
0018-9162/00/$10.00 © 2000 IEEE18 Computer

What’s Ahead
for Embedded
Software?

M
ost of today’s gadgets and cars use embedded software,
which, in many cases, has taken over what mechanical and
dedicated electronic systems used to do. Indeed, embedded
software appears in everything from telephones and pagers
to systems for medical diagnostics, climate control, and man-

ufacturing. Its main task is to engage the physical world, interacting directly
with sensors and actuators.

Research computer scientists have largely ignored embedded software because
it has not been sufficiently complex or general to warrant the effort. The “Why
Embedded Software Research Now?” sidebar describes how this is changing.
There are many research questions, but most center around one issue: how to
reconcile a set of domain-specific requirements with the demands of interaction
in the physical world. How do you adapt software abstractions designed merely
to transform data to meet requirements like real-time constraints, concurrency,
and stringent safety considerations? The answer to this question has given rise
to some promising research angles, including novel ways to deal with concur-
rency and real time and methods for augmenting component interfaces to pro-
mote safety and adaptability.

FRAMEWORKS
A framework is a set of constraints on components and their interaction, and

a set of benefits that derive from those constraints. A framework defines a model
of computation, which governs the interaction of components. Thus, the first step
in understanding suitable models of computation is to understand what makes
a framework useful for embedded system design. The embedded systems com-
munity must be very open about what “components” and “frameworks” might
entail. Otherwise, we have little hope of getting a useful model because the pre-
vailing component architectures in software engineering are not suitable for
embedded systems.

Most frameworks have four service categories:

• Ontology. A framework defines what it means to be a component. Is a com-
ponent a subroutine? A state transformation? A process? An object? An
aggregate of components may or may not be a component. Certain seman-
tic properties of components also flow from the definition. Is a component
active or passive—can it autonomously initiate interactions with other com-
ponents or does it simply react to stimulus?

• Epistemology. A framework defines states of knowledge. What does the
framework know about the components? What do components know about
one another? Can components interrogate one another to obtain informa-
tion (that is, is there reflection or introspection)? What do components know

Once deemed too small
and retro for research,
embedded software has
grown complex and
pervasive enough to
attract the attention of
computer scientists.
The most pressing
problem is how to
adapt existing software
techniques to meet the
challenges of the
physical world.

Edward A. Lee
University of California, Berkeley

P E R S P E C T I V E S

about time? More generally, what information do
components share? Scoping rules are part of the
epistemology of many frameworks. Connectivity
of distributed components, via name servers for
example, is another part of the epistemology.

• Protocols. A framework provides mechanisms
that dictate how components interact. Do they
use asynchronous message passing? Rendezvous?
Semaphores? Monitors? Publish and subscribe?
Timed events? Sequential transfer of control?

• Lexicon. This is the vocabulary of component
interaction. For components that interact by
sending messages, the lexicon is a type system
that defines the possible messages. The words of
the vocabulary are types in some languages (or
family of languages, as in CORBA).

Along any of these dimensions, a framework may
be very broad or very specific. The more constraints
there are, the more specific it is. Ideally, this specificity
comes with benefits. For example, Unix pipes do not
support feedback structures, and therefore cannot
deadlock. The Internet is a framework that primarily
constrains the lexicon (byte streams) and the protocols
(TCP/IP, UDP, and HTTP). These constraints produce
the primary benefit of platform independence.

A framework is often deeply ingrained in the cul-
ture of the designers who use it. Consequently, design-
ers fail to consider concepts and ideas that are

meaningful but outside that culture. The framework
essentially fades into the background of a particular
application area. The Turing sequentiality of compu-
tation, for example, is so deeply ingrained in con-
temporary computer science culture that we no longer
realize just how thoroughly we have banished time
from the domain of discourse. Common practice in
concurrent programming is that the framework com-
ponents are threads (the ontology), which use sema-
phores and monitors (the protocols) to share memory
(the epistemology) and exchange objects (the lexicon).
This is a very broad framework with few benefits. It
is particularly hard to talk about the properties of an
aggregate of components because the aggregate no
longer has the properties of its individual components.
Indeed, it is very difficult to characterize the aggregate
component at all, as the “A Broader View of
Components and Frameworks” sidebar describes.

The key challenge in embedded software research
then is to invent frameworks with properties that bet-
ter match the application domain. One requirement is
to reintroduce time. Another is to recognize that cer-
tain essential properties (safety and liveness, for exam-
ple) compose when components become an aggregate.

Concurrency
A framework that allows concurrency is particularly

useful in designing embedded systems. A model in such
a framework consists of components that can perform

September 2000 19

Until recently, computer scientists have
largely ignored embedded software. As a
software problem, it was small, too retro
in its use of quaint techniques such as
assembly language programming, and too
limited by hardware costs. The best soft-
ware technologies, with their profligate use
of memory, layers of abstraction, elabo-
rate algorithms, and statistical optimiza-
tion did not seem applicable. Because the
research results did not fit the problem, the
problem was not interesting.

This has changed for many reasons, and
researchers are beginning to retool their re-
search to address the very real and very dif-
ferent problems embedded software poses.

Hardware capabilities have improved.
The techniques of old, such as automatic
memory management or late binding to
support polymorphism, seem within reach
for embedded systems, but the techniques
need significant adapting.

Design challenges
Embedded software is harder to design.

Embedded systems are increasingly net-
worked, which introduces significant com-
plications such as downloadable modules

that dynamically reconfigure the system.
Moreover, consumers demand ever more
elaborate functionality, which greatly in-
creases software complexity. These systems
can no longer be designed by a single engi-
neer fine-tuning tens of kilobytes of assem-
bly code.

Embedded software often encapsulates
domain expertise, particularly when it must
process sensor data or control actuators.
Even very small programs may contain
highly sophisticated algorithms, requiring
a deep understanding of the domain and of
supporting technologies, such as signal pro-
cessing.

The emerging embedded software com-
ponents business is a consequence of this
complexity. It is very difficult to replicate
a toll-quality speech coder or a radio
modem with commodity programmers.

Existing software design techniques
aren’t suitable. Partly because it is recent,
and partly because of the domain exper-
tise it requires, embedded software is often
designed by engineers who are classically
trained in the domain, for example in
internal combustion engines. They have
little background in the theory of compu-

tation, concurrency, object-oriented design,
operating systems, and semantics. In fact,
it is arguable that other engineering disci-
plines have little to offer to the embedded
system designer today because of their mis-
matched assumptions about the role of
time and because of their profligate use of
hardware resources. But these disciplines
will be essential if embedded software is
to become more complex, modular, adap-
tive, and network aware.

Interfacing to the real world
The drastic mismatch between many of

the modern software techniques and the
needs of embedded systems is not surpris-
ing if you remember that interfacing to the
real world has only just begun to extend
beyond keyboards and screens (which
themselves are a relatively recent design
emphasis). Computation has its roots in
the transformation of data, not in the
interaction with sensors, actuators, or even
humans. Software in networked embed-
ded systems, in contrast, will almost cer-
tainly be composed of components that
operate concurrently and in real time,
often interacting remotely.

Why Embedded Software Research Now?

20 Computer

The terms “component” and “frame-
work” are overused. Sometimes the
meaning is very specific—components are
“distributed objects.” Sometimes it is very
broad—components are any kind of
building block. I prefer the very broad
interpretation, because none of the estab-
lished narrow interpretations match the
needs of embedded software. Designers
construct complex embedded software
from distinct modules of some sort. The
modules are the components, and the
framework is the mechanism by which
the modules interact. Ideally, the modules
will be reusable and embody valuable
domain-specific expertise.

Reusable software components for
embedded systems are already a viable
business, particularly in signal processing,
where considerable domain expertise is
encapsulated. However, the definition of
these components is ad hoc, the frame-
work is unsophisticated, and their role in
the embedded system is totally static. As
embedded systems become network aware
and configurable, these traditional com-
ponents will not adapt well. Networked
embedded systems are likely to alter their
architecture dynamically, as agents, chang-
ing service demands, and new components
arrive over the network.

Subroutines
The most widely applied software com-

ponent technology is probably subrou-
tines—finite computations that take
predefined arguments and produce final
results. Subroutine libraries are mar-
ketable component repositories, but they
are a poor match for many embedded sys-
tem problems. Consider for example a
speech coder for a cellular telephone. It is
artificial to define the speech coder in
terms of finite computations. You can do
it, of course, particularly with the help of
syntactic mechanisms such as objects,
which make it easier to package subrou-
tines with data that persists across those
subroutines’ calls. However, a speech
coder is more like a process than a sub-
routine. It is a nonterminating computa-
tion that transforms an unbounded stream

of input data into an unbounded stream
of output data. A commercial speech
coder for cellular telephony is likely to be
defined as a process that expects to exe-
cute on a dedicated signal processor.

Processes and threads
Processes and their cousins, threads,

are widely used for concurrent software
design. Indeed, you can view processes as
a component technology, in which a mul-
titasking operating system or multi-
threaded execution engine provides the
framework that coordinates the compo-
nents. The framework supports compo-
nent interaction mechanisms, such as
monitors, semaphores, and remote pro-
cedure calls. In this context, a process is a
component that exposes at its interface
an ordered sequence of external interac-
tions. As a component technology, how-
ever, processes and threads are extremely
weak. From an external view, a process
or thread is a sequence of interactions. An
aggregate of two processes, however, does
not constitute a process because it no
longer exposes an ordered sequence of
external interactions. Indeed, without
considerable extra effort, probably using
semaphores and monitors, the external
interactions no longer have a well-defined
order. Without imposing additional con-
straints, two processes do not form any
component that you can easily (and use-
fully) characterize—which is why con-
current programs built from processes or
threads are so hard to get right. It is very
difficult to talk about the aggregate’s
properties because you don’t know what
the aggregate is.

Semaphores and monitors are at the
assembly-language level of concurrency and
are too difficult for anyone but operating
system experts to use reliably. (Most engi-
neers completely understand only trivial
designs.) Overly conservative rules of thumb
dominate, such as “Always grab locks in the
same order.”1 Concurrency theory has much
more to offer than concurrency practice, but
again it probably needs adapting for embed-
ded system design. For example, it often
reduces concurrency to interleavings, which

trivializes time by asserting that all compu-
tations are equivalent to sequences of dis-
crete timeless operations.

Frameworks
In this context, a framework is a set of

constraints on components and their
interaction, and a set of benefits that
derive from those constraints. This defi-
nition is broader than (but consistent
with) the framework definition in object-
oriented design.2 By this definition, there
are many, many frameworks, some of
which are purely conceptual, cultural, or
even philosophical. Others are embodied
in the software. Operating systems are
frameworks in which the components are
single programs or processes. Program-
ming languages are frameworks in which
the components are language primitives
and aggregates of these primitives, and
where the grammar defines the possible
interactions. Distributed component mid-
dleware such as the Common Object
Request Broker Architecture (CORBA)
and Distributed Component Object
Model (DCOM) are frameworks. Syn-
chronous digital hardware design princi-
ples are a framework. JavaBeans form a
framework that is tuned to user interface
construction. A particular class library
and policies for its use is a framework.

As is true of all applications—not just
embedded systems—the choice of frame-
work must fit the application domain. In
embedded systems, this means choosing
frameworks that use concurrency and can
deal with real-time constraints. Operating
systems with no real-time facilities won’t
be that useful, for example (see Table 1 in
the main text for a list of frameworks that
may be suitable).

References
1. D. Lea, Concurrent Programming in

Java: Design Principles and Patterns,
Addison-Wesley, Reading, Mass., 1997.

2. R.E. Johnson, “Frameworks = (Compo-
nents + Patterns),” Comm. ACM, Oct.
1997, pp. 39-42.

A Broader View of Components and Frameworks

some computation in parallel, at least conceptually (and
perhaps actually). A concurrent framework defines the
“laws of physics,” fashioning the ontology, protocols,
and epistemology to achieve a particular approach to
concurrent computing. In practice, concurrency seri-
ously complicates system design. No universal concur-
rent framework has yet emerged (despite what some
proponents of a particular approach might say).

To understand why, consider the von Neumann
framework, a universally accepted model of sequen-
tial computation. A key part of its success is that it
reduces time to a total order of discrete events, in
which sequencing is sufficient for correctness. In dis-
tributed systems, maintaining such a total order glob-
ally is expensive, except for very small systems. Thus,
in practice, events are partially ordered at best. This
partial ordering makes it difficult to maintain a global
notion of “system state,” which is an essential part of
the von Neumann framework.

In networked embedded systems, communication
bandwidth and latencies will vary over several orders
of magnitude, even within the same system design. A
framework well suited to small latencies (the syn-

chronous hypothesis in digital circuit design, for
example, where computation and communication
take zero time) is usually poorly suited to large laten-
cies—and vice versa. Thus, practical designs will
almost certainly have to combine techniques.

Gul Agha of the University of Illinois describes
actors, which extend objects to concurrent computa-
tion.1 Actors encapsulate a thread of control and have
interfaces for interacting with other actors. The proto-
cols for this interface, interaction patterns, are part of
the concurrent framework. Agha argues that no model
of concurrency can or should let designers express all
communication abstractions directly. He describes mes-
sage passing as akin to gotos in their lack of struc-
ture. Instead, he recommends using an interaction
policy to determine how actors are composed.

Sample frameworks
Both researchers and practitioners have explored a

rich variety of frameworks that deal with concurrency
and time in different ways. Table 1 lists a few exam-
ples. So far, most designers are exposed to only one
or two frameworks, but as design practices change—

September 2000 21

Table 1. Sample frameworks useful in embedded software design.

Component
Framework interaction mechanism Possible applications
JavaBeans, Unstructured events, no built-in Good foundation for more disciplined models (such as CORBA’s event service). Because
COM, and CORBA synchronization no synchronization is built in, programmers can easily implement unsynchronized inter-

actions with no risk of deadlock. However, if synchronization is required, for example to
enforce data precedence, the programmer must build up the mechanisms from scratch. It
then becomes difficult to maintain determinacy and avoid deadlock.

Publish and Event notification A component declares an interest in a family of events (subscribes); another component
subscribe asserts events (publishes). Some of the more sophisticated realizations are based on

Linda, for example JavaSpaces from Sun Microsystems. A similar realization is in
CORBA’s event service (see N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM,
Apr. 1989, pp. 444-458).

Asynchronous Processes send messages Several variants exist, some with strong formal properties, such as Kahn process
message passing through channels that can networks and dataflow models.

buffer the messages.
Synchronous Processes rendezvous, Hoare’s Communicating Sequential Processes (CSP) and Milner’s Calculus for
message passing communicate in atomic Communicating Systems (CCS). Underlies several concurrent languages,

instantaneous actions including Lotos and Occam. Timed extensions are particularly pertinent.
Discrete events Components communicate Hardware description languages, including VHDL and Verilog, as well as several

via signals that carry events modeling languages, for example for communication networks.
placed in time, which is globally
known (by all components)

Synchronous/ Global clock triggers computations Esterel, Signal, and Lustre (see A. Benveniste and G. Berry, “The Synchronous Approach
reactive that are conceptually simultaneous to Reactive and Real-Time Systems,” Proc. IEEE, IEEE Press, Piscataway, N.J., Vol. 79,

and instantaneous. Signals consist No. 9, 1991, pp. 1270-1282).
of data values that are aligned with
global clock ticks.

Discrete-time Same as synchronous/reactive Cycle-driven frameworks, such as that embodied in SystemC (http://www.systemc.org),
model, except every signal although with embellishments they look a bit like discrete-time models.
has a value every clock tick.

Continuous-time Processes communicate Includes differential equations as used in Simulink, Saber, and VHDL-AMS, all of which
via continuous-time signals, model the physical world.
which are functions on the real
numbers.

22 Computer

as the level of abstraction and domain-speci-
ficity rise—this diversity will make it hard to
select a framework. Embedded system design-
ers will soon need some way to reconcile the
myriad views being offered.

Time is one dimension in which these views
differ. Some models of computation are very
explicit: They view time as a real number that
advances uniformly, and they place events on a

timeline or evolve continuous signals along the time-
line. Others are more abstract, viewing time as dis-
crete. Still others are even more abstract, viewing time
as merely a constraint imposed by causality. In this
last interpretation, time is partially ordered. The rich
mathematics of partial orders then provides a mathe-
matical framework for formally analyzing and com-
paring computational models.2 Process networks and
rendezvous-based models take this view, which
explains much of their expressiveness.

Many researchers have thought deeply about the role
of time in computation. Albert Benveniste and col-
leagues at the Institut Recherche en Informatique et
Systems Aleatoires (IRISA) observe that in certain classes
of systems, “the nature of time is by no means univer-
sal, but rather local to each subsystem, and consequently
multiform.”3 Leslie Lamport of the Compaq Systems
Research Center observes that there is no way to exactly
maintain a coordinated notion of time in distributed sys-
tems and shows that a partial ordering is sufficient.4

Mixing frameworks
A grand unified approach to modeling would seek

a concurrent framework that serves all purposes. One
approach is to create the union of all the frameworks,
providing all of their services in one bundle. But the
resulting framework would be extremely complex and
difficult to use, and designing synthesis and validation
tools would be difficult. A more feasible alternative is
to choose one concurrent framework, say rendezvous,
and show that all the others are special cases of that.

This is relatively easy to do—in theory. Most of
these frameworks are sufficiently expressive to sub-
sume most of the others. The disadvantage is that this
approach doesn’t acknowledge each model’s strengths
and weaknesses.

Another approach is to use an architecture descrip-
tion language (ADL) to define a framework. Some
ADLs, such as Wright,5 can describe the rich compo-
nent interactions common in software architecture
and often provide a way to get good insights into the
design. But sometimes the ADL and the design are a
poor match. Wright, for example, which is based on
CSP, does not cleanly describe asynchronous message
passing (it requires overly detailed descriptions of the
message-passing mechanisms).

What we really need are architecture design lan-

guages, not architecture description languages. That
is, the focus should not be on describing current prac-
tice, which an ADL does, but on improving future
practice. Wright, with its strong commitment to CSP,
should not be concerned with whether it cleanly mod-
els asynchronous message passing. It should take the
stand that asynchronous message passing is a bad idea
for the designs it does describe well.

A final alternative is to heterogeneously mix frame-
works, but instead of forming the union of their ser-
vices, preserve their distinct identity. A few mixtures
combine concurrency models with sequential models
such as finite-state machines. For example, hybrid sys-
tems6 combine finite-state machines with continuous-
time models. Statecharts and variants combine
synchronous/reactive models with finite-state machines.
“*charts” (pronounced “starcharts”) combine finite-
state machines with a variety of other concurrency mod-
els.7 Yet another interesting integration of diverse
semantic models is in Statemate,8 which combines activ-
ity charts (a process network variant) with statecharts.

HARDWARE-SOFTWARE PARTNERSHIP
Since the 1970s, when programmable DSPs and

microcontrollers first appeared, functionality has
steadily shifted from hardware to software. This glib
statement actually has profound consequences.
“Software” means primarily sequential execution with
a single instruction stream. That is, the same hard-
ware resources are multiplexed in time to perform a
variety of functions. “Hardware,” in contrast, means
primarily parallel execution; hardware resources are
not shared (or at least, not as much). Of course,
between these endpoints is a continuum: To some
degree, software executes in parallel and hardware
functional units are multiplexed.

Most embedded systems involve both significant
hardware and software design, so a large part of a
designer’s task is to explore the balance between their
sequential and parallel execution styles. For hard-real-
time functions, such as signal processing, designers
often assign concurrent tasks to distinct processors.
For example, the speech coders and radio modems in
a digital cellular telephone use processors distinct from
the microcontroller that handles the overall control
logic. Thus, despite being primarily software compo-
nents, the speech coders and radio modems have a
hardware nature in that they require dedicated hard-
ware resources that are not multiplexed.

In theory, as embedded processor performance
improves, there should be less need for such hardware
specialization. Until then, however, designers must use
dedicated hardware to handle hard-real-time tasks or
use processors that so greatly exceed minimum perfor-
mance capabilities that failure is unlikely despite the
unpredictability that multitasking introduces. Real-time

Functionality has
steadily shifted
from hardware
to software.

operating systems cannot yet reliably handle many
hard-real-time tasks, and before this can change, the
embedded system community must rethink multitask-
ing. First, component interface definitions need to
declare temporal properties, not just a fixed priority,
which is sufficient only under the rarely applicable
assumptions of rate-monotonic scheduling. The defin-
itions need to declare the dynamics (phases of execu-
tion, exception handling, modes of operation, and yes,
also periodicity, where appropriate). Second, compo-
sitions of components must have consistent and non-
conflicting temporal properties—much as compositions
of objects must have compatible types where they inter-
act. One possible approach, which synchronous/reac-
tive languages take, for example, views all executing
processes as part of a single application. Programmers
build programs in a highly concurrent, hardware-like
manner, but then compile away the concurrency.

REAL-TIME SCHEDULING
Although scheduling is an old topic, it has certainly

not played out. A real-time scheduler provides some
assurances of timely performance given certain compo-
nent properties, such as a component’s invocation period
or task deadlines. Rate-monotonic scheduling principles
translate the invocation period into priorities. Priorities
may also be based on semantic information about the
application, reflecting the criticality with which the
scheduler must deal with some event, for example.

Unfortunately, most methods are not composi-
tional. Even if a method can provide assurances indi-
vidually to each component in a pair, there is no
systematic way to provide assurances for the aggre-
gate of the two, except in trivial cases. One manifes-
tation of this problem is priority inversion—a chronic
issue in scheduling. Priority inversion occurs when
processes interact, for example by entering a monitor
to exclusively access a shared resource. Suppose a low-
priority process accesses and locks a shared resource,
and then a medium-priority process preempts it. The
low-priority process holds exclusive access to the
resource, but cannot execute while the medium pri-
ority process is around. Suppose that a high-priority
process preempts the medium-priority process, and
then attempts to gain access to the same resource. It
must wait for the medium-priority process to run to
completion, and then for the low-priority process to
run until it relinquishes the resource. In effect, the low-
priority process blocks the high-priority process.

Although there are ways to prevent priority inver-
sion, the problem is symptomatic of a deeper failure.
In a priority-based scheduling scheme, processes inter-
act both through the scheduler and through the
mutual-exclusion mechanism (monitors) that the
framework supports. Together, these interaction
mechanisms have no coherent compositional seman-

tics, which points to the need for a different
scheduling mechanism entirely. This could be a
fruitful research area.

INTERFACES AND TYPES
Type systems are one of the great practical

triumphs of contemporary software. They do
more than any other formal method to ensure
software’s correctness. Object-oriented lan-
guages, with their user-defined abstract data
types, have greatly enhanced both software
reusability (witness the Java class libraries) and
software quality. Type systems provide a vocab-
ulary for talking about larger structure than
lines of code and subroutines.

The disadvantage for embedded software is that type
systems talk only about static structure—the syntax of
procedural programs. They say nothing about the pro-
gram’s concurrency or dynamics. These properties are
relegated to more informal descriptions, such as design
patterns and object modeling. For example, calling the
initialize() method before the go() method is not part of
the object’s type signature. An object’s temporal prop-
erties (method x() must be invoked every 10 ms) are also
not part of the type signature. Work with active objects
and actors moves a bit in the right direction by being
somewhat more explicit about the dynamic properties
of the components’ interfaces, but it does not say enough
about interfaces to ensure safety, liveness, consistency,
or real-time behavior. Design by contract moves in the
right direction, but it has weak formal properties.

Type system techniques
At its root, a type system constrains what a com-

ponent can say about its interface and how to ensure
compatibility when designers compose components.
Mathematically, type system techniques depend on a
partial type ordering, typically defined by a subtyp-
ing relation or (more ad hoc) by lossless convertibil-
ity. This means that an object of type A can be
converted to an object of type B without any loss of
information, as Figure 1 illustrates. Designers can
build elaborate techniques from the robust mathe-
matics of partial orders, leveraging fixed-point theo-
rems, for example, to ensure convergence of type
checking, type resolution, and type inference algo-
rithms. You can even view type system methods as
special cases of theorem-proving methods.

With this very broad interpretation of type systems,
embedded software designers can use the theory as
long as the interface properties are elements of a par-
tial order—preferably a complete partial order or a
lattice.9 I suggest they first describe an interface’s
dynamic properties (such as the protocols with which
a component interacts with other components) using
nondeterministic automata. They can then define a

September 2000 23

Type systems are
one of the great

practical triumphs
of contemporary

software. They do
more than any other

formal method to
ensure software’s

correctness.

24 Computer

pertinent partial ordering relation using the simulation
relation among automata. It may also be possible to
use various timed automata extensions in similar ways
to define an interface’s temporal properties much more
completely than is possible in common practice today.

The case for strong typing
Strongly typed languages, such as Java and ML,

emphasize catching errors as soon as possible—often
the compiler catches them. But many errors are not
within the type system’s scope. Accessing an array out
of bounds, for example, is a typical programming error
that the type system cannot prevent. Several researchers
have shown how to augment the type system to include
such properties as array size (typically using dependent
types10). This work lends credence to the idea of
extending type systems to program dynamics.

Not everyone is enthusiastic about strong typing, how-
ever. John Ousterhout of Scriptics Inc. argues that strong
typing compromises modularity and discourages reuse:11

Typing encourages programmers to create a variety
of incompatible interfaces...each interface requires

objects of specific type and the compiler prevents any
other types of objects from being used with the inter-
face, even if that would be useful.

Instead, Ousterhout advocates languages without
strong typing, such as Lisp and Tcl, where safety is pos-
sible only with extensive runtime checking. Type check-
ing is postponed until the last possible moment,
however, so a system may exhibit erroneous behavior
only after running for an extended period after the actual
violation. Identifying the source of the problem can be
difficult, and guaranteeing the code may be impossible.

Although Ousterhout raises a valid point, discarding
strong typing is not the solution. For embedded systems
especially, the extra degree of safety that strong typing
offers overwhelms even the desire for modularity and
reuse. The question then becomes how to achieve mod-
ularity and reuse without discarding strong typing.

One solution is to use polymorphism, reflection, and
runtime type inference and type checking. Components
must give their dynamic properties as part of their inter-
face definition. Automata can give the protocols for
communication among components, for example.

General

String

Complex

Double

Boolean Scalar

Long

Integer

NaT

Domain
polymorphic

Discrete
events

Dataflow

Continuous
time

NaT

Process
networks Rendezvous

(a) (b)

Figure 1. How a type system works. A type system makes it possible to ensure compatibility when composing components. Par-
tial type ordering is defined by lossless convertibility. In (a), a data-level type system, a data type is “less than” another type if
it can be converted to the other type without loss of information. For example, Integer is less than Double and less than Long,
but Double and Long are incomparable (neither is less than the other). In (b), a system-level type is less than another if the
other simulates the first. System-level types use automata to capture the dynamics of component interaction. (This idea is
explained in detail at http://ptolemy.eecs.berkeley.edu/publications/papers/00/systemLevel.)

Subclassing and polymorphism become possible because
one automaton can be a generalization of another (tech-
nically, via a simulation relation), much the way a com-
plex number data type is a generalization of a real-
number data type.

Extending types to include an interface’s dynamic
properties requires novel syntactic language support as
well as new compiler and runtime techniques. Object-
oriented languages, for example, brought typing con-
cepts such as inheritance and polymorphism into
mainstream use. Not only do modern languages syn-
tactically support these concepts, but higher level visual
syntaxes such as the Unified Modeling Language (UML)
have evolved to extend syntactic support even further.
Extended type systems could, in principle, reflect

• protocols for communication between compo-
nents (rendezvous, asynchronous message pass-
ing, streams, events, and so on);

• models of time (continuum, discrete, clocked,
partially ordered, and so on); and

• control flow (synchronous, scheduled firings,
process scheduling, real-time, and so on).

These component aspects can be polymorphic,
meaning that components will assert minimal con-
straints in their interface. To make such types possible,
there must be sufficient syntactic language support—
a key part of future embedded software research.

METAFRAMEWORK
All frameworks impose some constraints to achieve

certain benefits. As a rule, stronger benefits come at
the expense of stronger constraints. Thus, frameworks
can become rather specialized as they seek these ben-
efits. The drawback with specialized frameworks is
that they are unlikely to solve all the framework prob-
lems for any complex system. To avoid giving up the
benefits of specialized frameworks, designers of com-
plex systems will have to mix frameworks heteroge-
neously. There are several ways to do this. One is
through specialization (analogous to subtyping) where
one framework is simply a more restricted version of
another. A second way is to mix frameworks hierar-
chically. A component in one framework is actually
an aggregate of components in another. The challenge
is to avoid having to design each pairwise hierarchi-
cal framework combination.

The Ptolemy project at UC Berkeley (http://
ptolemy.eecs.berkeley.edu) takes the hierarchical
approach and uses a system-level type concept, domain
polymorphism, to avoid pairwise design. Designers
realize a framework using a software infrastructure,
called a domain. A component that is domain poly-
morphic can operate in multiple domains. The idea is
that the interface an aggregate of components exposes

in a domain is itself domain polymorphic. Thus,
designers can use the aggregate in any of several
other domains and still have clear semantics.

Initially, Ptolemy project members built
domain polymorphic components in an ad hoc
way, using intuition to define an interface that
was as unspecific as possible. More recently,
they have characterized these interfaces using
nondeterministic automata to give the inter-
face’s assumptions and requirements precisely.
Automata also characterize the services each
domain provides. A component can operate
within a domain if its interface automata simu-
late those of the domain. The resulting Ptolemy
framework can be viewed as a metaframework
in that it provides an infrastructure for composing
frameworks.

A few other research projects have also combined
computational models hierarchically. The Gravity sys-
tem and its visual editor Orbit, like Ptolemy, provide
a metaframework that mixes modeling techniques het-
erogeneously.12 A model in a domain is a facet, and
heterogeneous models are multifaceted designs.

These are but a few of the interesting embedded
system research problems. There are many
more. Human-computer interaction, for exam-

ple, is key to making embedded systems pervasive and
useful. Ideally, the embedded software becomes trans-
parent, mediating a natural and intuitive interaction
with the physical world. Also, configurable hardware
offers interesting opportunities and challenges and
potentially relates strongly to the problem of select-
ing appropriate computational models.

There are also interesting and challenging network-
ing problems, particularly providing quality-of-service
guarantees in the face of unreliable resources. Finally,
hardware and software design techniques that minimize
power consumption are critical for portable devices.

I have focused on constructing embedded software
because embedded software demands that time
become a first-class part of the programming exercise.
Embedded system designers need more than threads,
semaphores, and monitors. The focus must move
beyond a program’s functional correctness to its tem-
poral correctness. The key problem then becomes
identifying the appropriate abstractions for repre-
senting the design. ✸

Acknowledgments
The character and role of frameworks became much

clearer to me after I attended the Workshop on
Software Behavior Description (December 1998) and
the Workshop on Software Development for the Post-
PC World (December 1999). I thank Cordell Green,

September 2000 25

All frameworks
impose some
constraints to

achieve certain
benefits. As a rule,
stronger benefits

come at the expense
of stronger
constraints.

26 Computer

Tom Henzinger, Paul Hudak, Gregor Kiczales, Bob
Laddaga, Butler Lampson, Bill Mark, John Mitchell,
Bill Scherlis, Victoria Stavridou, and Janos Sztipanovits.
I drew many technical ideas from the Ptolemy project
and have been particularly influenced by many of the
students and postdocs in that project. I also thank Kees
Vissers for extensive, thoughtful feedback.

References
1. G.A. Agha, Actors: A Model of Concurrent Computa-

tion in Distributed Systems, MIT Press, Cambridge,
Mass., 1986.

2. E.A. Lee and A. Sangiovanni-Vincentelli, “A Framework
for Comparing Models of Computation,” IEEE Trans.
CAD Integrated Circuits and Systems, Dec. 1998, pp.
1217-1229.

3. A. Benveniste and P. Le Guernic, “Hybrid Dynamical
Systems Theory and the SIGNAL Language,” IEEE
Trans. Automatic Control, May 1990, pp. 525-546.

4. L. Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Comm. ACM, July 1978, pp.
558-565.

5. R. Allen and D. Garlan, “Formalizing Architectural Con-
nection,” Proc. 16th Int’l Conf. Software Eng. (ICSE 94),
IEEE CS Press, Los Alamitos, Calif., 1994, pp. 71-80.

6. T.A. Henzinger, “The Theory of Hybrid Automata,”
Proc. 11th Symp. Logic in Computer Science, IEEE CS
Press, Los Alamitos, Calif., 1996, pp. 278-292.

7. A. Girault, B. Lee, and E.A. Lee, “Hierarchical Finite
State Machines with Multiple Concurrency Models,”
IEEE Trans. CAD Integrated Circuits and Systems, June
1999, pp. 742-760.

8. D. Harel et al., “STATEMATE: A Working Environment
for the Development of Complex Reactive Systems,”
IEEE Trans. Software Eng., Apr. 1990, pp. 403-414.

9. W.T. Trotter, Combinatorics and Partially Ordered Sets,
Johns Hopkins Univ. Press, Baltimore, 1992.

10. P. Martin-Löf, “Constructive Mathematics and Com-
puter Programming,” in Logic, Methodology, and Phi-
losophy of Science VI, North-Holland, Amsterdam,
1980, pp. 153-175.

11. J.K. Ousterhout, “Scripting: Higher Level Programming
for the 21st Century,” Computer, Mar. 1998, pp. 22-30.

12. N. Abu-Ghazaleh et al., “Orbit—A Framework for High
Assurance System Design and Analysis,” Tech. Report
TR 211/01/98/ECECS, Univ. of Cincinnati, 1998.

Edward A. Lee is a professor of electrical engineering
and computer sciences at the University of California,
Berkeley, where his research interests center on design,
modeling, and simulation of embedded, real-time com-
putational systems. He received a PhD in electrical
engineering from UC Berkeley. His addresses are eal@
eecs.berkeley.edu and http://ptolemy.eecs.berkeley.
edu/~eal.

Innovative technology for computer professionals

How to Reach Computer

Writers

We welcome submissions. For detailed information,
write for a Contributors’ Guide (computer@computer.
org) or visit our Web site: http://computer.org/computer/.

News Ideas

Contact Lee Garber at lgarber@computer.org with
ideas for news features or news briefs.

Products and Books

Contact Kirk Kroeker at kkroeker@computer.org with
product announcements. Contact Jason Seaborn at
jseaborn@computer.org with book announcements.

Letters to the Editor

Please provide an e-mail address or daytime phone num-
ber with your letter. Send letters to Letters, Computer,
10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos,
CA 90720-1314; fax +1 714 821 4010; computer@
computer.org.

On the Web

Visit http://computer.org for information about joining
and getting involved with the Society and Computer.

Magazine Change of Address

Send change-of-address requests for magazine subscrip-
tions to address.change@ieee.org. Make sure to specify
Computer.

Missing or Damaged Copies

If you are missing an issue or received a damaged copy,
contact membership@computer.org.

Reprint Permission

To obtain permission to reprint an article, contact
William Hagen, IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org. To buy a reprint, send a
query to computer@computer.org or a fax to +1 714
821 4010.

