declar-

ing a nested diposet’s ground set as consisting of method invocations can accomodate a rich class of

programming constructs including recursion and software objects.

finish

do
get

Figure 2.12. A Nested Diposet Corresponding To Program 2.2

If the body of method a contains an invocation of method b, then we say that b �C a. If

the body of method a precedes method b (as in method a returns prior to the invocation of method b)

then we say that b �O a. Consider the code fragment shown in Program 2.2. Here we see both the

notion of containment and order. The methods get() and finish() are contained within the method

do(). E.g., get �C do and finish �C do. In addition, the method finish() is ordered to occur

after the method get(). E.g., finish �O get. A single invocation of the method do() would result

in the thread displayed in Figure 2.12.

Program 2.2. SAMPLE METHOD CALLS

public void do() {
get();
finish();

}
public void get() {

z1 = x + y;
}
public void finish() {

z2 = z1++;
}

In some cases a nested diposet or a diposet will not be sufficient for describing a software

system. In particular, as Theorem 2.3 (the Acyclic Diposet Theorem) declares, a diposet can not

contain non-trivial cycles. In cases where inclusion of a cycle is crucial, the structure of a diposet

can be relaxed and transformed into a paired directed graph. Paired directed graphs are amenable to

describing cycles because they are not beholden to anti-symmetry.
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2.2.1 Safety and Synchronization

Recall that the key problems of concurrent programs fall into two classes: safety and liveness prob-

lems. Let us consider how nested diposets can model these constucts. Safety is solved by applying

mutual exclusion to the critical section of code that should not be simultaneously accessed by multi-

ple threads. A common way to guarantee safety in a concurrent program is to require lock synchro-

nization to code blocks. Only one process can synchronize with a given lock and thus access to the

block of code will necessarily be mutually exclusive.

Safety via lock synchronization can be represented with containment and order relation-

ships. Locks apply to blocks of code, thus we can think of a realized lock as an invoked method. In

nested diposet terms, the code that a realized lock synchronizes is contained by the lock. We must

make sure that multiple realizations of the same lock are not invoked simultaneously. This is ac-

complished by ordering the lock invocations. This process is illustrated in Program 2.3 (written in

psuedo JavaTMcode) and Figure 2.13. Note that the synchronized keyword means that the lock

for the corresponding method is an instatiation of the Obj class. A nested diposet showing a possi-

ble interleaving of calls to methods do and undo that satisfies the synchronization lock constraints

is given in Figure 2.13.

Program 2.3. SYNCHRONIZED METHOD CALLS

public class Obj {
public synchronized void do() {

modify();
change();

}
public synchronized void undo() {

change();
modify();

}
private void change() {

// Atomic; contains no methods
}
private void modify() {

// Atomic; contains no methods
}

}
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undo

change

do
Obj modify
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Figure 2.13. A Possible Interleaving Of Calls To do() And undo() In Program 2.3

2.2.2 Liveness and Deadlock

The result of liveness problems within concurrent, computational systems are perhaps the most rec-

ognizable difficulties that the typical computer user must face. Liveness is closely associated with the

inter-dependencies and relative speeds of autonomous threads. Relative thread speeds are tied to the

thread scheduling algorithms of operating systems and such algorithms are typically beyond the con-

trol of software developers. For this reason, liveness problems have an inherently non-deterministic

nature from the perspective of the software developer. Although the problems associated with the

absence of safety can be just as devastating as those associated with the absence of liveness, safety is

much easier to maintain than liveness and thus for most computational systems safety is not a major

issue.8 Doug Lea categorizes liveness into four groups [Lea, 1997].

I) Contention occurs when several processes wait on resources but only a subset of the processes

gain the resources. Contention is fundamentally related to fairness and is generally a determin-

istic problem in that it is based on the thread/process scheduling algorithm being used.

II) Dormancy occurs when a waiting thread is not notified that the condition it is waiting on be-

comes true. This problem is relatively easy to solve with well placed “wake up” mechanisms.

For example, in the JavaTMprogramming language a notify() or notifyAll() method

would be used. Dormancy is typically deterministic in that the wake up mechanisms are usu-

ally not dependent upon a particular interleaving of threads.

8While corrupt data (the result of safety problems) are farely rare, who among us has not witnessed the blue screen of
death?
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III) Deadlock occurs when a cycle of processes are mutually dependent upon each other at the

same time. More precisely, N processes each wait on exclusive access to one of N resources

while simultaneously holding exclusive access to another one of the N resources such that

each process is awaiting access to a distinct resource. Deadlock is typically non-deterministic

in that it is dependent upon the relative speeds of the processes acquiring the resources.

IV) Premature Termination occurs when a process ceases operation unexpectedly without properly

notifying the other processes in the concurrent system. Such termination can result in both

safety and liveness problems for the remaining processes. Premature termination is akin to a

reversal of dormancy and is relatively easy to solve given appropriate exception handling.

Each of the types of liveness problems can cause a concurrent program to halt in an undesirable man-

ner. While they are all challenging to deal with, in my experience deadlock stands out in a class of

its own. In the best case scenario, deadlock is tied to the interleaving of the threads involved. This

means that deadlock will non-deterministically occur based on the relative speeds of the threads and

how the relative speeds impact thread interleaving. In the worst case scenario deadlock is not depen-

dent upon relative thread speeds. In this case deadlock is intrinsic in the semantics of the communi-

cating threads and there is no hope of evasion. Hence, in the worst case scenario there is nothing one

can do while in the best case scenario one’s view of the situation is blurred by randomness. Given

the heightened difficulty of deadlock, I will focus on its representation.

Definition 2.10. DEADLOCK

A paired directed graph exhibits deadlock if and only if it contains a cycle. 2

Nested diposets can not exhibit deadlock as per the Acyclic Diposet Theorem (Theorem 2.3). What

Definition 2.10 tells us is that a software system that can be modelled by a nested diposet can not ex-

hibit deadlock. To determine if a system exhibits deadlock, apply the relavent order and containment

relationships and attempt to construct a diposet model of the system. If it is possible to apply order

and containment relationships without violating the nested containment rule and arrive at a cycle,

then deadlock can occur. In such instances the model is not a diposet but rather a paired directed

graph that is not anti-symmetric. Otherwise, the model is a diposet and by definition it is deadlock

free.
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Part a: Prior to Order Constraint

Figure 2.14. Order/Containment Constraints Leading To Deadlock

Deadlock often comes about through the use of multiple synchronization locks. As stated

in the previous section on safety, synchronization locks that have a common label typically have an

ordering constraint that requires that they be comparable. In conjunction with the order constraint on

synchronization locks, deadlock-prone code often implements such locks so that they are contained

by one another. This containment constraint can often contradict the ordering constraint and lead to

deadlock. To illustrate this phenomenon see Figure 2.14. The first section (part a) of the figure shows

a diposet consisting of two distinct threads each involving two events with the displayed labels. If
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we treat these events as the holding of synchronization locks, then we know that an ordering relation

must be applied between the separate threads so that the locks are not concurrent. The next three

sections of Figure 2.14 show distinct application of order constraints to the two threads. In each

case, the applied order constraints do not violate the nested containment rules. In part d of Figure

2.14 the thick lines indicate that a cycle exists - deadlock! Given the order constraints imposed by

the synchronization locks, it is possible for this system to experience deadlock and in fact the model

in part d of Figure 2.14 is not a diposet.

Figure 2.15 consists of an alternative configuration such that the containment constraint of

the left thread is reversed. Again, order constraints are applied to the nested diposet, however, be-

cause of the reversed containment constraint, order constraints must be applied in a manner different

from Figure 2.14. In no case can order constraints be applied without violating the nested contain-

ment rule and lead to cycles. Thus, the configuration of this software system is not deadlock-prone.

Note that there are only two ways to apply order constraints without violating the nested containment

rules in Figure 2.15.

In considering Figures 2.14 and 2.15 note how the order and containment constraints come

about in concurrent programs. Containment constraints are typically determined at compile time.

How the source code of a program is written determines what the containment constraints will be.

Order constraints between threads are typically determined at run-time and are a function of relative

thread speeds. This is why we show the containment constraints first followed by the order con-

straints.

2.2.3 Conservative Compile Time Deadlock Detection

One of the key advantages of diposets is their potential for compile time detection of dead-

lock. Detection of deadlock at compile time means that the determination of the possibility of dead-

lock in a system will occur prior to the execution of the system. Compile time detection takes place

during a system’s design process and thus offers the opportunity for correction of the problem by

the system designers. Compile time deadlock determination is in contrast to determination of dead-

lock at run-time. Run-time deadlock detection occurs while a system is actually executing and be-

ing used. There are many approaches for detecting deadlock at run-time [Mattern, 1989; Chase and

Garg, 1998; Lynch, 1996]. Unfortunately, detection of deadlock at run-time suffers from two prob-
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Lock1Lock2 Lock2Lock1

Lock1Lock2 Lock2Lock1

Figure 2.15. Order/Containment Constraints That Do Not Lead To Deadlock

lems. First, it is better to prevent deadlock before using a system than to simply detect deadlock

during a system’s operation. Second, a solution for deadlock while the system is being used is typi-

cally insufficient. This is especially so with the advent of widely available embedded systems. Many

embedded systems are of a safety critical nature such as an embedded system controlling an auto-

mobile’s antilock braking system. Obviously deadlock detection during the operation of an antilock

braking system will place the lives of the automotive passengers in jeopardy.

Diposets offer the opportunity for conservative detection of deadlock at compile time. By

conservative I mean that one can determine the possibilityof deadlock, not the certainty of deadlock.

Conservative deadlock detection determines whether deadlock can occur not whether deadlock will

occur. This is a key distinction. In general software systems, i.e., software systems with infinite-

valued variables, determining if deadlock will occur is undecidable. Undecidability stems from the

fact that the model of computation of general software systems is Turing complete.9 Determining if

9A Turing complete model of computation can implement a Turing machine. All of the process models of computation
in this dissertation are Turing complete.
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deadlock will occur for a Turing complete system would require checking a search space consisting

of an infinite set of possibilities. In contrast, using a conservative deadlock detection mechanism

requires the consideration of a finite set of possibilities.

The basic approach for using diposets to determine the possibility of deadlock at compile

time is simple: if and only if a software system can be represented by a diposet, then deadlock will

not be possible. If a software system can be represented by a diposet then that implies that the system

does not contain cycles which further implies that deadlock is not possible. The general algorithm

for this process is as follows.

1) Create the System Specification

This step simply involves the system programmer(s) writing the software program.

2) Automatically Recognize Order and Containment

Determining order and containment in the system specification can be automated by an appro-

priate tool.

3) Store the Order and Containment in an Appropriate Data Structure

Storage of the order and containment relations will be similar to the storage techniques used

for binary trees and other common data structures.

4) Search for Cycles

The absence of cycles indicates that the structure is a diposet.

The difficulty with a realization of the above algorithm is that it will be extremely computationally

complex. In fact, it will likely be NP-Complete (see Garey and Johnson [1979]). Nevertheless, there

may be opportunities for developing heuristics that simplify the deadlock detection process consid-

erably. Such heuristics are beyond the scope of this dissertation but will be part of any future work

on this topic (see Chapter 5).

2.2.4 Communication Semantics

Communication between threads imposes an order constraint on their composite diposet.

These order constraints are precisely the communication order relations discussed in Section 2.1.4.

In this section I will discuss two important communication styles and describe their corresponding
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communication order relationsh. As mentioned in Section 1.1.3, message passing is one of the funda-

mental ways to communicate within a concurrent system. Message passing communication assumes

that components are connected via channels through which messages are transmitted. There are two

types of message passing communication: synchronous and asynchronous. Synchronous message

passing requires both the sender and receiver connected by a channel to be synchronized when a

communication occurs. Asynchronous message passing does not require the sender and receiver to

be simultaneously engaged and involves a storage facility in which messages can be placed by the

sender until the receiver is ready.

The communication order relations for asynchronousmessage passing is very simple. Given

that the sending event is denoted x and the receiving event is denoted y, an asynchronous message

passing communication order relation for x and y is written

CO(x; y) = f(x; y)g:

In other words, x must precede y. A graphical example of such a relation is shown in Figure 2.16.

Here the left thread communicates to the right thread. Event x is the sending event and event y is

the receiving event.

y

x

Figure 2.16. A Diposet Representing Asynchronous Communication

The communication order relation for synchronous message passing is significantly more

complex than asynchronous message passing. Given that the sending event is denoted x and the

receiving event is denoted y, a synchronous message passing communication order relation for x

and y is equivalent to that given in Equation 2.1. For convenience I have rewritten Equation 2.1

below. Note that synchronous message passing is symmetric; i.e., CO(x; y) = CO(y; x). Thus,
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x y

Figure 2.17. A Diposet Representing Synchronous Communication

there is no need to differentiate a sender and receiver. The graphical representation of synchronous

message passing is shown in Figure 2.17 in which event x and y are synchronous.

CO(x; y) =
f(x; y0)jy0 2 yup�setO g [ f(y

0; x)jy0 2 ydown�setO g

[f(x0; y)jx0 2 xdown�setO g [ f(y; x
0)jx0 2 xup�setOg

2.2.5 An Example: PtPlot And The JavaTMSwing Package

I conclude this chapter with an informative and real world example. I will demonstrate

how diposets can model the threading mechanism that is part of the Swing package of the JavaTM

programming language. The JavaTMSwing package consistsof a set of graphical user interface (GUI)

components that have a pluggable look and feel. The pluggable look and feel lets one design a sin-

gle set of GUI components that can automatically have the look and feel of any OS platform (e.g.,

Microsoft WindowsTM, Sun SolarisTM, Apple MacintoshTM). As with all GUIs, the Swing graphi-

cal user interface must respond both to human input such as mouseclicks and text entry as well as

computer input such as new image positions generated by a program or new windows to display. Re-

sponding to both computer and human input is an inherently concurrent process. Swing addresses

this concurrency with a single event dispatch thread for all GUI operations.

The Swing event dispatch thread takes events (e.g., the pressing of a button or clicking of

a mouse) and schedules them to occur in a sequential order. The invokeAndWait() and

invokeLater() methods are available so that other threads in a program can access the event
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dispatch thread (these methods are part of the javax.swing.SwingUtilities class). The

invokeAndWait() method communicates synchronously with the event dispatching thread. The

invokeLater() method communicates asynchronously with the event dispatching thread. Im-

proper use of the invokeAndWait() or invokeLater() methods is a greater source of con-

fusion among Swing users and can result in deadlock.10

PtPlot, created by Edward A. Lee and Christopher Hylands, is an example JavaTMprogram

that uses the Swing package [Davis et al., 1999, chapter 10].11 PtPlot consists of JavaTMclasses

(many of which are Swing classes) that plot data on a graphical display. The main thread in the

program is part of the Plot class run() method. This thread (I’ll refer to it as the PtPlot thread)

repeatedly calls thePlot.addPoint() method. addPoint() synchronizes on thePlot object

lock and then attempts to draw points on the display. This latter task (drawing points on the display)

requires the PtPlot thread to communicate with the Swing event dispatch thread. Separate from the

Plot thread are several buttons for modifying the view of the PtPlot display. One such button is the fill

button. If a user clicks on the fill button the ButtonListener.actionPerformed() method

will be called and this in turn calls the Plot.fillPlot() method. The Plot.fillPlot()

method is synchronized on the Plot object lock. Since the fill button is a swing component,

ButtonListener.actionPerformed() and all of its contents are part of the event dispatch

thread.

In order for the PtPlot thread to actually add points to the display, it must communicate with

the event dispatch thread either through theinvokeLater() method or theinvokeAndWait()

method. Diposets illustrate how the former method is deadlock free while the latter is deadlock

prone. Figure 2.18 shows the two separate threads - the PtPlot thread and the event dispatch thread -

without communication between them. Two order constraints must be added to this figure. The first

constrains the two invocations of the Plot lock to not occur concurrently. The second constraint

is due to the communication between the PtPlot thread and the event dispatch thread. This second

constraint is a function of the displayPoints event and the event labelled “communication

event.” Figure 2.19 shows both constraints added to the two threads. The upper section of Fig-

ure 2.19 consists of the asynchronous constraint that is imposed by invokeLater(). The lower

10For a glimpse at the headaches faced by users of the two invoke methods, viewhttp://forum.java.sun.com/
and search on invokeLater.

11PtPlot is available at http://ptolemy.eecs.berkeley.edu/java/ptplot.



47

Plot
Lock

Plot
Lock

communication
event

Plot.fillPlot
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PtPlot Thread

Figure 2.18. The Separate Threads In PtPlot

section of Figure 2.19 uses the synchronous constraint of invokeAndWait(). In this latter case

a cycle exists.
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Figure 2.19. PtPlot and the JavaTMSwing Event Dispatch Thread
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Chapter 3

Interfacing Heterogeneous Process

Models

Can’t we all get along?
- Rodney King, 1992 1

In Sections 1.1.3 and 2.2.4 several communication styles were introduced. In particular,

synchronous and asynchronous message passing communication was described and diposets were

used to represent both of these approaches. Synchronous and asynchronous message passing are

two very important classes of concurrent communication, but the range of semantics options for de-

scribing communication and computation in a concurrent system goes well beyond these approaches.

Any set of semantics serve to constrain and define the manner of communication and computation

of a concurrent system. A set of such semantics describing how components in a concurrent system

can communicate and compute data is referred to as a model of computation.

A model of computation (MoC) is a concept that traditionally has played a behind-the-

scenes role in the design of computational systems. Often the constraints imposed by a model of

computation fade into the background and only reside in the designer’s subconscious. Nevertheless,

all specification systems realize a particular model of computation. Von Neumann-style imperative

programming languages applied to sequential software systems utilize an automata-based model of

computation. Verilog and VHDL, two common hardware design languages, both use a discrete event

1This quote was made in response to a racial insurrection in Los Angeles spawned by a 1992 Simi Valley, California
court verdict.



50

model of computation. Tools that implement digital signal processors often realize one of several

possible dataflow MoCs [Girault et al., 1999; Buck, 1994; Bhattacharyya and Lee, 1994].

A model of computation determines how a component communicates data and computes

data. The method by which a component communicates data is realized by a communication inter-

face or simply interface. A communication interface facilitates data transfer between a component

and the other components to which it communicates. A component’s communication interface is

defined by the component’s model of computation. For example, a discrete event (DE) component

that keeps track of time must have a mechanism for specifying time stamps in its communication

interface. A synchronous dataflow (SDF) component need not incorporate time into its interface as

time is not a relavant parameter.

Given a particular model of computation, there are two approaches to executing a network

of components. One approach is schedule-based. In the schedule-based approach, a schedule is cre-

ated that specifies an ordering of invocations of each component contained in the network. In many

cases the schedule is sequential, although this is not necessary. As each component is invoked, com-

putation of data occurs. A schedule-based execution model presumes that each component’s com-

putation is finite. A second approach to execution of a network of components is process-based.

Process-based execution of a network of components does not assume that each component’s exe-

cution is finite. For the sake of fairness in the face of possibly infinite computation, the process-based

method assigns an autonomous thread of control to each component. Due to the autonomy of each

component afforded by the assigned thread, components in a process-based execution are often re-

ferred to as processes.

For most models of computation, a network of components can be executed in either a

schedule-based or process-based manner. Certain models of computation are more amenable to one

style or the other. For example, the Synchronous Dataflow (SDF) model of computation [Lee and

Messerschmitt, 1987] is best executed according to a schedule-based execution model. This is be-

cause it is relatively easy to determine efficient sequential schedules for SDF networks. On the other

hand, the distributed discrete event (DDE) model of computation is best executed in a process-based

manner since its distributed nature is especially amenable to separate threads of control [Righter and

Walrand, 1989].

Models of computation facilitate well defined specification of concurrent systems, but for
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Figure 3.1. A Sample Embedded System

most large, complex systems a single model of computation can not be used alone. Complex systems

typically consist of several subsections with different sections best described by different MoCs. As

an example, consider an embedded system as displayed in Figure 3.1. This system, with charac-

teristics of cell phones and personal digital assistants, is not easily described by a single MoC. The

analog RF front end is best described by a model of computation that uses differential equations.

The control-oriented aspects of the embedded system are best described by a discrete event model

of computation. The graphical user-interface is suitable for description by a process-oriented model

of computation that can easily describe the non-deterministic interface. The voice coder DSP is best

described by a dataflow model of computation such as synchronous dataflow.

Heterogeneous application of models of computation is an approach that recognizes the

need for multiple MoCs to be used in conjunction with one another for describing complex systems.

As discussed in Section 1.1.4, many researchers in the System Level EDA community propose a het-

erogeneous approach for dealing with complex system design. Given the use of a heterogeneous ap-

proach, it becomes implicit that components of different models of computation communicate with

one another. I.e., heterogeneity implies that components with different communication interfaces
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must communicate. The question becomes how? How should heterogeneous components commu-

nicate with one another. In general, there are two approaches for handling the interaction of hetero-

geneous MoCs. The amorphous approach to heterogeneity allows components of different MoCs

to communicate directly. 2 The structured approach to heterogeneity requires that components of

different MoCs communicate through an adapter.

The choice of amorphous versus structured heterogeneity has implications on both the

communication and computation of a network of components. From the perspective of communica-

tion, amorphous heterogeneity implies that a single component must incorporate features of multi-

ple MoCs and, hence, have multiple interfaces. For example, a single component might be required

to support both asynchronous message passing and synchronous message passing. A similar phe-

nomenon exists in the realm of computation. Suppose a given component communicates with some

components that observe the synchrony hypothesis and others that do not. Should the component

in question observe synchrony or not? In effect amorphous heterogeneity burdens each component

with the possibility of having to deal with every available model of computation - a burden that ren-

ders the model of computation concept useless.

Structured heterogeneity enforces the application of a single model of computation to any

single component in a network by using adapters to connect incompatible interfaces. An adapter

converts the interface of one component into the interface of another. Adapters (also called wrap-

pers) play the role of interface translators. A treatment of adapters as object-oriented patterns can

be found in Gamma et al. [1995]. Adapters are advantageous for several reasons. First, adapters

can serve as boundaries for separating computation in addition to separating communication. Using

adapters to separate computation can be helpful in managing shared processor resources. Second, an

adapter simplifies the job of the designer. A designer with a given expertise (e.g., familiarity with a

particular set of communication semantics) can focus on the semantics that he or she is familiar with.

The disadvantage of structured heterogeneity is that semantics must be determined for the adapters

themselves.

A special class of structured heterogeneity is hierarchical heterogeneity. While structured

heterogeneity requires that components communicate across MoC boundaries through an adapter,

hierarchical heterogeneity adds the has-a relationship to components within a network. To under-

2The term amorphous heterogeneity is due to Edward A. Lee.
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stand hierarchical heterogeneity, consider two components, A and B, that communicate directly to

each other without the use of an adapter (i.e., by structured heterogeneity we recognize that they

must have compatible communication interfaces and execute according to the same model of com-

putation). If there exists a third component, C, that both A and B communicate directly to, then hi-

erarchical heterogeneity requires that neither A nor B use an adapter to communicate to C or both A

and B use an adapter such that the respective adapters serve as boundaries to the same pair of MoCs.

Hierarchical heterogeneity has many advantages. From a syntactic point of view hierar-

chical heterogeneity allows a network of components to be abstracted into a single component. A

single abstracted component can contain another network of components with that network execut-

ing according to a different model of computation. Such abstraction allows a designer to view a sys-

tem at the level of detail desired. Semantically hierarchical heterogeneity can be used to organize

heterogeneity in a telescoped fashion that facilitates successive refinement. Milner [1989] suggests

that computation can be successively refined into layers of communication3 (this is also dealt with in

Rowson and Sangiovanni-Vincentelli [1997]). Using hierarchical heterogeneity we can continually

peer deeper into a component to reveal new networks of communication. Components in a hierar-

chical system that contain other components are referred to as composite components. Components

in a hierarchical system that do not contain other components are called atomic components.

Hierarchical heterogeneity has a very practical basis that is becoming increasingly relevant

from an industrial standpoint. Based on industry trends it is rare for a single company to design a

complete system including all subcomponents. Instead, certain firms specialize in subsystems and

sell the designs - the intellectual property or IP - to other firms that manufacture the complete system

[Dalpasso et al., 1999]. Components based on different IP will often have incompatible interfaces

[Rowson and Sangiovanni-Vincentelli, 1997; Passerone et al., 1998]. Furthermore, based on time to

market constraints and the desire to seek the lowest possible costs, it is common to swap similar IP

throughout the design process. The black box perspective that hierarchical heterogeneity affords is

very amenable to the “part swapping” of IP.

Defining the semantics of adapters between hierarchical, heterogeneous components is the

central question of this chapter. I will consider a solution to this problem in the context of process-

based models of computation. Attacking the adapter between processes of different MoCs is ar-

3See the beginning of Chapter 1 in Milner [1989] for this discussion.
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guably more challenging than the equivalent problem for schedule-based components. The diffi-

culty is analogous to the difference between sequential versus concurrent systems; both systems are

challenging but as outlined in Chapter 1, concurrent systems are more difficult.

The remainder of this chapter proceeds as follows. In Section 3.1 I consider criteria against

which to measure how effective a given adapter solution is. In Section 3.2 I review the semantics

of three process-oriented models of computation that serve as case studies. In Sections 3.3 and 3.4 I

propose a solution to the problem of interfacing heterogeneous process-oriented models of compu-

tation.

3.1 Assessing The Effectiveness of an Adapter

The goal of an adapter is to translate the communication semantics between the interfaces

of heterogeneous components and to disaggregate execution. In order to clarify this goal I consider

desired characteristics of interfaces below. These characteristics will serve as a gauge for comparing

various adapter alternatives.

Simplicity

We would like adapters to be simple. An overly complex solution would equate an adapter with a

component whose sole purpose is to translate communication semantics. The primary problem with

making an adapter a component is that this adds an additional execution burden to the original net-

work of components. Instead of simply executing a set of connected components, there must also

be execution of the adapter components between them. Another problem with assigning the task of

an adapter to a component is that this solution sits on a slippery slope above amorphous heterogene-

ity. A better option is to design adapters with sufficient simplicity so that they do not perform any

computation of data.

Generality

Closely related to the desire for a simple adapter is the desire for an adapter that can be generally

applied to a broad set of MoC pairs. The desire for generality is an attempt to avoid theN2 problem.
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Recall that an adapter always occurs between a pair of models of computation. 4 We certainly do

not want to have to define a unique adapter between every possible pairing of MoC interfaces; given

N models of computation, such an approach would require N2 adapters. Instead, we would like to

design a single adapter that operates properly between any pair of MoCs. Such generality will be

advantageous from a software engineering perspective.

Avoidance of Deadlock

We do not want an adapter to introduce the possibility of deadlock. To make this issue clear, I in-

troduce the concept of homosemantic abstraction. Homosemantic abstraction is the realization of

hierarchy without heterogeneity. It occurs when two components executing according to the same

model of computation communicate with one another through an adapter. Homosemantic abstraction

facilitates separation of execution even though the components all have compatible communication

interfaces. Clearly, a network of components that incorporate homosemantic abstraction should be

semantically identical to the same network of components in which homosemantic adapters have

been removed. I apply this same reasoning to deadlock. If homosemantic adapters are introduced to

a network of components, the network of components should be no more deadlock-prone than prior

to the addition of the adapters.

Determinacy

Many models of computation guarantee deterministic execution of a network of components. The

determinacy is generally a result of the MoC’s denotational semantics; given that the components

themselves do not randomly compute data, then execution of the components will result in a de-

terministic outcome even if the components are invoked according to a non-deterministic schedule.

Examples of models of computation with guarantees of determinacy in the manner cited above in-

clude all dataflow models (e.g., Process Networks, Dynamic Dataflow, Boolean Dataflow and Syn-

chronous Dataflow [Lee and Parks, 1995]) as well as discrete event models [Yates, 1993; Lee, 1999b].

I will apply homosemantic abstraction in a manner identical to my previous use with deadlock: given

a network of determinate components, the network of components should maintain determinacy even

4Note the tacit constraint that adapters occur between exactly two components. While it is possible to have three (or
more) way connections, it is rare and hence I am not considering those cases.
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with the addition of homosemantic adapters.

3.2 Process Models

As stated, I am considering the issue of heterogeneous semantics with emphasis placed

on the interaction between process models of computation. As a case study, I will consider three

particular process models of computation and for completeness I summarize these three models of

computation below.

3.2.1 Distributed Discrete Event (DDE)

The distributed discrete event (DDE) model of computation uses asynchronous message

passing in which the messages passed are time-stamped events. Each component maintains a local

notion of time and components communicate their local notion of time by producing and passing

time stamped events. When a component receives an event it advances its local notion of time to

that of the received event. By virtue of a component’s local clock, all events consumed or produced

by a particular component are totally ordered. Events associated with distinct components are par-

tially ordered. Herein lies the distinction between distributed discrete event systems and traditional

discrete event systems. In traditional DE systems the set of all system events are totally ordered,

not just those associated with a single component. Hence, components in a traditional discrete event

system must be invoked sequentially while distributed discrete event modeling leverages the natu-

ral concurrency existing in a network based on the networks’s topology. Distributed discrete event

modeling and discrete event modeling have been studied extensively in Chandy and Misra [1981];

Righter and Walrand [1989]; Morgan [1985]; Lamport [1978]; Jefferson [1985].

3.2.2 Process Networks (PN)

Gilles Kahn [Kahn, 1974; Kahn and MacQueen, 1977] developed Process Networks (PN)

as a way to take advantage of Dana Scott’s work in denotational semantics and apply it to concurrent

systems. Components in a process networks model communicate via asynchronous message passing

without a notion of time. Communication occurs through blocking reads of FIFO queues. If the

queues have bounded memory, then writing to a queue when it is full becomes a blocking write.
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Each component effectively maps an input stream to an output stream. The set of all streams in the

network of components form a complete partial order based on prefix ordering. Based on this CPO

of streams, the denotational semantics of process networks guarantees determinacy. By determinacy

it is meant that neither relative computation speed nor ordering of invocation of the components in

a PN network will impact the outcome of data streams.

3.2.3 Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) is a modeling system developed by Tony Hoare

[Hoare, 1985]. Processes in CSP communicate via synchronous message passing without a notion

of time. In addition to synchronous message passing, processes in CSP may use non-deterministic

choice. Non-deterministic choice allows a single component to consider several possible communi-

cation options and then randomly select a single option among the set of choices that are enabled.

Consider Figure 3.3 to understand the meaning of non-deterministic choice. In the block diagram,

component C can non-deterministically choose input from either the upper or lower channel. C must

then wait for communication on either of the channels to be enabled which occurs when either com-

ponent A or B is ready to communicate to C. Component C completes communication with the first

channel that is enabled. If both channels are enabled simultaneously, than component C randomly

chooses one of the channels to communicate with. Non-deterministic choice may seem odd, but it is

a facility that has parallels in several different modeling languages. The inherent randomness of non-

deterministic choice is useful in allowing a designer to partially specify a system. Closely related to

CSP is Communicating Concurrent Systems (CCS) developed by Robin Milner [Milner, 1989]. The

semantics of CSP and CCS are virtually identical.
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3.3 Order & Atomic Processes

It is worth comparing and contrasting the three process models of computation presented

thus far, and to do so I refer to a relevant quote:

A concurrent system is a network of communicating sequential processes.
Robin Milner, 1989

I refer to this quote to draw attention to the word sequential. The context of Milner’s quote was di-

rected at his communicating concurrent systems (CCS) modeling language, but many other modeling

languages assume that the basic computational element is sequential. Certainly all of the modeling

frameworks mentioned in this dissertation assume a sequential primitive, including communicating

sequential processes, process networks, the Actor’s model and many others. Modeling languages

that incorporate the synchrony assumption in conjunction with a state transition also implicitly as-

sume a sequential primitive. For example, in the Reactive Modules modeling language [Alur and

Henzinger, 1996], the existence of an atomic round during which all components simultaneously

change state permits one to extensionally view the state change as occurring sequentially.

Sequential execution implies a total ordering on all operations of a component. In other

words, a component’s operations can be represented by a thread. From an external point of view, the

operations of concern are a component’s communication operations. In a message passing system,

communication can be either the writing of data messages to a channel (production) or the reading

of data messages (consumption) from a channel. Sequential execution of a message passing compo-

nent means that all consumptions and productions of a component are totally ordered. A model of

computation’s semantics determine exactly how such total ordering is realized.

3.3.1 Ordering Communication: Event Driven vs. Data Driven

An important classification of how a model of computation impacts the ordering of a component’s

communication actions is whether the components are event driven or data driven. Event driven

models of computation are common in graphical user interfaces (GUI), reactive embedded systems

and control systems. Data driven models of computation are often used to model the dataflow found

in computer architectures as well as data intensive parallel processing schemes such as image pro-

cessing.
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Figure 3.4. Time-Stamped Events Awaiting Consumption by a DDE Component

In event driven models, the ordering of a component’s communication actions are deter-

mined by the external environment. Event driven models of computation, in which DDE is a special

case, have externally determined consumptions. Given a DDE component with multiple input chan-

nels, it is not possible to determine a priori in what order consumptions of data messages will occur.

A DDE component with two input channels, 1 and 2, can not specify that consumption will occur

first on channel 1 followed by consumption on channel 2. Instead, the order of consumptions for

event driven components is imposed by the environment.

The ordering of incoming time stamped events determines the order a DDE component

consumes such data. Consider Figure 3.4 showing a DDE component with pending events (indi-

cated by dots) destined for both input channels. Each number adjacent to an event indicates that

event’s time stamp. The time stamps shown indicate that the component must consume the mes-

sages as specified by the time stamp ordering. A DDE component can specify the relative ordering

of event productions. Often such production is specified in response to a consumption. I.e., given a

consumption on a particular input channel, produce an event on a particular output channel.

In data driven models of computation, a component autonomously makes the decision of

whether it will consume or produce a message on any of its input channels. The absence of a mes-

sage may force a component to wait, as in the case of an attempt to consume a message from an

empty channel, but the relative ordering will be completely determined by the component. Hence,

a component that decides to consume a message first from channel 1 followed by channel 2, may

have to wait (perhaps indefinitely) on channel 1 but the decision to consume from channel 1 before

consuming from channel 2 will be upheld independent of data availability.

PN is an example of a data driven model of computation and hence, the ordering of con-

sumption and production actions are internally imposed. CSP components without the notion of non-
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deterministic choice are also examples of consumption/production ordering due to internal criteria.

The non-deterministic choice facility allows a CSP component to specify a set of alternative order-

ing constraints and then defer to a selection within the set based on external criteria. In effect, non-

deterministic choice allows a component to be event driven with respect to both consumption and

production.

3.3.2 Reordering Communication

Models of computation in which components internally determine the ordering of communication

actions can be further classified based on how the communication actions can be reordered. In Chap-

ter 2 we considered the impact of ordering on such undesirable properties as deadlock. For internally

motivated models of computation we would like to characterize the sensitivity to reordering of com-

munication actions. Reordering is defined as the act of switching the order of operations within a

single thread. Reordering impacts only the order relation and does not impact the containment rela-

tion. For example, if two operations are mutually non-inclusive, they will remain so after reordering.

For a given model of computation, reordering may or may not impact a component’s inter-

action with other components. When a reordering does not impact the safety or liveness of a set of

components, I say that the model of computation is reorder invariant with respect to a set of actions;

otherwise the MoC is reorder variant with respect to a set of actions. Whether or not reordering will

impact liveness or safety will have a profound impact on both the flexibility of component execu-

tion as well as how the hierarchical composition of components should be organized. To evaluate

the impact of reordering on communication actions for a given model of computation, let us recall

the fundamental ordering constraints of communication within both PN and CSP.

Figure 3.5 shows the fundamental ordering constraint realized in process networks with

unbounded channels. The consumption of a data message through a channel and from a production

simply requires that the consumption (action g) occur after the production (action b). This constraint,

characteristic of asynchronous message passing schemes, is shown in the figure with two threads that

communicate via a single consumption/production pair. Process networks with bounded channels

require an additional ordering constraint. A network with channels that can storeN unread messages

requires that at least one consumption of data must occur for every N + 1 productions. Figure 3.6

illustrates this constraint with a channel that can store two unconsumed data messsages. Actions a, b
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Figure 3.5. The Basic Unbounded Asynchronous Message Passing Order Constraint
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Figure 3.6. The Basic Bounded Asynchronous Message Passing Order Constraint

and c are productions by the left thread and actions e is a corresponding consumption. The constraint

that action c must occur after action e indicates that the production associated with action c can not

occur until after action e enables sufficient capacity in the channel.

The synchronous message passing feature of CSP places a much tighter ordering constraint

on a set of communicating threads than does asynchronous message passing. Even in the case of

bounded asynchronous message passing with a channel capacity for one data message, the ordering

constraint impacts only three actions in a communication between two threads. Given two threads

that communicate via synchronous message passing, an ordering constraint will be imposed on a

total of six actions. This is illustrated in Figure 3.7 in which action b and e are synchronous. Note

in particular that the synchronous ordering constraint impacts the predecessor and successor of both

b and e. The choice operator of CSP is not illustrated, but recall that it implements synchronous
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Figure 3.7. The Basic Synchronous Message Passing Order Constraint

message passsing with the allowance for multiple alternatives to be considered.

Unbounded process networks are reorder invariant with respect to a set of consumptions.

As an example, consider Figure 3.8. Any two consumption actions of a thread can be rearranged

without introducing a cycle in the set of communicating threads. The same can be said for the re-

ordering of a set of productions within unbounded process networks. The sketch of the proof for the

previous two declarations is virtually identical. First consider the case of two adjacent consumptions

(productions) with no intervening actions. Clearly these can rearranged regardless of whether the

consumptions (productions) communicate to the same or different threads. Subsequent application

of reordering of adjacent consumptions (productions) facilitates the reordering of a set of consump-

tions (productions).

In general a thread within a process network is not reorder invariant with respect to a set

of consumptions and productions. As an example, consider Figure 3.9. Bounded process networks

have sufficient ordering constraints that components are reorder variant for any set of communication

actions. The ordering constraints of synchronous message passing renders CSP components reorder

variant. Recall that a synchronous message between two communication actions a and b imposes

constraints on each other’s respective successors and predecessors of a and b. Hence, if a thread

reorders a synchronous communication action, this will lead to new successors and predecessors that

can cause cyclic deadlock.
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Figure 3.10. Reorder Variance of CSP Components

3.4 Order & Composite Processes

The question of creating an adapter between different models of computation in a hierar-

chical, heterogeneous network is really a question of determining how a composite component in

such a network should execute. Externally a composite component executes according to the model

of computation shared by its external neighbors. Internally a composite component contains a set of

components that operate according to a model of computation that is generally different from that

outside of the composite component. Between the external and internal worlds is an adapter that

translates between the two models of computation. If we apply Milner’s quote cited in the begin-

ning of Section 3.3, we should execute the adapter of a composite component sequentially. Unfortu-

nately, sequential execution of composite components is generally not possible if the MoCs involved

are process models of computation.

The primary problem with sequential execution of the adapter of a composite component is

that sequential execution introduces deadlock. As an example, consider Figure 3.11 in which com-

ponents A, B, C and D are atomic with A and B contained by composite actor E and C and D

contained by composite actor F . Assume that A and B perform no actions (produce nor consume

any data messages) but C produces an infinite stream of messages that are consumed by D. If we

execute composite actor F by performing a blocking read on the top input channel, then F will stall

indefinitely. By imposing an order on F ’s execution we have no way of knowing a priori if our order
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Figure 3.11. Sequential Execution of an Adapter

of execution will result in this kind of stalling. The more general problem with a sequential adapter

in a process composite component is that a sequential adapter imposes a total ordering on a set of

processes that are partially ordered. In general, this can cause cycles.

Since sequential adapters are deadlock-prone, consider a concurrent adapter instead. A

concurrent adapter associates a thread with each channel flowing through the adapter. Each adapter

thread waits on data and then passes the data through the channel. An adapter thread talks to com-

ponents on either side of the adapter according to the prevailing model of computation. Consider a

synchronous message passing component, componentA, that produces messages that are transfered

through an adapter to an asynchronous message passing component, component B. The adapter

thread associated with the channel will wait on a synchronous put from A and then do an asyn-

chronous put into B.

3.4.1 Concurrent Adapters

Concurrent adapters are useful for several reasons. First concurrent adapters essentially

make the adapter an identity function from the prespective of data transfer. Thus, it is trivial to

show that they maintain determinacy in the face of homosemantics abstraction. Second, concur-

rent adapters can be generally applied to a variety of MoC pairs; the association of a thread to each

channel does not change as a function of the MoC. Third, concurrent adapters are conceptually sim-

ple. All channels are treated identically. Unfortunately, difficulty still lies ahead. The challenge in

concurrent adapters is not solved simply by associating a separate thread to each channel. The dif-

ficulty is in determining how the threads communicate with their respective channels and when that
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communication occurs. In Sections 3.4.2 and 3.4.3 I consider the significance of the communication

semantics of the threads in a concurrent adapter with respect to the process models of computation

I have previously introduced.

3.4.2 Non-Deterministic Choice: Blessing & Curse

Non-deterministic choice has been mentioned as a communication style that is part of CSP

and is common in many other models of computation. The blessing of non-deterministic choice is

that it allows a component to choose between a set of communication alternatives. If any of the

choices in the set are valid than communication will be completed. In effect, non-deterministicchoice

allows a component to “increase its odds” for avoiding a deadlocked situation. Paradoxically, in the

context of a composite component’s adapter, non-deterministic choice can introduce deadlock con-

ditions.

A very simple illustration can show the problems with non-deterministic choice. Consider

an atomic component, A, with two output channels that communicate through an adapter to a single

two input atomic component, B, as shown in Figure 3.12. Assume homosemantic abstraction with

both the inside and outside MoCs being CSP. If A attempts non-deterministic choice through its two

output channels, what will happen? Since the goal of non-deterministic choice is to randomly se-

lect an enabled communication channel, then if A views both the upper and lower channels as being

valid simply by virtue of their respective adapter threads, then either channel can be selected. Let us

suppose further that B is performing a blocking read on the upper channel. Clearly, if A randomly

selects the lower channel then execution for the entire system will stall. Such a deadlock is inconsis-

tent with the corresponding topology involving only the two atomic components and no composite

components; homosemantic abstraction has introduced deadlock.

To avoid the above scenario with non-deterministic choice, we must define a channel as

being enabled not simply based on the existence of an adapter thread. I propose that a channel be

defined as enabled only after the possibility of a completed execution has been guaranteed. In other

words, an adapter thread should transfer data in an atomic fashion. Applying an atomic transfer

mechanism to the above scenario would work as follows. A would check for validity of each output

channel. The corresponding adapter threads would not accept a message fromA until they had veri-

fied that communication on the inside of the adapter would complete. Only the upper adapter thread
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Figure 3.12. The Introduction of Deadlock Via Non-Deterministic Choice

would be validated since this thread could check for the blocking read on the upper channel. Hence,

the non-deterministic choice semantic of A would choose the upper channel.

The need for an atomic transfer mechanism is fundamentally related to reorder invariance.

A’s selection of a valid output channel is equivalent to reordering the consumptions of component

B. Since componentB is executing according to the CSP model of computation and therefore is not

reorder invariant, a non-atomic adapter transfer mechanism leads to deadlock. The same result can

occur with bounded process networks. A non-atomic adapter transfer mechanism is not a problem

if non-deterministic choice interacts with a set of unbounded PN components, since unbounded PN

consists of components that are reorder invariant.

3.4.3 Totally Ordered Event Driven Models

In the previous section we determined that non-atomically transferring data across an adapter

could lead to deadlock if non-deterministic choice interacts with components that are reorder variant.

Unfortunately an atomic transfer mechanism can cause problems if a reorder variant model interacts

with event driven models in which events are totally ordered. Consider an event driven component in

which events (from mouse or keyboard activities perhaps) are totally ordered. If the totally ordered

events are being transferred across an adapter to interact with a set of reorder variant components,

then an atomic transfer mechanism can deadlock. A slight variation of Figure 3.12 can illustrate this

as shown in Figure 3.13. If an atomic transfer mechanism exists in the topology shown in Figure

3.13, deadlock will result.

Although there is a paradoxical twist to the difference between the scenarios in Figure 3.12

and Figure 3.13, a simple explanation is available. In the former case, non-deterministic choice re-
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Figure 3.13. Totally Ordered Event Driven Models with Reorder Variant Components

sults in an event driven effect that is not totally ordered. In fact, because of the atomic transfer mech-

anism, the ordering of communication actions in Figure 3.12 is driven by component B. In Figure

3.13 the time stamps impose a total ordering. This total ordering is due solely to component A and

has nothing to do with component B. The remedy is to allow asynchronous message passing across

adapters between totally ordered event driven components and reorder variant components. E.g., a

non-atomic adapter transfer mechanism.
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Chapter 4

Implementation

It is better to practice it than to know how to define it.
- Thomas à Kempis1

This chapter serves as a practical illustration of the preceding sections of this dissertation.

It includes a discussion of my solution to the problem of interfacing heterogeneous models of com-

putation that was discussed in Chapter 3. I also show the practical implications of reorder invariance

and describe my architecture for facilitating heterogeneity and hierarchy of process-oriented mod-

els of computation. In addition to these contributions, this chapter describes in detail a large scale

system level design environment that served as the framework within which the implementations

discussed in this chapter occurred. The large scale system level design environment that I am re-

ferring to is called the Ptolemy Project. Under the leadership of principal investigator Edward A.

Lee, The Ptolemy Project is a software development project that studies the modeling and design of

computational systems.

This chapter proceeds as follows. In Sections 4.1 and 4.2, I provide an overview of the gen-

eral Ptolemy Project excluding process-oriented models of computation. In Section 4.3, I describe

the architecture I created as a solution to heterogeneous, hierarchical interaction of process-oriented

models of computation. In Section 4.4, I describe the impact of reorder invariance on domain poly-

morphism within Ptolemy.

1François Fénelon, Christian Perfection (New York: Harper & Brothers, 1947), p. 194.
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4.1 Modeling & Design

The Ptolemy Project 2 studies the modeling and design of complex computational systems.

Example computational systems considered in the Ptolemy Project include pagers, cell phones, se-

curity systems and computational subsystems found in automobiles (e.g., air bag systems). Ptolemy

II is the latest software environment to be released by the Ptolemy Project. Ptolemy II facilitates the

modeling and design of the kinds of systems listed above. By modeling we mean the act of represent-

ing a system or subsystem formally. By design we mean the act of defining a system or subsystem.

Models and designs are complementary. In some cases a system model might serve as a constraint to

which a design must adhere. In other cases a system design might be validated by a resulting model.

An executable model is one that defines a computational procedure that mimics a set of

properties of a system. Executable models might also be called algorithmic or computable models.

A simulation is a special class of executable models. A simulation is an executable model that is

distinct from the system it models. In some cases an executable model may start as a simulation and

then evolve into a software implementation of the system. This is often the case in many electronic

systems and results in a blurred distinction between a model and the system it represents.

Executable models operate according to a model of computation that specifies the interac-

tion between components within the executable model. The set of interaction rules associated with

a given model of computation are the semantics of the model of computation (MoC). In Ptolemy II,

a model of computation is realized as a domain. All executable models that execute in a particular

domain obey a common model of computation. Central to the beliefs of the Ptolemy Project is the

maxim of heterogeneous semantics. The premise of this belief is that no single model of computation

can effectively model all aspects of all systems. Instead complex systems are most effectively mod-

elled by multiple models of computation with a given MoC being employed to design a particular

subsystem as appropriate.

2The Ptolemy Project is a dynamic research initiative that is constantly being expanded and improved. For the most
up-to-date Ptolemy Project description, see the following World Wide Web page: http://ptolemy.eecs.berkeley.edu.
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4.2 The Ptolemy II Architecture

Ptolemy II is a second generation system implemented in the JavaTMprogramming lan-

guage. The predecessor of Ptolemy II, Ptolemy Classic, was implemented in C++ in the early 1990’s

[Buck et al., 1994]. Through its use of Java, Ptolemy II offers an infrastructure that is well suited to

modeling heterogeneous semantics. Two key features of Ptolemy II that leverage Java are concurrent

execution through the Java threading infrastructure and modularization through Java packages.

The threading support offered in Java can be very difficult to program correctly. The sup-

port is so low level that users who are not experts in concurrent programming can create software that

is unpredictable and deadlock prone. Ptolemy II uses the threading infrastructure of Java to support

models of computation that consist of autonomous components (components that control their own

execution). In these process domains, each component is assigned its own thread of control. The

process domains provide a “safety layer” on top of the threading infrastructure. This layer simpli-

fies the use of Java threads by allowing a non-expert to correctly implement a concurrent program.

Proper design of the process domains was made significantly easier through the aid of diposets.

The Java package structure allows for easy organization of Ptolemy II into subsystems.

This is in contrast to many electronic design automation (EDA) tools that have large, monolithic de-

signs that impose an “all or nothing” feel. In Ptolemy II, as long as package dependencies are not

violated, programmers may use only the packages that are relevant to their needs. The package orga-

nization of Ptolemy II covers a wide set of semantics and execution features with over ten top-level

packages (each of which may consist of several subpackages). The package structure of Ptolemy II

is particularly useful in separating domains.

4.2.1 The Ptolemy II Packages

Figure 4.1 shows the key packages of Ptolemy II. Note that the figure consists of a Uni-

fied Modeling Language (UML) static structure diagram. UML is a widely used graphical modeling

language for describing large, object-oriented software systems. The Unified Modeling Language

fuses the best practices of the Booch and Object Modeling Technique (OMT) methodologies. There

are several types of UML diagrams, each with special uses. In the case of the UML static struc-

ture diagram, syntactic relationships between classes are shown. Figure 4.1 shows how each of the
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packages

Actor
AtomicActor
CompositeActor
Configurable
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Executable
ExecutionListener
IOPort
IORelation
Mailbox
Manager
NoRoomException
NoTokenException
QueueReceiver
Receiver
StreamExecutionListener
TypeConflictException
TypeEvent
TypeListener
TypedActor
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FileWriter
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NotSchedulableException
Scheduler
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Figure 4.1. The Ptolemy II Package Structure
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Transparent Ports - P2, P4

Composite Entities - E2
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E3 P3
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Figure 4.2. A Sample Ptolemy II Graph

Ptolemy II packages are related. Subpackages are shown by block diagram containment; e.g., the

kernel package has two subpackages: kernel.util and kernel.event. Arrows represent dependency

relationships. As an example, note that the graph package depends on the kernel.util package.

The kernel, actor and domains packages are of special relevance to this discussion. The

kernel package, as its name implies, is at the core of Ptolemy II. The primary contribution of the ker-

nel package is an abstract syntax. The abstract syntax of the Ptolemy II kernel allows one to specify

hierarchical graphs. A hierarchical graph is one in which vertices of the graph may themselves con-

tain graphs. The vertices of the hierarchical graphs in Ptolemy II are called entities while the arcs

are called relations. Relations are connected to entities via ports. Note that there is no concept of a

port in traditional graph theory [West, 1996; Chen, 1997]. Entities play the role of components (the

term used in previous sections of this dissertation) and relations serve as the communication channels

through which components communicate to one another.

Hierarchy is supported through containment. A composite entity may contain composite

entities while component entities are a special class of composite entity that can not contain entities.

We say that a component entity is atomic while a composite entity is not. A composite entity is

opaque if its contents (the entities and ports that it contains) are visible outside of the composite

entity. An opaque composite entity has opaque ports as opposed to transparent ports for entities

that are not opaque. An example of a Ptolemy II hierarchical graph can be found in Figure 4.2. Note

how composite entity E2 contains atomic entity E3 as well as ports P2 and P4. Note further that all
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three atomic entities - E1, E3, and E4 - are opaque (indicated by the black shaded squares) while the

composite entity E2 happens to be transparent with transparent ports (indicated by the white squares).

The hierarchical graphs that can be specified by the Ptolemy II kernel are strictly syntactic

and can not be executed. The actor package adds semantics to the graphs and provides an infras-

tructure for execution. Specific semantics of execution are achieved in the domain packages. Each

of the domain packages use the infrastructure of the actor package to implement a specific model of

computation. Currently all domains except one realize a message passing form of execution. The

one exception is the FSM (Finite State Machine) domain that implements an automata-based style

of computation. In this document we are only concerned with the message passing domains and will

not describe the architecture of the FSM domain.

The actor package introduces several key classes and interfaces relevant to message pass-

ing. These classes and interfaces facilitate executable entities that communicate data. We call these

executable entities actors, a term inspired by Gul Agha’s Actors model [Agha, 1986]. Informally

our notion of actor is a node in a hierarchical graph that can process data. Formally an actor is an

entity that implements the Actor interface, can contain IOPorts and has a Director and a Manager.

IOPorts are extensions of ports through which data can flow. In Ptolemy II a unit of data is referred

to as a token. IOPorts are directional and can be either inputs, outputs or both.

An actor in Ptolemy II is executable by virtue of the fact that it implements the Executable

interface. As shown in Figure 4.3, the Executable interface consists of five action methods:

� initialize()

� prefire()

� fire()

� postfire()

� wrapup()

An iteration is defined to be one invocation of prefire(), any number of invocations offire(),

followed by one invocation of postfire(). An execution is defined to be one invocation of

initialize(), any number of iterations, followed by one invocation of wrapup(). A Director
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Figure 4.3. Execution and Iteration in a Sample Ptolemy II Model

controls the execution of a set of actors and determines an actor’s model of computation. A Manager

controls the execution of a complete model.

A director specifies an actor’s model of computation by allocating an implementation of

the Receiver interface to each of the actor’s input IOPorts. A receiver is contained within an actor’s

IOPort and specifies how communication through the IOPort occurs. A receiver may support either

asynchronous or synchronous message passing. In the case of asynchronous message passing, re-

ceivers are used to store tokens. A receiver may assume a notion of time associated with all tokens

or it may assume no ordering constraints on tokens that it stores. For synchronous message passing,

receivers have implicit states for indicating intermediate stages within a rendezvous. Each distinct

implementation of the Receiver interface implies a distinct communication style for the actors that

contain the receiver realizations.

Through allocation of receivers, a director controls both the communication and execution

of an actor. This means that an actor’s model of computation can change depending on the director

that controls it. This is quite distinct from making an actor’s model of computation an inherent qual-

ity. We refer to this characteristic as domain polymorphism [Lee and Xiong, 2000]. Through domain

polymorphism, code reuse is facilitated: an actor with particular functionality can be implemented

once and then used in multiple domains. Furthermore, the functionality of an actor can be changed

at runtime with the substitution of a different director.

A very simple example of domain polymorphism is illustrated in Figure 4.4 consisting of

two almost identical systems. Both the system on the right and left have a ramp source actor con-

nected to a data plotter actor. The ramp source outputs a stream of increasing integer data values;

e.g., 0, 1, 2, 3, ... . The data plotter simply reads the incoming data and plots it to a screen. The

ramp source and data plotter on the left and right are implemented identically. The difference is in
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Figure 4.4. Domain Polymorphism: Identical actors in the left and right systems have dif-

ferent communication semantics because of their directors.

the respective directors. The system on the left has a Process Networks (PN) director. This means

that input port P2 on the left contains a receiver that receives data asynchronously. The system on the

right has a Communicating Sequential Processes (CSP) director implying that input port P2 on the

right receives data synchronously. The result is that the two actors on the right execute at the same

speed while it is possible that in the system on the left, the ramp source will execute much faster than

the data plotter.

4.2.2 Hierarchical Heterogeneity

Ptolemy II supports hierarchical heterogeneity by allowing different directors to exist in-

side and outside of opaque composite actors. Figure 4.5 shows an example of hierarchical hetero-

geneity. Opaque composite actor E2 contains a synchronous dataflow (SDF) director implying that

E3 executes with SDF semantics. External to E2 a process networks (PN) director is used imply-

ing that E1 and E4 execute according to PN semantics. Externally E2 acts like a PN actor while the

internals of E2 execute according to SDF semantics.

A boundary port is an opaque IOPort contained on the boundary of a composite actor. In

Figure 4.5, ports P2 and P4 are boundary ports. A receiver that is contained in, receives data di-

rectly from or transmits data directly to a boundary port is a boundary receiver. If a boundary port

is an input port (i.e., data is transfered from outside of the containing composite actor to the inside

through the port) then the boundary port contains boundary receivers external to the composite actor.

If a boundary port is an output port (i.e., data is transfered from inside of the containing composite

actor to the outside through the port) then the boundary port contains boundary receivers internal to
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Figure 4.5. Hierarchical Heterogeneity in a Sample Ptolemy II Model

the composite actor. Figure 4.6 displays a boundary receiver contained in an input boundary port

as well as a boundary receiver that receives data from the boundary port. Note that pairs of bound-

ary receivers are associated with boundary ports (as is the case for the two boundary receivers in

Figure 4.6 associated with the boundary port P2). Data transfer is directional for a pair of bound-

ary receivers; i.e., data flows through one of the boundary receivers first (the producer receiver) and

then flows through the second one (the consumer receiver). In Figure 4.6, the receiver contained in

IOPort P2 is the producer receiver; the receiver contained in IOPort P3 is the consumer receiver.

4.2.3 The Process Package

The ptolemy.actor.process package (or process package) incorporates extensive

use of JavaTMthreads to facilitate execution in the process-oriented domains: PN, CSP and DDE.3

In the schedule-oriented domains of Ptolemy II, each actor’s executable methods are invoked by the

controlling director. In the process-oriented domains each actor is assigned a unique thread by the

controlling director. The director starts the thread and the thread invokes its assigned actor’s exe-

cutable methods. Once the director has handed control of the actors to their threads, the director

then monitors the execution of the actors. The actors may continue executing until each actor vol-

untarily completes execution or until the set of actors deadlock. Determination of whether deadlock

has been reached is made by the director who monitors the actors while they are being invoked by

their threads.

Monitoring for deadlock is a significant difference between the process-oriented domains

and the schedule-oriented domains. All receivers have hasRoom() and hasToken() methods
3The design of the process package excluding heterogeneous interaction was initiated by Mudit Goel and Neil Smyth.
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Figure 4.6. Boundary Ports and Boundary Receivers in an Opaque Composite Actor
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for determining if an actor is able to transmit data or receive data through the receiver, respectively.

ThehasRoom() andhasToken()methods return true when communication through the receiver

is enabled and false if communication is not enabled. The definition of enabled communication de-

pends on the model of computation. Informally, deadlock occurs when all actors in a network block

while attempting to communicate through receivers in which communication is not enabled. All

receivers in the schedule-oriented domains implement the Receiver interface. The ProcessReceiver

interface extends the Receiver interface and is implemented by each of the process-oriented domains.

The ProcessReceiver interface is designed so that when blocking occurs, the total number of blocked

actors can be monitored.

In schedule-oriented domains an actor will not attempt to transmit data through a receiver

if hasRoom() = false for that receiver. Likewise a schedule-oriented actor will not attempt

to receive data from a receiver if hasToken() = false. Process-oriented actors ignore the

hasRoom() andhasToken() methods of the process receivers. If communication is not enabled

a process receiver will force the calling actor to block and wait until communication is enabled. A

blocked communication attempt in which an actor waits to receive data is called a blocking read. A

blocked communication attempt in which an actor waits to transmit data is called a blocking write.

A set of Ptolemy II process-oriented actors are deadlocked if all of them are blocked waiting to com-

municate.

Once deadlock has been reached in a set of process-oriented actors, the director has the op-

tion of resolving the deadlock so that execution can continue. Whether a deadlock can be resolved is

domain-specific. In Communicating Sequential Process (CSP) models, for example, deadlock can

not be resolved. In the case of Bounded Queue Process Network (Bounded PN) models, it is possible

to resolve deadlock in which at least one of the actors is blocked waiting to put data in a full queue.

Thomas Parks developed an algorithm for such deadlock resolution that can be applied at runtime

[Lee and Parks, 1995]. In any process-oriented model, if deadlock is resolved then the actors con-

tinue execution until deadlock is reached again or until the actors voluntarily end execution. Using

deadlock as the mechanism for stopping and starting actor execution leads to a unique definition of

iteration in the case of process-oriented domains: in process-oriented domains an iteration lasts until

deadlock is reached.
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4.3 Hierarchical Heterogeneity and the Process Package

I extended the Ptolemy II process package to allow interaction between heterogeneous

process-oriented domains. In accomplishing my task, I had the very important goal of maximizing

code reuse. As outlined in Chapter 1, code reuse simplifies the software development process by al-

lowing the work of individuals as well as groups of engineers to more easily share work. Code reuse

allows engineers to leverage the past and prepare for the future. In leveraging the past, I recognized

that my implementation was a small part of a large software project (Ptolemy II). Therefore, I intro-

duced a system that did not require significant changes to the previous infrastructure. In preparing

for the future, I designed a system that anticipated expansions by providing a suitably general set of

classes that would remain useful as future researchers expanded Ptolemy II in years to come. Figures

4.7 and 4.8 consist of static structure UML diagrams of the process package classes and interfaces.

Figure 4.7 focuses on the classes and interfaces that are used to monitor deadlock. Figure 4.8 con-

sists of classes and interfaces associated with ProcessReceiver and the mechanism for detecting if a

receiver is at a CompositeActor boundary.

My system architecture is founded on a simple dichotomy: external vs. internal deadlock.

A network of actors is deadlocked if the actors have the same opaque composite actor container and

they are each blocked waiting to write to or read from receivers contained in their network. A net-

work of actors is externally deadlocked if the network of actors is deadlocked and at least one of

the receivers involved is a boundary receiver. A network of actors is internally deadlocked if the

network of actors are deadlocked and none of the receivers involved are boundary receivers.

Given the external/internal deadlock dichotomy my system works as follows. If the con-

tents of an opaque composite actor are internally deadlocked, then the internal director has sole con-

trol. The director may attempt to resolve the deadlock or simply end execution of the deadlocked

actors. If the contents of an opaque composite actor are externally deadlocked, then control of the

situation is given to the director outside of the composite actor. In some cases, the external director

will resolve execution and in other cases execution of the deadlocked actors will simply end. The

result of this approach is that the special abilities of each model of computation are used when ap-

propriate. I provide more detail on how my solution is implemented in the following section.
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ProcessDirector

+ProcessDirector()
+ProcessDirector(workspace : Workspace)
+ProcessDirector(container : CompositeActor, name : String)
#_actorBlocked(rcvr : ProcessReceiver) : void
#_actorBlocked(rcvrs : LinkedList) : void
#_actorUnBlocked(rcvr : ProcessReceiver) : void
#_actorUnBlocked(rcvrs : LinkedList) : void
#_addNewThread(thr : ProcessThread) : void
#_areActorsDeadlocked() : boolean
#_decreaseActivecount() : void
#_getActiveActorsCount() : long
#_getBlockedActorsCount() : int
#_getProcessThread(actor : Actor, dir : ProcessDirector) : ProcessThread
#_increaseActiveCount() : void
#_resolveDeadlock() : voolean

-_notDone : boolean

ProcessReceiver

+isConnectedToBoundary() : boolean
+isConnectedToBoundaryInside() : boolean
+isConnectedToBoundaryOutside() : boolean
+isConsumerReceiver() : boolean
+isInsideBoundary() : boolean
+isOutsideBoundary() : boolean
+isProducerReceiver() : boolean
+isReadBlocked() : boolean
+isWriteBlocked() : boolean
+requestFinish() : void
+reset() : void

CompositeProcessDirector

+CompositeProcessDirector()
+CompositeProcessDirector(workspace : Workspace)
+CompositeProcessDirector(container : CompositeProcessDirector, name : String)
+createBranchController(ports : Iterator) : void
+getInputController() : BranchController
+getOutputController() : BranchController
+stopInputBranchController() : void
+stopOutputBranchController() : void
#_areActorsExternallyBlocked() : boolean
#_controllerBlocked(cntlr : BranchController) : void
#_controllerUnBlocked(cntlr : BranchController) : void
#_isInputControllerBlocked() : boolean
#_isOutputControllerBlocked() : boolean
#_resolveInternalDeadlock() : boolean

-_inputBranchController : BranchController
-_outputBranchController : BranchController

BranchController

+BranchController(container : CompositeActor)
+activateBranches() : void
+addBranches(port : IOPort) : void
+deactivateBranches() : void
+getBranchList() : LinkedList
+getParent() : CompositeActor
+hasBranches() : boolean
+isActive() : boolean
+isBlocked() : boolean
+run() : void
+setActive(active : boolean) : void
#_branchBlocked(rcvr : ProcessReceiver) : void
#_branchUnBlocked(rcvr : ProcessReceiver) : void

-_branchesBlocked : int

Branch

+Branch(cntlr : BranchController)
+Branch(prodRcvr : ProcessReceiver, consRcvr : ProcessReceiver, cntlr : BranchController)
+getConsReceiver() : ProcessReceiver
+getProdReceiver() : ProcessReceiver
+isActive() : boolean
+registerRcvrBlocked(rcvr : ProcessReceiver) : void
+registerRcvrUnBlocked(rcvr : ProcessReceiver) : void
+run() : void
+setActive(value : boolean) : void
+transferToken() : void

Director

1

0..n

Monitors

1

2

1

0..2

Contains

Runnable

Runnable

Figure 4.7. The Ptolemy II Process Package: Directors
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BoundaryDetector

+BoundaryDetector(rcvr : Receiver)
+isConnectedToBoundary() : boolean
+isConnectedToBoundaryInside() : boolean
+isConnectedToBoundaryOutside() : boolean
+isInsideBoundary() : boolean
+isOutsideBoundary() : boolean
+reset() : void

-_rcvr : Receiver

ProcessReceiver

+isConnectedToBoundary() : boolean
+isConnectedToBoundaryInside() : boolean
+isConnectedToBoundaryOutside() : boolean
+isConsumerReceiver() : boolean
+isInsideBoundary() : boolean
+isOutsideBoundary() : boolean
+isProducerReceiver() : boolean
+isReadBlocked() : boolean
+isWriteBlocked() : boolean
+requestFinish() : void
+reset() : void

Branch

+Branch(cntlr : BranchController)
+Branch(prodRcvr : ProcessReceiver, consRcvr : ProcessReceiver, cntlr : BranchController)
+getConsReceiver() : ProcessReceiver
+getProdReceiver() : ProcessReceiver
+isActive() : boolean
+registerRcvrBlocked(rcvr : ProcessReceiver) : void
+registerRcvrUnBlocked(rcvr : ProcessReceiver) : void
+run() : void
+setActive(value : boolean) : void
+transferToken() : void

Receiver

CSPReceiver DDEReceiver PNQueueReceiver

CompositeProcessDirector

1

1

1

1

1

1

1

2

Monitors

IOPort

1

0..n

10..n

Monitors

Runnable

Figure 4.8. The Ptolemy II Process Package: Receivers
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4.3.1 Controlling ProcessReceivers at CompositeActor Boundaries

The ProcessReceiver interface was initially written by Mudit Goel and Neil Smyth. It

was designed to be implemented by the CSPReceiver, DDEReceiver and PNQueueReceiver classes.

Each of these three receiver classes implements thehasToken(), hasRoom(), get() andput()

methods to facilitate blocking reads and blocking writes. Prior to my extension of the ProcessRe-

ceiver class, it was assumed that any object calling the get() or put() methods of a ProcessRe-

ceiver object was an actor; the exception to this rule occurs in the case of CSPReceiver objects, in

which ptolemy.domains.csp.kernel.ConditionalBranch objects call the receivers

to support non-deterministic choice.

My extension of the ProcessReceiver class to facilitate heterogeneous interaction of pro-

cess domains does not assume that the put() and get() methods of boundary ProcessReceivers

are invoked by actors. In my extension, the put()method of boundary receivers contained in input

boundary ports is called by an actor but the get() method is called by a special proxy. The get()

method of boundary receivers contained in input boundary ports is called by an actor but the put()

method is called by a special proxy. In both cases the proxy is realized by the

ptolemy.actor.process.Branch class.

The ptolemy.actor.process.Branch class implements the JavaTMRunnable in-

terface. Thus, each instantiationof Branch results in a separate thread of control. Each Branch object

is assigned to two boundary receivers. Branch threads are controlled by BranchController objects.

Once a Branch thread is started by a BranchController, it attempts to repeatedly pass data between

its pair of assigned receivers in the appropriate direction. As an example, consider Figure 4.6. In

this case, a Branch object is assigned both boundary receivers shown. The Branch object repeatedly

attempts to get data from the boundary receiver in the boundary port and put the data into the receiver

of the internal actor.

As with all ProcessReceivers, boundary receivers can incur blocking reads or writes. In

such cases the Branches controlling the blocked receivers must register the block with their Branch-

Controller objects. This procedure works as follows. Each opaque composite actor consists of two

BranchControllers; the input BranchController and the output BranchController. The input Branch-

Controller controls N Branch objects that are assigned to a total of N boundary receiver pairs as-
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sociated with the composite actor’s input boundary ports. The output BranchController controls M

Branch objects assigned to M boundary receiver pairs associated with the composite actor’s output

boundary ports. Each BranchController (input or output) is blocked when the boundary receivers

of each of its Branches is blocked; the BranchController.isBlocked() method is used to

determine such status.

The director inside of an opaque composite actor of a process-oriented model of compu-

tation monitors three states: the state of the input BranchController, the state of the output Branch-

Controller and the state of the contained actors. The primary state monitored by the director is that

of the contained actors. Here the concern is whether the contained actors are deadlocked. Given that

the contained actors are deadlocked, the secondary concern of the director is whether input or output

BranchControllers are blocked. The action of the director given these states depends upon whether

the director’s opaque composite actor is contained by a composite actor that is process-oriented or

schedule-oriented. Tables 4.1 and 4.2 summarize the actions taken.

Note in both tables (4.1 and 4.2) that the label postfire() = false indicates that

the contained actors will no longer be permitted to execute. A label of postfire() = true

indicates that execution may continue for an additional iteration. In several cases the tables indicate

that the director will wait until the input or output branch controllers are blocked. In all such cases,

blocked input or output branch controllers are imminent. For example, if the contained actors are

blocked and the input branch controller is blocked (see the left column of Table 4.1), then the output

branches will eventually have no data to transfer out of the composite actor and they will necessarily

block.

4.3.2 Allocating Receivers at CompositeActor Boundaries

As with all receivers, ProcessReceivers are allocated to IOPorts by directors. Allocation

occurs during an opaque composite actor’s initialize() method prior to any iterations. De-

termining the placement of boundary receivers vs. normal receivers is a question of topology. One

approach for allocating boundary receivers is to let the director determine which receivers should

be boundary receivers and which should be normal receivers. The problem with this approach is

twofold. First it requires two receiver objects (a boundary and normal receiver) for each model of

computation. Maintaining consistency among two separate receiver objects is very difficult. The
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second problem is that such an approach does not easily support mutable topologies. It is desirable

to not have to replace or re-instantiate receivers if the topologychanges (e.g., if a receiver is no longer

connected to a boundary port).

I chose not to distinguish boundary and normal receivers. Any receiver can act as either

a boundary receiver or a normal receiver; there is no separate class for the two types. To achieve

this, each receiver contains a ptolemy.actor.process.BoundaryDetector object. An

instantiated BoundaryDetector is contained in a receiver and provides the receiver with services for

determining if it is a BoundaryReceiver. A BoundaryDetector provides such services via a rather

expensive topological sort. Fortunately the result is cached and remains valid until a change in the

topology occurs. Branch objects are assigned to receiver pairs as appropriate and the receivers con-

tain the appropriate methods to be invoked by the Branch objects.

Prior to my extension, the ProcessReceiver.get() method contained no argument

and returned a token of data (ptolemy.data.Token). Likewise, the put() method contained

ptolemy.data.Token as the sole argument with a void return value. To accomodate the pos-

sibility of being part of a boundary, all ProcessReceivers must implement the following methods.

� get(Branch)

� put(Token, Branch)4

When a Branch calls either the get() or put() methods of a receiver, then it passes itself as the

Branch argument. When an actor calls the get() or put() methods of a receiver the Branch ar-

gument is set to null. My approach has very few receiver methods that are required solely for

boundary receivers. Two of these methods are (get() and put()). The other methods leverage

BoundaryDetector which is a single class that can be used by every model of computation. The result

is a very high level of code reuse.

4.4 Domain Polymorphism and Reorder Invariance

Domain polymorphism allows a component’s model of computation to be changed during

execution. The usefulness of domain polymorphismis that the semantics of a network of components

4Token = ptolemy.data.Token and Branch = ptolemy.actor.process.Branch
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Input/Output Branches
Contained Input Blocked, Input UnBlocked, Input/Output

Actors Output UnBlocked Output Blocked UnBlocked

Internally � Wait until Output Blkd � Deactivate Branches � Wait until Output Blkd
Blocked � Deactivate Branches � postfire() = false � Deactivate Branches

� postfire() = false � postfire() = false
Externally � Wait until Output Blkd � Wait until Input Blkd � Do Nothing
Blocked � Register block w/container � Register block w/container

UnBlocked � Do Nothing � Do Nothing � Do Nothing

Table 4.1. Actor and Branch States when a Process is Contained by a Process

Input/Output Branches
Contained Input Blocked, Input UnBlocked, Input/Output

Actors Output UnBlocked Output Blocked UnBlocked

Internally � Wait until Output Blkd � Deactivate Branches � Wait until Output Blkd
Blocked � Deactivate Branches � postfire() = false � Deactivate Branches

� postfire() = false � postfire() = false
Externally � postfire() = true � Wait until Input Blkd � Do Nothing
Blocked � postfire() = true

UnBlocked � Do Nothing � Do Nothing � Do Nothing

Table 4.2. Actor and Branch States when a Process is Contained by a Non-Process

can be modified in a predictable manner while maximizing code reuse. Domain polymorphism frees

a component to make only a minimal assumption about the model of computation in which it will

operate. A component can assume a particular function but not be constrained to assume a particular

style of communication for the function’s input and output data, since the communication style may

vary with the model of computation.

The Ptolemy II Actor Library package (ptolemy/actor/lib) consists of a large set

of domain polymorphic actors. These actors do not assume a specific model of computation and are

intended for use with a variety of the models of computation that come with Ptolemy II. Example

domain polymorphic actors are listed below.

� ptolemy/actor/actor/lib/Average

Outputs the average of M input values.

� ptolemy/actor/actor/lib/Clock

Produces a periodic signal.
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� ptolemy/actor/actor/lib/Gaussian

Generates random numbers according to a Gaussian distribution.

� ptolemy/actor/actor/lib/Sine

Produces an output that is equal to the sin() of the input.

In Ptolemy II, all domain polymorphic actors attempt to consume input data through an input port

polling mechanism. This means that as a domain polymorphic actor iterates, it checks each input

channel in a round robin fashion and consumes data when available. The round robin order is based

on topology. As an actor’s channels are linked (connected) together, the order in which the actor will

poll input channels is determined. If the linking order of an actor’s input channels are changed, then

the order of input channel polling will change as well.

Given the round robin polling mechanism of Ptolemy II, care must be taken when attempt-

ing to execute a domain polymorphic actor in certain models of computation. If a model of compu-

tation is not reorder invariant, then the use of domain polymorphic actors can lead to deadlock. The

possibility for deadlock is quite subtle but very deadly. Consider Figure 4.9 in which both actor A

andB are domain polymorphic. If actorA’s top port is linked before A’s bottom port whileB’s bot-

tom port is linked before B’s top port, then in a round robin polling scheme actor B would attempt to

consume data from its bottom port first, while actor A would attempt to produce data on its top port

first. In a non-reorder invariant domain such as CSP, this would lead to deadlock.5 Fortunately the

solution is simple. As long as the channels for actors A andB are linked in the same order, deadlock

due to the round robin polling will be avoided.

5This type of problem initially was noticed with the Ptolemy II Butterfly Demo. Typically executed in the Synchronous
Dataflow (SDF) domain, a user attempted to execute the Butterfly Demo in the Communicating Sequential Processes
(CSP) domain. An inconsistency in the order of linked channels served as one of the first clues to the issue of reorder
invariance.
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Figure 4.9. Deadlock Potential with Domain Polymorphic Actors
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Chapter 5

Conclusion

What good is a new born baby?
- Benjamin Franklin, 18th Century1

In this dissertation, I consider the difficulty of modeling and designing complex, concur-

rent systems. By concurrent I mean a system consisting of a network of communicating compo-

nents. By complex I mean a system consisting of components with different models of computa-

tion such that the communication between different components has different semantics according

to the respective interacting models of computation. In Chapter 1, I showed how the components in

a complex, concurrent computational system are related to one another. I recognized that two par-

ticularly important relationships found in complex, concurrent systems are the order relation and the

containment relation. The order relation represents the relative timing of component actions within

a concurrent system. The containment relation facilitates human understanding of a system by ab-

stracting a system’s components into layers of visibility. The consequence of improper management

of the order and containment relationships in a complex, concurrent system is deadlock. Deadlock is

an undesirable halting of a system’s execution and is the most challenging type of concurrent system

error to debug. In Chapter 2, I showed that no methodology is currently available that can concisely,

accurately and graphically model both the order and containment relations found in complex, concur-

rent systems. The result of the absence of a method suitable for modeling both order and containment

is that the prevention of deadlock is very difficult. To fill this void I created the diposet.

1Benjamin Franklin’s question was made in response to the question “What good is a hot air balloon?”
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5.1 Primary Contributions

� I created the diposet for representing order and containment in complex, concurrent sys-

tems. The diposet is a formal, mathematical structure that represents order and containment

relations in a single entity. Chapter 2 consisted of several theorems and proofs demonstrating

the ability to rigorously manipulate diposets.

� I showed that the diposet robustly represents complex, concurrent computational sys-

tems. I provided several examples that show that the diposet is well suited for graphically

modeling significant systems. My examples illustrated that diposets can represent a wide va-

riety of communication semantics including asynchronous and synchronous message passing.

� I described how diposets can serve as the core of an automated compile-time deadlock

detection mechanism. I defined deadlock in Definition 2.10 and using this definition, I de-

scribed a conservative approach for automatically determining the possibility of deadlock in

software systems modeled by diposets.

5.2 Secondary Contributions

� I introduced the concept of reorder invariance. Reorder invariance is a characteristic of a

model of computation that determines the possible order in which communications can occur

for components in a concurrent system. Reorder invariance impacts how a model of compu-

tation supports domain polymorphism.

� I implemented a software system to model and design complex, concurrent systems. My

implementation was part of the Ptolemy Project led by principal investigator Edward A. Lee

at UC Berkeley. The software system used threads in the JavaTMprogramming language to

support concurrency. Complex designs were facilitated through a run-time deadlock detection

mechanism that incorporated hierarchical, heterogeneity.
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5.3 Future Work

� Diposets and Static Methods

While I explored the use of diposets for modeling a very broad set of software constructs, I

did not consider static methods. Considering the best approach for modeling static methods

with diposets would extend the applicability of diposets and further justify their usefulness.

� Diposets and Shared Memory

I applied diposets only to message passing systems. The set of message passing systems is

large enough to single handedly justify diposets. Nevertheless, shared memory systems are

widely used (The Yale Linda Group2, JavaspacesTM, etc.) and merit consideration for being

modeled by diposets.

� Implementation of an Automatic Compile-Time Deadlock Detection Tool

A study of the feasibility of an automatic deadlock detection system is needed. It is certain that

such a tool will be computationally complex. An implementation will clarify the practicality

of such a tool.

5.4 Final Remarks

I have benefited tremendously from the work involved in this dissertation. I look forward

to the opportunity to extend the concepts contained herein and to collaborate with other researchers

on improving and expanding these ideas for the betterment of society.

2See http://www.cs.yale.edu/Linda/linda.html
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Appendix A

The Semantics of Programming

Languages

Effective communication requires a well defined vocabulary as well as clear rules for how

to use the words contained within the vocabulary. To precisely convey ideas and avoid misunder-

standing, a vocabulary must clearly associate meaning to the words the speaker uses. The notion of

associating meaning to words is embodied in the word semantics. When Michel Bréal introduced

this word in 1900, it referred to the study of how words change their meanings. Since 1900, the

meaning of semantics has itself changed and today semantics is generally understood as the study of

the attachment of meaning to words or sentences.

There are three major branches in the discipline of semantics: natural language, mathe-

matical logic and programming languages. In the case of natural languages, meaning is associated

with words and phrases as spoken and written by human beings. With mathematical logic the words

and phrases are expressions of logic . With programming languages the words and phrases are key-

words and variables. Mathematical logic and programming languages share the trait of dealing with

artificial languages, in that the languages of mathematics and programming are designed. This is in

sharp contrast to natural languages which are not designed and exist prior to their study in a semantic

framework.

A commonality between languages of all types is the requirement of an alphabet. An al-

phabet is a set of symbols or characters such as a, b, � and 5. Combinations of these characters lead
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to strings of words and sentences. A language is simply a set of strings formed from a given alpha-

bet. Language semantics assign meaning to the strings. The bedfellow of semantics is syntax. The

syntax of a language provides rules for how characters can be correctly combined. A programming

language requires a syntax and semantics which give meaning as well as rules for combining the key-

words of a language. Closely related to a programming language is a model of computation (MoC).

Informally an MoC is a programming language without an explicit syntax. There are three major

approaches to the semantics of programming languages: axiomatic, operational and denotational.

A.1 Axiomatic Semantics & Predicates

In axiomatic semantics, the meaning of a string S is described in terms of a pre-condition

and post-condition. A pre-condition of S is a predicate that holds true prior to the execution of S.

Similarily a post-condition of S is a predicate that holds true after the execution of S. The goal of

axiomatic semantics is to use rules of inference to deduce the effect of executing a program consisting

of a set of statements. For this reason, axiomatic semantics are particularly amenable to proving

properties about a given program.

A.2 Operational Semantics & Automata

Operational semantics defines an abstract machine with a set of data structures and opera-

tions. The semantics of the abstract machine are assumed to be known. The semantics of a particular

programming language can then be described in terms of this abstract machine. The result is that op-

erational semantics specify how the state of the abstract machine changes as a program is executed,

or how a computation is carried out. This is similar in spirit to the notion of a Turing machine, which

is effectively the canonical abstract machine. Operational semantics are particularly useful to com-

piler writers but often involve too much implementation detail to be of use by others such as language

users.
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In order to fully specify operational semantics, a technique must be available for describing

the abstract machine. Most often, the abstract machine is represented by a transitionsystem [Hopcroft

and Ullman, 1979; Winskel, 1994; de Bakker and de Vink, 1996; Lynch, 1996]. de Bakker and de

Vink provide a very general definition of a transition system as follows.

Definition A.1. TRANSITION SYSTEM

A transition system, T , is a triple (Conf;Obs;!) in which

� Conf is a set of configurations.

� Obs is a set of observations.

� !� Conf � Obs� Conf .

2

Typically, the configuration of a transition system is based on a notion of state, an input symbol from

an input alphabet and in some cases a notion of memory (representing past configurations). The set

of possible configurations of a transition system consist of both initial and final configurations. The

observations of a transition system are based upon actions that correspond to characters in an output

alphabet. In some cases the set of observation actions can be empty, meaning that for each transition

the null observation occurs. The transition relation! indicates how transitions can occur from one

configuration to another and the observation that results.

There are several concrete examples of transition systems that may be familiar to many

readers. A finite automaton is a transition system in which the configuration is based on a finite

set of states, Q, and a finite set of input symbols, �. In the case of a finite automaton, the transition

relation becomes a transition function in which the domain isQ�� and the range isQ. A pushdown

automaton augments a finite automaton with an infinite stack. A Turing machine augments a finite

automaton with an infinite capacity memory. As can be guessed based on the memory augmentation,

a Turing machine is more complex than a pushdown automaton which is more complex than a finite

automaton.
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A.3 Denotational Semantics & Recursion

While operational semantics focuses on the “how” of execution, denotational semantics

focuses on the “what.” Denotational semantics gives information on what mathematical function is

being computed by a program. Operational semantics describes a program in terms of the under-

stood meaning of an abstract machine. Denotational semantics describes a program in terms of the

understood meaning of mathematical objects. For each entity (string) contained within a program-

ming language, a mathematical object and function which maps the entity to the mathematical object

is defined. The mathematical objects can then be rigorously manipulated, unlike their corresponding

programming language entities. The name denotational semantics indicates the fact that mathemat-

ical objects denote the meaning of their corresponding entities.

Denotational semantics observes two principles, the first being that a program computes

(or denotes) a particular mathematical function. The second (often called the compositionality prin-

ciple) being that the meaning of a program is composed of the meanings of its syntactic parts.

Semantic denotationof a mathematical function is relatively straightforward if the function

happens to be finite (i.e., the domain is finite). In such cases, the function of the program is simply

the composition of the constituent functions at each step of the algorithm. Unfortunately, many in-

teresting programs can only be represented by infinite functions. How do we describe the behavior

of these infinite objects?

Clearly there are some infinite functions which are easy to describe. One example is the

identity function, I(n) = n. Nevertheless, there are many more infinite functions that can not be

easily described. A very important class of infinite functions include recursive and/or indefinitely

iterative functions. A recursive definition of a given entity is one in which the name of the entity

“recurs” in its own definition. A real world example of recursion can be found in two facing mir-

rors. If one attempts to describe the image in one of the mirrors, the description will contain itself.

Engineering and mathematical examples of recursive functions include the factorial function and

feedback systems. In indefinite iteration the number of repetitions of a repetitive operation are not

known a priori, leaving open the possibility of an arbitrarily large number of repetitions. A while

loop is an example of indefinite interation.

Recursion and indefinite iteration are interchangeable. Any function involving a while
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loop can be rewritten using a recursive function and visa versa. Examples of recursion and itera-

tion are pervasive in programming languages. 1 The popularity of these kinds of functions is due in

part to the fact that although they are infinite, they can be easily specified using finite descriptions.

The key problem with a recursive definition is that it may not uniquely represent a function.

Consider for example the following recursive definition operating on the integers:

f(n) =

8<
:

1 if n = 0

f(n+ 1) otherwise
(A.1)

It is clear that f(0) = 1 and hence that f applied to any negative integer is also 1. Things become

less clear if we apply f to positive integers. To make this plain, note that the following functions

both satisfy Equation A.1:

f1(n) =

8<
:

1 if n � 0

undefined otherwise

f2(n) =

8<
:

1 if n � 0

2 otherwise

There is no way to determine whether f equals f1 or f2 or for that matter any one of the infinite other

possibilities. Part of the uncertainty relates to the fact that our definition of f itself depends on the

definition of f . We can eliminate confusion by re-writing f as an argument of a function.

F (f ;n) =

8<
:

1 if n = 0

f(n+ 1) otherwise
(A.2)

F , which is sometimes called a functional, operates on a function and is completely defined. By

substition we have that 8n 2 domain(f); F (f ;n) = f(n) or more succinctly F (f) = f . An

equation of this latter form says that f is a fixpoint of F and hence the program computes a function

which is a fixpoint of F .

There are many fixpoints of F including f1 and f2. Note that f is a function mapping

integers to integers and, as with all functions, we can think of f as a set of ordered pairs. This begs

the question, which set of ordered pairs (e.g., f = f1 or f = f2) is the best fixpoint solution for F .

1L. Peter Deutsch stated that to iterate is human but to recurse divine. Perhaps the problem is our desire to meddle in
the affairs of God.
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The standard approach for selecting the best fixpoint is to define a partial order on the sets of possible

choices for f . In this case, set inclusion is used to order the sets. Thus, the fact that f1 is a subset of

f2 means that f1 is considered less than f2. Indeed, based on set inclusion f1 is less than every other

possible fixpoint for F . We call this smallest fixpoint function the least fixpoint, and this reasoning

leads us to interpret f as being equivalent to f1.2

Dana Scott and Christopher Strachey developed denotational semantics in part to apply

the above reasoning to recursive functions in programming languages. At the core of Scott and Stra-

chey’s denotational semantics is a theory of computation developed by Scott known as domain the-

ory. Interested readers can find detailed expositionsof domain theory in Davey and Priestley [1990];

Gordon [1979]; Stoltenberg-Hansen et al. [1994]; Tennent [1991]; Winskel [1994]. Additional dis-

cussion on partially ordered sets can be found in Section 2.1.1 of this dissertation.

2The intuition behind choosing the smallest function (or set of ordered pairs) for f is as follows. Smaller sets gener-
ally provide more information about their contents than larger sets. Certainly, the set of human beings (a very large set)
implies less information than the set of 55 year old Nigerian males living in Alaska (a relatively small set). An emphasis
on maximal information is common within the field of computer science.
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enabled, 25

enabling tokens, 25

event dispatch thread, 45

Event driven, 59

events, 27

fires, 25

Graph, 23
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hierarchical heterogeneity, 52

Homosemantic abstraction, 56

incomparable, 21, 27

interface, 50
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Interval Order, 23

IP, 53

Labelled Diposets, 33

length, 24

Liveness, 17

marking, 25

model of computation, 49

multigraph, 26

mutually non-inclusive, 27

order, 20, 21, 28

paired directed graph, 27

partial order, 21

Partially Ordered Set, 20

path, 24, 28

Petri Nets, 25

Premature Termination, 39

Process-based, 50

processes, 50

production, 59

PtPlot thread, 46

reorder invariant, 61

reorder variant, 61

Reordering, 61

Run-time, 41

Safety, 17

schedule-based, 50

Sequential Nested Diposet (Thread), 30

strong inclusion, 21

structured, 52

Synchronous message passing, 44

The Nested Containment Rule, 28

thread, 17

thread of control, 17

threaded order relations, 33

Tokens, 25

totally-ordered set, 21

Transition System, 104

Undecidability, 42

up-set, 21

weak inclusion, 21

Weighted Chain Theorem, 29
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