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Abstract*

This paper presents a component-based modeling technique
for systems with continuous and discrete dynamics. It uses
hierarchical composition to hide the implementation details
of one component from other components, and keeps the
components at the same level of hierarchy interacting under
a well-defined model of computation. Continuous time, dis-
crete event, and finite state machine models are considered.
The signal conversions at the boundaries and the execution
control among the components are studied. The modeling
technique is implemented in Ptolemy II, a heterogeneous
modeling and design environment. A hierarchical helicop-
ter control system is modeled as an example.

1. Introduction
Large-scale control systems are intrinsically heterogeneous.
The physical plants to be controlled are usually continuous
but controllers are implemented using digital circuits or
real-time software, which are discrete. While the closed-
loop regulators interact with the plant at a fast sampling
rate, a high-level planner may interact with the regulators at
much more sparse time points. There are a variety of mod-
els that match different parts of a system, for example, ordi-
nary-differential equations for the plant dynamics, a
sampled-data model for the regulator, a finite-state-
machine model for operation modes, and a discrete-event
model for high-level planners. Although each individual
model is relatively well-understood, the integration of het-
erogeneous models brings additional difficulties and com-
plexities to the design of such systems. 

Component-based modeling techniques view the building
blocks of a system to be “black boxes,” as shown in Figure
1.The interface of a component and the communication
scheme among components are specified, while the con-
tents of a component can be implemented using a different
model. A component-based design provides a clean way to
integrate different models by hierarchically composing het-

erogeneous components [5]. This hierarchical composition
allows one to manage the complexity of a design by infor-
mation hiding and component reuse.

This paper focuses on the ordinary differential equation
(ODE) based continuous-time (CT) model and two kinds of
discrete models, a timed one − the discrete-event (DE)
model, and an untimed one − the finite-state-machine
(FSM) model. Following circuit design communities, we
call the composition of CT and DE the mixed-signal model;
following control and computation communities, we call
the composition of CT and FSM the hybrid system model.

Mixing heterogeneous models to design complex systems
is receiving more and more attention from both academic
and industrial world. Simulink†, originally a continuous-
time control system design tool, has been enhanced to deal
with sampled-data systems and, to some extent, discrete-
event systems [18]. Hardware description languages, like
VHDL and Verilog, extend and standardize the capability
of modeling continuous-time systems (e.g. analog circuits)
in discrete-event based languages.  Both of the approaches
attempt to come up with a unified model to capture seman-
tically different components, but lack arbitrary nesting of
heterogeneous models.

One of the most remarkable efforts in mixing continuous
and discrete dynamics is the study of hybrid systems [2].
Solid theoretical frameworks for modeling and analyzing
hybrid systems are under rapid development [1, 4, 7, 10,
14], with applications in air traffic control, transportation
systems, automotive, manufacturing systems, and electro-
mechanical systems etc. [3, 16, 17]. Nevertheless, a simula-
tion tool with clean semantics and composability that
leverages the theory of hybrid system is still under high
demand [15].
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 Figure 1. Heterogeneous components
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In this paper, a component-based framework is proposed to
model systems with both continuous and discrete dynam-
ics. It uses hierarchical compositions to hide the implemen-
tation details of one component from other components,
and keeps the components at the same level of hierarchy
interacting in the same way. The signal conversions at the
boundaries and the execution control among continuous
and discrete components are studied. The framework is
implemented in Ptolemy II, a heterogeneous modeling and
design environment.

In the following sections, we discuss the component-based
models (section 2), the signal conversion techniques and
the requirements of numerical ODE solvers for handling
them (section 3), and the hierarchical composition and exe-
cution among heterogeneous models (section 4). Section 5
gives an example of a three-layered helicopter control sys-
tem modeled in Ptolemy II.

2. Component-based model for continuous and 
discrete dynamics.

This section describes how individual models of interest
can be built in a component-based framework, emphasizing
what the components are, how they interact, and how the
execution is done. 

2.1. Continuous-Time Model

Consider an initial value problem of ODEs for a continu-
ous-time (CT) system:

(1)

where,
• , , a real number, is time;
•  is the n-dimensional state of the system at ;
•  is the m-dimensional input;
•  is the l-dimensional output;
•  is the derivative of  w.r.t. time ;
•  is the initial condition.

Using components, an ODE system (1) can be modeled
using a block diagram as shown in Figure 2. In this model,
components communicate via piecewise continuous wave-
forms. And the components are continuous maps from
input waveforms to output waveforms. A special compo-
nent, the integrator, makes a feedback loop an ODE. The
functions f and g can consist of a feedforward composition
of CT components.

The simulation of this model involves solving the ODE
numerically with respect to the inputs at a discrete set of
time points, and to produce outputs at those points. The

component-based model imposes no difficulty on numeri-
cal ODE solving methods. In fact, the evaluation of the f
and g functions can be achieved by executing the corre-
sponding components in their I/O topological order [12]. 

2.2. Discrete-Event Model

A discrete-event model is a timed model, where time is glo-
bal to all components. An event has a value and a time
stamp. Components in the model communicate via a set of
events located discretely on the time line. A component,
when executing, consumes input events and produces out-
put events. The output events are required to be no earlier
in time than the input events that trigger them (this property
is called causality). 

The simulation of this model uses a global event queue.
When a component generates an output event, the event is
placed in the queue, which sorts events by their time
stamps. At each iteration of the simulation, events with the
smallest time stamp will be dequeued, and their destination
components will be executed. 

A component can schedule itself to be executed at a partic-
ular future time by placing a pure event (an event without a
value) on the event queue, with the component itself as the
destination. When this pure event is dequeued, the compo-
nent can be executed. Pure events are useful for source
components (components without input ports) to produce
events at a reasonable rate, and they are also essential for
interacting with other models.

2.3. Finite-State-Machine Models

In a FSM model, as shown in Figure 3, there is a finite set
of states (the bubbles), a finite set of events, an initial state,
and transitions from states to states (the arcs). The set of
events does not necessarily have the notion of time. A tran-
sition is associated with a trigger condition and an action. A
trigger condition could be a predicate on input events, and
an action might be producing output events. 

The execution of the system starts from the initial state. For
each input event, if the trigger condition on a transition
starting from the current state is true, then the transition is
taken and the associated action will be performed. The end
state of the transition will be the new current state. 

In this paper, we assume the FSM model to be non-block-
ing, meaning that there will always be a transition enabled
for all input events and all states. This is not a restrictive
assumption, since we can add an implicit self-loop transi-
tion on all states such that if no other trigger condition is
true for a given input, the self-loop transition will be taken.
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 Figure 2. A component-based model for ODE
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3. Signal Conversions and Requirements of 
CT Simulation.

A fundamental issue for hierarchically composing hetero-
geneous components is how to make a component imple-
mented in one model to expose an interface of another
model. Since the two kinds of dynamics under consider-
ation have distinct types of signals, the conversion between
the signals is essential.

3.1. Event Generation

Event generation is to generate discrete events from piece-
wise continuous waveforms. A key for event generation is
to find event time stamps. We classify two kinds of events:
• time events. These are events whose time stamps are

known beforehand. A typical case is the sampling events
in a sampled-data system.

• state events. The time of this type of event depends on
the value of the state variables of the CT system. An
example is threshold crossing detection.

In general, the time stamp of state events cannot be pre-
dicted accurately in advance. Special treatment has to be
done in the process of ODE solving.

3.2. Waveform Generation

Waveform generation is the conversion of discrete events
into piecewise continuous waveforms. A key is to provide
values in the waveform between successive event time
stamps. This conversion is usually application dependent.
One popular way  is the zero-order hold, which is consis-
tent with common D/A converters. In general, any extrapo-
lations of previous event values is reasonable.

3.3. Requirements of CT Simulation

Traditional ODE solvers assume sufficient smoothness of
the right-hand side functions. This may not be valid when
the inputs of a CT component are generated from discrete
events. Furthermore, the event generation process requires
the solvers to be able to find the state of the CT system at
any time when an event occurs. For this purpose, we define
breakpoints in the continuous-time model. 

A breakpoint is a time point in the CT model when the
right-hand side (RHS) of the ODE is not smooth, or the out-
put map is not continuous. The numerical ODE solvers can-
not cross breakpoints in one integration step since either the
smooth-RHS assumption is violated or an event needs to be
produced.

According to whether a breakpoint can be predicted before
an integration step is taken, we classify two kinds of break-
points − predictable ones and unpredictable ones. For
example, time events and some unsmoothness in input sig-
nals are predictable, while state events and unsmoothness
depending on state variables are unpredictable. Predictable
breakpoints can be stored in a table and handled efficiently.

The introduction of breakpoints adds more requirements for
ODE solvers to adjust numerical integration step sizes.
There are three factors to be considered:
1.) Error control. This reflects the trade-off between speed

and accuracy of a simulation. In general, for a given
ODE solving method, a smaller step size means a more
accurate result. But it also means more function evalu-
ations and long simulation time.

2.) Convergence. Implicit numerical methods use fixed-
point iteration or Newton iteration to solve the induced
algebraic equations. Choosing a smaller step size may
help improve the initial guess and help convergence.

3.) Breakpoints. Before each integration step, the break-
point table is queried, and the intended step size
(adjusted from the first two factors) may be reduced so
that it does not cross a predictable breakpoint. Unpre-
dictable breakpoints are handled by querying compo-
nents after each integration step. An unpredictable
breakpoint is iteratively located within an error toler-
ance before the integration continues.

4. Hierarchical Composition and Execution 
Control

The execution control of heterogeneous components is crit-
ical for a correct and efficient simulation engine. One issue
is how time is managed. There can be multiple time vari-
ables in different components, and time advances in various
ways. For example, time in a DE model jumps, while in a
CT model it evolves continuously. In our hierarchical com-
position, we call the time at the highest level of hierarchy
the “global time,” and the time maintained within a compo-
nent the “local time.” The management of time, as well as
the execution flow, depends on the composition of models.

4.1. Mixed-signal Systems

4.1.1. DE inside CT

Figure 4 shows a DE component wrapped by an event gen-
erator and a waveform generator. Since time advances
monotonically in CT and events are generated chronologi-
cally, the DE component receives input events monotoni-
cally in time. In addition, a composition of causal DE
components is causal [11], so the time stamps of the output
events from a DE component are always greater than or
equal to the global time. From the view point of the CT sys-
tem, the events (i.e. breakpoints) produced  by a DE com-
ponent are predictable.

Note that in the CT model, finding the numerical solution
of the ODE at a particular time is semantically an instanta-
neous behavior. During this process, the behavior of all

 Figure 4. A DE component in a CT model.
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components, including those implemented in a DE model,
should keep unchanged. This implies that the DE compo-
nents should not be executed during one integration step of
CT, but only between two successive CT integration steps.

4.1.2. CT inside DE

When a CT component is contained in a DE system, as
shown in Figure 5, the CT component is required to be
causal, like all other components in the DE system. Let the
CT component have local time , when it receives an input
event with time stamp . Since time is continuous in the
CT model, it will execute from its local time, and may gen-
erate events at any time greater or equal to . Thus we need

(2)
to ensure the causality. This means that the local time of the
CT component should be greater than or equal to the global
time whenever it is executed. 

This ahead-of-time execution implies that the CT compo-
nent should be able to remember its past states and be ready
to rollback if the input event time is smaller than its current
local time. The state it needs to remember is the state of the
component after it has processed an input event. Conse-
quently, the CT component should not emit detected events
to the outside DE system before the global time reaches the
event time. Instead, it should send a pure event to the DE
system at the event time, and wait until it is safe to emit it. 

4.2. Hybrid Systems

A hierarchical composition of FSM and CT is shown in
Figure 6. Although FSM is an untimed model, its composi-
tion with a timed model requires it to transfer the notion of
time from its external model to its internal model. A CT
component, by adopting the event generation technique,
can have both continuous and discrete signals as its output.
The FSM can use predicates on them, as well as the input
signals, to build trigger conditions. The actions associated
with transitions are usually setting parameters in the desti-
nation state, including the initial conditions of integrators.

During continuous evolution, the system is simulated as a
CT system where the FSM is replaced by the continuous
component refining the current FSM state. After each time
point of CT simulation, the triggers on the transitions start-
ing from the current FSM state are evaluated. If a trigger is
enabled, the FSM makes the corresponding transition. The
continuous dynamics of the destination state is initialized
by the actions on the transition. The simulation continues
with the transition time treated as a breakpoint.

5. Modeling a Helicopter Control System
As an example, we model a helicopter control system with
three layers of hierarchy, the helicopter dynamics layer, the
regulation layer, and the trajectory planning layer, as shown
in Figure 7. The goal is to demonstrate the mixing and
match of modeling techniques, rather than optimal control
algorithms. The architecture of the system is a simplifica-
tion of the one presented in [9]. 

5.1. Helicopter Dynamics

We consider the 2-D motion of the helicopter along the lon-
gitudinal (x) and vertical (z) axes, which are pointing north
and down, respectively. The motion of the helicopter is
controlled by , the main rotor thrust, and , the longitu-
dinal tilt path angle. Variables , , and  are the posi-
tion on the x-axis, z-axis, and the pitch angle. The equations
of the motion can be expressed as [13]:

(3)

(4)

where  is the mass of the helicopter,  is the moment of
inertia about body y-axis,  is the hub pitching moment
stiffness, and  is the vertical distance between the main
rotor and the center of gravity. The state vector is

 and the input vector is
.

5.2. Regulation Layer 

The regulation is based on flight modes [8], which represent
different modes of operation of the helicopter. The closed-
loop regulation laws are designed for each individual mode
to optimize the performance. A complex motion is

 Figure 5. A CT component in a DE model.
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achieved by switching among the flight modes. The flight
modes − hover (H), turn (T), vertical up/down (V), cruise
(U), accelerate (A) or decelerate (D) with altitude hold, and
climb/descend (C). The possible switching among them are
shown as an FSM in Figure 8.

In each mode, the regulation uses approximate feedback
linearization. Assuming all states are accessible for control
purpose, the linearizer has the following form:

. (5)

where  is the input of the feedback linearizer.
The resulting closed-loop system has a linear dynamics:

. (6)

The linearization rule is shared by all modes, but r can be
different variables under different modes, depending on the
goal of the regulation. A uniform pole placement control
law is used to generate r. The controllers take the form:

(7)

for , set points , and constant . For
each mode, the mapping of r and the corresponding control
laws are summarized in the following table.

5.3. Trajectory Planning Layer

The trajectory planner, having the knowledge about possi-
ble mode switching, accepts pilot’s commands like “fly
from point A to point B,” finds optimal paths, decomposes
them into sequences of flight modes, and controls the
switching of regulation layer controllers. For each flight

mode, the planner also gives the set points and ending con-
ditions to the regulator. When the ending condition is
achieved, a “mission completed” message is sent back to
the planner, and the planner will issue the next flight mode.

For example, as shown in Figure 9, if the helicopter, hover-
ing at point A and heading north, wants to fly to a close
point B, the trajectory planner can send the following oper-
ations to the regulation layer sequentially:

In another case, a high-altitude take-off flight from A to C
may go through modes: H, A, C, U, D, and H, with corre-
sponding set points and ending conditions. 

5.4. Modeling the Helicopter System in Ptolemy II

The component-based model of the helicopter system in
Ptolemy II has several levels of hierarchy. The top level is a
DE model for the trajectory planner, which interacts with a
discrete-event abstraction of the regulators, as shown in
Figure 10. The DE model at this level captures the discrete
interaction between the planner and the regulation layer,
which is irregular in time, and it is possible to model com-
putation and communication latencies so that the perfor-
mance of the system is easy to analyze.

The regulation layer is modeled in the CT domain, as
shown in Figure 11. The controller is internally imple-
mented as an FSM, as shown in Figure 8. The mode transi-
tions, set points, and ending condition parameters are
controlled by the inputs. Each mode is further refined by a
CT subsystem, implementing the control law and detecting
ending conditions. For example, the cruise mode controller

Mode Outputs Control laws

H/T

U

A/D

C

V

 Figure 8. Possible flight mode switching.
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is shown in Figure 12. Ending condition detectors are event
generators, such that when the condition is satisfied, a
“mission completed” event is sent to the trajectory planner.
Thus, the “Controller” is internally a hybrid system, which
exposes a discrete interface to the trajectory planner and a
continuous interface to the linearizer and the helicopter
dynamics.  

In Figure 11, the “Dynamics” block is further refined by a
CT subsystem, as the one in Figure 13, which implements
the equations (3) and (4).

In this example, we clearly separate the implementation
details of the helicopter model from the control parts, and
separate the modal regulators from the high level planner.
At the same time, the components are systematically and
modularly integrated by formal models of computations.
This separation and integration provide the composability
of components, the interoperability of the models, and the
possibility of design reuse. 

6. Conclusion
This paper presents a component-based framework for
modeling systems with continuous and discrete dynamics.
The framework systematically and modularly integrates
different models by hierarchically composing heteroge-
neous components. Information hiding, signal conversions,
and execution control under  this framework are studied. A

hierarchical helicopter control system is modeled as an
example in Ptolemy II. 
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 Figure 11. Model of the regulation layer.
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 Figure 12. Cruise mode controller.
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 Figure 13. Model of the helicopter dynamics.
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