IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000 1597

Resynchronization for Multiprocessor DSP Systems

Shuvra S. Bhattacharyyl®lember, IEEESundararajan Sriranviember, IEEEand Edward A. LegFellow, IEEE

Abstract—This paper introduces a technique, called resynchro- a micro-controller, a DSP, and custom ASIC circuitry. With
nization, for reducing synchronization overhead in multiprocessor jncreasing levels of integration, it is now feasible to integrate
implementations of digital signal processing (DSP) systems. g,ch heterogeneous systems entirely on a single chip. The de-

The technique applies to arbitrary collections of dedicated, . task of h i t hin i |
programmable or configurable processors, such as combina- Sign task of such mufliprocessor systems-on-a-chip IS complex,

tions of programmable DSP’s, ASICS, and FPGA subsystems. and the complexity will only increase in the future.
Thus, it is particularly well-suited to the evolving trend toward A critical issue in the design of embedded multiprocessors

heterogeneous single-chip multiprocessors in DSP systems. Resynis managing communication and synchronization between the
chronization exploits the well-known observation [43] that in a heterogeneous processing elements. In this paper, we focus on

given multiprocessor implementation, certain synchronization th bl f minimizi icati d hronizati
operations may be redundant in the sense that their associated € problem o minimizing communication and synchronization

sequencing requirements are ensured by other synchronizations Overhead in embedded multiprocessors. We propose algorithms
in the system. The goal of resynchronization is to introduce new that automate the process of designing synchronization points

synchronizations in such a way that the number of original syn- in a shared-memory multiprocessor system with the objective
chronizations that become redundant exceeds the number of new of reducing synchronization overhead.

synchronizations that are added, and thus, the net synchronization o . .
c)(;st is reduced. y Specifically, we develop a technique callezbynchroniza-

Our study is based in the context of self-timed execution for it- tion for reducing the rate at which synchronization operations
erative dataflow specifications of DSP applications. An iterative must be performed in a shared-memory multiprocessor system.
dataflow specification consists of a dataflow representation of the Resynchronization is based on the concept that there can be re-
body of aloop thatis to be iterated indefinitely; dataflow program- 4,nqancy in the synchronization functions of a given multipro-
ming in this form has been employed extensively in the DSP do- . . L L
main. cessor implementation, and the objective of resynchronizationis

. o to introduce new synchronizations in such away that the number

Index Terms—Embedded multiprocessors, iterative dataflow ot griginal synchronizations that consequently become redun-

graphs, latency, multiprocessor scheduling, pipelining, real-time R .
signal processing, self-timed systems, set covering, shared memory,c!":mt is significantly more than the number of new synchroniza-

VLSI signal processing. tions.
We study this problem in the context of self-timed execution
of iterative synchronous datafloSDF) specifications, which
are SDF representations of computations that are to be repeated
HIS paper is concerned with implementation of iterativéndefinitely. In SDF, an application is represented as a directed
dataflow-dominated algorithms on embedded multipr@raph in which verticegactors) represent computational tasks
cessor systems. In the DSP domain, such multiprocessofsarbitrary complexity, edges specify data dependences, and
typically consist of one or more CPU’s and one or morthe number of data valugtokens) produced and consumed by
application-specific hardware components. Such embeddgath actor is fixed.
multiprocessor systems are becoming increasingly commorAlthough the model is too restricted for many general-pur-
today in applications ranging from digital audio/video equippose applications, iterative SDF has proven to be a useful frame-
ment to portable devices such as cellular phones and PDArk for representing a significant class of DSP algorithms, and
A digital cellular phone, for example, typically consists oft has been used as a foundation for numerous DSP design en-
vironments [10], [26], [40], [42]. A wide variety of techniques
have been developed to schedule SDF specifications for effi-
Manuscript received August 25, 1998; revised March 6, 2000. The work 6fent multiprocessor implementation (e.g., [1], [2], [11], [17],
S. S. Bhattacharyya was supported in part by the U.S. National Science chﬂ‘g]' [30], [36], [40], [44] and [47]). The techniques developed
dation (CAREER, MIP9734275). Part of this work was performed as part of the ;. . .
Ptolemy project, which is supported by the Defense Advanced Research Proj%téh's paper can be used as a post-processing step to improve
Agency (DARPA), the Air Force Research Laboratory, the State of Californthie performance of implementations that use any of these sched-

MICRO program, and the following companies: The Alta Group of Cadence Dﬁ1ing techniques.

sign Systems, Hewlett Packard, Hitachi, Hughes Space and Communication . .
NEC, Philips, and Rockwell. This paper was recommended by Associate Edito?EaCh SDF edge has associated a nonnegative intiegey.

J. Gotze. SDF delays represent initial tokens, and specify dependencies

S. S. Bhattacharyya is with the Department of Electrical and Computer Engjatween iterations of actors in iterative execution. For example,
neering, and the Institute for Advanced Computer Studies, University of Mar#- k d d by théth i . f A
land, College Park, MD 20742 USA (ssb@eng.umd.edu). tokens produced by théth invocation of actord are con-

S. Sriram is with the DSP R&D Research Center, Texas Instruments, Dallssimed by thgk + 2)th invocation of actorB then the edge

TX USA (sriram@hc.ti.com). , o (A, B) contains two delays. We assume that the input SDF
E. A. Lee is with the Department of Electrical Engineering and Computer Sci-

ences, University of California at Berkeley, CA USA (eal@eecs.berkeley.ed@raph ishomogeneoyswhich meanslthat .the numlbers of to-
Publisher Item Identifier S 1057-7122(00)09920-7. kens produced and consumed are identically unity. However,

. INTRODUCTION

1057-7122/00$10.00 © 2000 IEEE

1598 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

since efficient techniques have been developed to convert garentations. Frequently in real-time signal processing systems,
eral SDF graphs into homogeneous graphs [28], our techniqle&®ncy is also an important issue, and although resynchroniza-
can easily be adapted to general SDF graphs. tion improves the throughput, it generally degrades (increases)
We refer to a homogeneous SDF graph as@flow graph the latency. In Sections IV and V, we address the problem of
(DFG). We represent a DFG by an ordered gt £/), where resynchronization under the assumption that a relatively large
V' is the set of actors an# is the set of edges. We refer to thancrease in latency is acceptable. Such a scenario arises when the
source and sink actors of a DFG edgby src(e) andsnk(e), computations occur in a feedforward manner, e.g., audio/video
we denote the delay anby delay(e¢), and we frequently repre- decoding for playback from media such as DVD (Digital Video
sente by the ordered paifsrc(e), snk(e)). We say thatig an Disk), and also for a wide variety of simulation applications.
output edgeof src(e), e is aninput edgeof snk(e), andeis Sections VI-VIII, on the other hand, examine the relationship
delaylessif delay(e) = 0. between resynchronization and latency, and address the problem
Our implementation model involvesself-timedscheduling of optimal resynchronization when only a limited increase in la-
strategy [29]. Each processor executes the tasks assigned terity is tolerable. Such latency constraints are present in inter-
in a fixed order that is specified at compile time. Before firingctive applications such as video conferencing and telephony.
an actor, a processor waits for the data needed by that actor
to become available. Thus, processors are required to perform Il. BACKGROUND
run-time synchronization when they communicate data. This
provides robustness when the execution times of tasks are nd?‘ > <
known precisely or when they may exhibit occasional deviatiof&l€NCe (c1; ¢z, - -+, ¢), where eache; is in E, and
from their compile-time estimates. snk(e;) = sre(eips), fore = 1,2, -, (n — 1). We
Interprocessor communicatigtPC) between processors isS&Y that the patty = (e1, ez, ---, ¢,) contains eache;
assumed to take place through shared memory, which could@3l €ach contiguous subsequence (ef, ¢, ---, ¢n); p
global memory between all processors, or could be distributigdirected from srce,) to snk(e,) and each member of
between pairs of processors (for example, hardware first-ing”¢(¢1), sre(e2), -, sre(en), snk(e,)} is traversed by
first-out (FIFO) queues or dual ported memory). Such simple A path that is directed from some vertex to itself is called

communication mechanisms, as opposed to cross bars and efafYclé and g3|mple|cycle is a cycle of which no proper
orate inter-connection networks, are common in embedded sydPseguence is a cycle.

tems, owing to their simplicity and low cost. Given a pathp = (e1, e2, --+, e,), the path delay of p,
Synchronization is performed by setting and testing flagi€noted Delagp), is given by
in shared memory. For example, in tB8S protocol [5] for N
a dataflow edge:, a write pointerwr(e) for is maintained Delay(p) = Zdelay(ci). 1)
=1

path in a directed graph(V, E) is a finite se-

on the processor that executesc(e), a read pointetrd(e)
is maintained on the processor that executes(c); and a
copy ofwr(e) is maintained in some shared memory locatio8ince the delays on all DFG edges are restricted to be nonneg-
sv(e). The pointersrd(e) and wr(e) are initialized to zero ative, it is easily seen that between any two verticeg € V,
anddelay(e), respectively. Just after each executiorsaf(¢), either there is no path directed fromto y, or there exists a
the new data value produced ontas written into the shared minimum-delay path between: andy. Given a DFG, and
memory buffer fore at off-setwr(e), wr(e) is updated by the verticesz, y in G, we definep; (2, v) to be equal tax if there
operation(wr(e) «— (wr(e) + 1)mod B(e)), whereB(e) is is no path frome to y, and equal to the path delay of a min-
the buffer size associated withandswv(e) is updated to contain imum-delay path frome to y if there exist one or more paths
the new value ofvr(e). Just before each execution @fk(¢), fromztoy. If Gis understood, then we may drop the subscript,
the value contained isu(e) is repeatedly examined (with and simply write " in place of “o¢.”
interleaved periods of “backoff” from the shared bus) until itis By a subgraph of (V, E), we mean the directed graph
found to be not equal ted(e); then the data value residing aformed by anyV’ C V together with the set of edges
offsetrd(c) of the shared memory buffer feris read and-d(e) {e¢ € FElsrc(e), snk(e) € V’'}. We denote the subgraph
is updated by the operatidnd(e) — (rd(e) + 1) mod B(e)). associated with the vertex—sub%&tby subgrapiV’). We say
Similarly, interfaces between hardware and software ateat(V, E) is strongly connectedif for each pair of distinct
typically implemented using memory-mapped registers in tiverticesz, y, there is a path directed fromto ¢ and there is
address space of the programmable processor, which camaljmath directed from: to y. We say that a subsét’ C V' is
viewed as a kind of shared memory. Synchronization of sustrongly connected if subgragft’) is strongly connected. A
interfaces is achieved using flags that can be tested and sestipngly connected component (SCCYf (V, F) is a strongly
the programmable component, and the same can be donecbynected subsét” C V such that no strongly connected
an interface controller on the hardware side [20]. Thus, in osubset ofV” properly containd’’. If V'’ is an SCC, then when
context, effective resynchronization results in a significantihere is no ambiguity, we may also say that subgr@ph is an
reduced rate of accesses to shared memory for the purpos&6L. An SCC is aource SCCif it has no predecessor SCC;
synchronization. an SCC is aink SCCif it has no successor SCC; and an SCC
The resynchronization techniques developed in this paper @aninternal SCC if it is neither a source SCC nor a sink SCC.
designed to improve the throughput of multiprocessor implén edge is deedforward edge if it is not contained in an SCC,

BHATTACHARYYA et al: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1599

or equivalently, if it is not contained in a cycle; an edge that is Q
contained in at least one cycle is calletbadbackedge. P‘°°esls°‘ g“l;"l‘:"de““g
We denote the number of elements in a finite$dty |57|. () (¢) P:giz ACE
[1l. SYNCHRONIZATION MODEL (o)y—(E) @
In this section, we review the model that we use for ana- G o
lyzing synchronization in self-timed multiprocessor systems.
The model was originally developed in [45] to study the exe- D Q G y
cution patterns of actors under self-timed evolution, and in [5], "
the model was augmented for the analysis of synchronization 0 9
overhead.

; At A doqp i~o. Fig. 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a)
. A DFG representation O.f an a_ppllcatlor_l IS Fa"e lica and the processor assignment / actor ordering of part (b). A D on top of an edge
tion DFG. For each task in a given application DFG, We epresents a unit delay.

assume that an estimate’) (a nonnegative integer) of the exe-

cution time is available. Given a multiprocessor schedulé&for ... it no IPC edge, then no shared buffer is allocated be-

we'derlve.a Qata structure called #RC graph, dgnoted?ipc, tween the two actors; only the corresponding synchronization
by instantiating a vertex for each task, connecting an edge fr%

. tocol is invoked. Details on the operation of synchronization
each task to the task that succeeds it on the same processor %'fﬁcols for self-timed dataflow schedules can be found in [5]
adding an edge that has unit delay from the last task on each Bjro- '
cessor to the first task on the same processor. Also, for each eg96-ctimated Throughput
(z, y) in G that connects tasks that execute on different proces- o))
sors, anlPC edgeis instantiated irG;,. from z to y. Fig. 1(c) If the execution time of each acteris a fixed constant*(v)

shows the IPC graph that corresponds to the application D¢t all invocations ofv, and the time required for IPC i_s ignored _
of Fig. 1(a, b) and the processor assignment / actor ordering@fSUmed to be zero), then as a consequence of Reiter's analysis

Fig. 1(a, b). [41], the throughput (number of DFG iterations per unit time)
Each edge: in Gy, represents theynchronization con- ©f @ synchronization grap is given byl/(Amax(G)), where
straint
RAC)
start(snk(e), k) > end(src(e), k — delay(e)) (2) Amax(G) = max N 3

cycle Cin G Delay(C’)

where start(v, k) and end(v, k) respectively represent the
times at which invocatiork of actorv begins execution and |fthe maximum in (3) is infinite, there exists at least one delay

completes execution. free cycle inG, which means that the schedule modeled by the
synchronization graph is deadlocked. In the remainder of this
A. The Synchronization Graph paper, we are concerned only with synchronization graphs that

Initially, an IPC edge inG;,. represents two functions: result from schedules that are not deadlocked. Thus, we assume

reading and writing of tokens into the corresponding buffeihe absence of _delay—free cycles. In practice, this assum.pt.ion is
and synchronization between the sender and the receiver.t$ @ problem since delay-free cycles can be detected efficiently
differentiate these functions, we define another graph call&?]: o _
the synchronization graph, in which edges between tasks The quotientin (3) is called theycle meanof the cycleC,
assigned to different processors, caligdchronization edges and the entire quantity on the RHS of (3) is called thex-
represensynchronization constraints only imum cycle meanof 7. A cycle whose cycle mean is equal to
Initially, the synchronization graph is identical@,,.. How- the maximum cycle mean is callecdtical cycle. Since in our
ever, resynchronization modifies the synchronization graph Boblem context we only have execution time estimates avail-
adding and deleting synchronization edges. After resynchi@ale instead of exact values, we replace) with the corre-
nization, the IPC edges ifi;,.. represent buffer activity and areSPonding estimat&(v) in (3) to obtain an estimate of the max-
implemented as buffers in shared memory, whereas the syncHfg4m cycle mean. The reciprocal of this estimate of the max-
nization edges represent synchronization constraints and areifffidM cycle mean is called testimated throughput The ob-
plemented by updating and testing flags in shared memory)&ftive of resynchronization is to increase #eual throughput
there is an IPC edge as well as a synchronization edge betwB¥reducing the rate at which synchronization operations must
the same pair of actors, then the synchronization protocol is & Performed, while making sure that the estimated throughput
ecuted before the buffer corresponding to the IPC edge is & ot degraded.
cessed to ensure sender—receiver synchronization. On the other . o o
hand, if there is an IPC edge between two actors in the |P¢ Preservation and Subsumption in Synchronization Graphs
graph, but there is no synchronization edge between the twoAny transformation that we perform on the synchronization
then no synchronization needs to be done before accessinggtaph must respect the synchronization constraints implied by
shared buffer. If there is a synchronization edge between t,.. If we ensure this, then we only need to implement the

1600 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

synchronization edges of the optimized synchronization graph.
If Gy = (V, E1) andG, = (V, E,) are synchronization graphs
with the same vertex-set and the same set of intraprocessor
edges (edges that are not synchronization edges), we say that
(G preservesGs if for all e € E5 such that ¢ E;, we have
pa, (srefe), snk(e)) < delay(e).
Theorem 1 [5]: The synchronization constraints [as speci-
fied by (2)] of G; imply the constraints of7, if G; preserves
Go.
Intuitively, Theorem 1 is true becausedf; preservess,,
then for every synchronization edgen G, there is a path in
(G, that enforces the synchronization constraint specified.by
A synchronization edge isedundant in a synchroniza-
tion graphd if its removal yields a graph that preservés
The synchronization grapl is reduced if G contains no
redundant synchronization edges. For example, in Fig. 1(c),
the synchronization edgg”, F') is redundant due to the path
((C, E), (E, D), (D, I)).
Given a synchronization gragh, let (x;, z») be a synchro- Fig- 2. An example of resynchronization.
nization edge in, and let(y, y2) be an ordered pair of ac-
tors in G. We say that(y;, y2) subsumes(xy, z2) in G if the estimated throughput. To avoid this complication, which re-
p(x1, y1) + p(y2, z2) < delay((z1, z2)). Thus, every syn- quires a check of significant complexity(|V'|| E|log,(|V])),
chronization edge subsumes itself, and intuitivelyif, z2) where(V, E) is the modified synchronization graph—this is
is a synchronization edge, thép,, y») subsumegz,, z2) if using the Bellman—Ford algorithm described in [2fd)) each
and only if a zero-delay synchronization edge directed fggm candidate resynchronization edge, we focus only on “feed-
to y» makes(z;, x2) redundant. forward” resynchronization in this paper. Future research will
Given an ordered paifv;, v2) of actors, the set of syn- address combining the insights developed here for feedforward
chronization edges that are subsumed(by, v2) is denoted resynchronization with efficient techniques to estimate the
x((v1, v2)). impact that a giveffieedbackesynchronization edge has on the
estimated throughput.
Opportunities for feedforward resynchronization are partic-
V. RESYNCHRONIZATION ularly abundant in the dedicated hardware implementation of
dataflow graphs. If each actor is mapped to a separate piece of
We refer to the process of adding one or more new synchittardware, as in the VLSI dataflow arrays of Kuagal. [25],
nization edges and removing the redundant edges that resulttas for any application graph that is acyclic, every communica-
resynchronizatiorfdefined more precisely below). Fig. 2(a) il-tion channel between two units will have an associated feedfor-
lustrates how this concept can be used to reduce the total numberd synchronization edge. Feedforward synchronization edges
of synchronizations in a multiprocessor implementation. Heralso arise naturally in multiprocessor software implementations
the dashed edges represent synchronization edges. Obsasweell. A software example of a music synthesis application is
that if we insert the new synchronization edde(C, H), presented in detail in Section VIII.
then two of the original synchronization edge&B; G) and Definition 1: Suppose that? = (V, E) is a synchro-
(E, J)—become redundant. Since redundant synchronizatinization graph, and” = {ej, es, ---, e, } is the set of all
edges can be removed from the synchronization graph to yiédgdforward edges if. A resynchronization of G is a finite
an equivalent synchronization graph, we see that the net effset R = {¢/, ¢}, ---, ¢],,} of edges that are not necessarily
of adding the synchronization edge(C, H) is to reduce the contained inE, but whose source and sink vertices ard/in
number of synchronization edges that need to be implementedth that a}}, ¢, - - -, ¢/, are feedforward edges in the DFG
by 1. In Fig. 2(b), we show the synchronization graph th&* = (V, ((E — F') + R)); and b)G* preserves7—that is,
results from inserting theesynchronization edgdy(C, H) pg-(src(e;), snk(e;)) < delay(e;) foralli € {1,2, ---, n}.
into Fig. 2(a), and then removing the redundant synchronizatiglch member ofR that is not inF is called aresynchro-
edges that result. nization edge of the resynchronizatiorz, G* is called the
Definition 1 gives a formal definition of resynchronizatiorresynchronized graph associated with®, and this graph is
that we will use throughout the remainder of this paper. Thadenoted byl (R, G).
considers resynchronization only “across” feedforward edges.If we let G denote the graph in Fig. 2, then the set of feed-
Resynchronization that includes inserting edges into SCGtwward edges isf" = {(B, G), (E, J), (E, C), (H, I)};
is also possible; however, in general, such resynchronizatifn= {do(C, H), (E, C), (H, I)} is a resynchronization of
may increase the estimated throughput (see Theorem @).Fig. 2(b) shows the DFG™* = (V, ((F — F) + R)); and
Thus, for our objectives, it must be verified that each nefwom Fig. 2(b), it is easily verified that’, R, and G* satisfy
synchronization edge introduced in an SCC does not decreasaditions (a) and (b) of Definition 1.

BHATTACHARYYA et al: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1601

Lemma 1 [7]: Suppose thatf and G’ are synchronization
graphs such tha¥’ preserves?, andp is a path inZ from actor
z to actory. Then there is a patp in G’ from z to y such
that Delay(p’) < Delay(p), andtr(p) C tr(p’), wheretr(y)
denotes the set of actors traversed by the path

Thus, if a synchronization grap&’ preserves another syn-
chronization grapli7 andp is a path inGG from actorz to actor
», then there is at least one pathin G’ such that 1) the path
¢’ is directed fromz to y; 2) the cumulative delay op’ does
not exceed the cumulative delay pnand 3) every actor that is
traversed by is also traversed by’ (althoughp’ may traverse
one or more actors that are not traverseghy

As a consequence of Lemma 1, the estimated throughput of a
given synchronization graph is always less than or equal to that
of every synchronization graph that it preserves.

Theorem 2:If G is a synchronization graph, and
G’ is a synchronization graph that preservés then
)\max(G/) Z)\ma.X(G)-

Proof: Suppose that is a critical cycle inGG. Lemma

1 guarantees that there is a cyd¥ in G’ such that a) D (B)
Delay(C’) < Delay(C) and b) the set of actors that are
traversed byC' is a subset of the set of actors traversed’ By ©

Now clearly, b) implies that
Fig. 3. An illustration of input and output hubs for synchronization graph

> t(v) > > t(v) (4) sces.

v is traversed by C’ v is traversed by C

and this observation together with a) implies that the cycle me ik G whose source actor is i, we haveoo(sre(e), z) = 0.

of ¢’ is greater than or equal to the cycle mearCofSinceC € say tha_tC IS Imkab!e If there exist actors:, y in ¢’ such
) o . . . thatx is an input huby is an output hub, angd-(x,) = 0. A
is a critical cycle inG, it follows that Anax(G’) > Amax(G). L B . o

Q.E.D synchronization graph ishainableif each SCC is linkable.

Thus, any saving in synchronization cost obtained by ree% For example, consider the SCC in Fig. 3(a), and assume that

ranging synchronization edges may come at the expense Ob%dashed edges represent the synchronization edges that con-

. : L L ect this SCC with other SCC’s. This SCC has exactly one
decrease in estimated throughput. As implied by Definition %put hub, actord, and exactly one output hub, actét, and

we avoid this com_phgauon by restricting our attent|qn tq feedSi cep(A, F) = 0, it follows that the SCC is linkable. How-
forward synchronization edges. Clearly, resynchronization that ~~" .

o ver, if we remove the edgg”, F'), then the resulting graph
rearranges only feedforward synchronization edges cannot

crease the estimated throughput since no new cycles are mo%fmlljvp hIEbFI,% gggl Iifr}ic;:kléllfsbéecf:lgcfhgtdgffu?%torrharﬁrﬁn
duced and no existing cycles are altered. P ' y

We refer to the problem of finding a resynchronization witriln practica_l synchronization graphs are those SCC's that corre-
the fewest number of elements as theximum-throughput spond to single-processor subsystems, such as the SCC shown in

o . o Fig. 3(c). In such cases, the first actor executed on the processor
resynchronization problem, or simply, theresynchronization

problem. In [7], we show that the resynchronization problem i always an input hub and the last actor executed is always an

NP-hard by deriving a reduction from the classic setering Oultrﬁ)l:;:l::r'nainder of this section, we assume that for each link-
problem[13], which is a well-known NP-hard problem. ’

able SCC, an input hub and output huhy are selected such
thatp(z, i) = 0, and these actors are referred to assétlected
input hub and theselected output hubof the associated SCC.
Which input hub and output hub are chosen as the “selected”
In this section, we show that although optimal resynchr@nes make no difference to our discussion of the techniques in
nization is intractable for general synchronization graphthis section as long they are selected so fhiat y) = 0.
a broad class of synchronization graphs exists for which An important property of linkable synchronization graphs is
optimal resynchronizations can be computed using an efficighat if C; andC, are distinct linkable SCC'’s, then all synchro-
polynominal-time algorithm. nization edges directed frory; to C, are subsumed by the
Definition 2: Suppose that’ is an SCC in a synchronizationsingle ordered paifl; , I2), wherel; denotes the selected output
graph, andz is an actor inC. Thenz is aninput hub of C hub of C; andi, denotes the selected input hub @§. Fur-
if for each feedforward synchronization edgm GG whose sink thermore, if there exists a path between two SCCJs C} of
actor is inC, we haveoc(z, snk(e)) = 0. Similarly, z is an the form ((o1, i2), (02, 43), -+, (0n-1, i»)) Whereo; is the
output hub of C if for each feed-forward synchronization edgeselected output hub af?, <, is the selected input hub @f?,

V. EFFICIENT, OPTIMAL RESYNCHRONIZATION FOR ACLASS
OF SYNCHRONIZATION GRAPHS

1602 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

and there exist distinct SCC%;, Zs, ---, Z,—2 ¢ {C{, C4} edges or has nonzero delay on all input edgesy,jandy is
such thatfoc = 2, 3, ---, (n— 1), iy, o, are respectively the an actor inG other thanz. We define thdatency from z to y
selected input hub and the selected output hubiof; , then all by Lg(x,) = end(y, 1 + pg,(x, ¥)). We refer tox as the
synchronization edges betwe€f andC’, are redundant. latency input associated with this measure of latency, and we

From these properties, an optimal resynchronization forrefer toy as thelatency output.
chainable synchronization graph can be constructed efficientlyintuitively, the latency is the time required for the first invo-
by computing a topological sort of the SCC'’s, instantiating eation of the latency input to influence the associated latency
zero delay synchronization edge from the selected output hatlitput, and thus, the latency corresponds to the critical path in
of theith SCC in the topological sort to the selected input huthe dataflow implementation to the first output invocation that

ofthe(i¢+ 1)th SCC, fori =1, 2, ---, (n — 1), wheren is the is influenced by the input. This interpretation of the latency as
total number of SCC'’s, and then removing all of the redundatite critical path is widely used in VLSI signal processing [24],
synchronization edges that result. [32].

This chaining technigue can be viewed as a generalized formin general, the latency can be computed by performing a
of pipelining, where each SCC in the output synchronizatigimple simulation of the ASAPag soon as possiblexecu-
graph corresponds to a pipeline stage. Pipelining has been useal for G through the(1 + p¢, (%, ¥))th execution ofy. Such
extensively to increase throughput via improved parallelism isimulation can be performed as a functional simulation of a
multiprocessor DSP implementations (see for example, [2], [IBFG G, that has the same topology (vertices and edges) as
and [35]). However, in our application of pipelining, the loagnd that maintains the simulation time of each processor in the
of each processor is unchanged, and the estimated throughales of data tokens. Each initial token (delayyip,, is ini-
is not affected (since no new cyclic paths are introduced), ahdlized to have the value zero, since these tokens are all present
thus, the benefit to theverall throughput of our chaining tech- at time zero. Then, a data driven simulation(ag,,, is carried
nique arises chiefly from the optimal reduction of synchronizaut. In this simulation, an actor may execute whenever it has
tion overhead. sufficient data, and the value of the output token produced by

The chaining technique defined above can be generalizbe invocation of any actor in the simulation is given by
to optimally resynchronize a somewhat broader class of syn-

chronization graphs. This class consists of all synchronization max({v1, va, -+, Un}) + 1(2) (5)
graphs for which each source SCC has an output hub (but not
necessarily an input hub), each sink SCC has an input highere{{v;, va, - --, v, }} is the set of token values consumed

(but not necessarily an output hub), and each internal S@gring the actor execution. In such a simulation, itetoken

is linkable. In this case, the internal SCC’s are pipelined &alue produced by an actergives the completion time of the

in the previous algorithm, and then for each source SCCt@ invocation ofz in the ASAP execution of?. Thus, the la-

synchronization edge is inserted from one of its output hulgsncy can be determined as the value of the- pe, (2, ¥))th

to the selected input hub of the first SCC in the pipeline @futput token produced by With careful implementation of the

internal SCC'’s, and for each sink SCC, a synchronization edfggctional simulator described above, the latency can be deter-

is inserted to one of its input hubs from the selected output hilined inO(d x max({|V|, s})) time, wherel = 1+p¢, (z, ¥),

of the last SCC in the pipeline of internal SCC’s. If there are ngnd s denotes the number of synchronization edge€'iThe

internal SCC’s, then the sink SCC'’s are pipelined by selectirgmulation approach described above is similar to approaches

one input hub from each SCC, and joining these input hulgescribed in [46].

with a chain of synchronization edges. Then a synchronizationFor a broad class of synchronization graphs, latency can be

edge is inserted from an output hub of each source SCC tog@alyzed even more efficiently during resynchronization. This

input hub of the first SCC in the chain of sink SCC'’s. is the class of synchronization graphs in which the first invo-

cation of the latency output is influenced by the first invoca-

tion of the latency input. Equivalently, it is the class of graphs

that contain at least one delayless path in the corresponding ap-
Effective resynchronization reduces the net synchronizatipfication DFG directed from the latency input to the latency

overhead in the implementation of a multiprocessor schedudeitput. For this class of synchronization graphs, we can directly

and improves the overall throughput. However, since additioregbply well-known longest-path based techniques for computing

serialization is imposed by the new synchronizations, resylatency.

chronization can produce significant increase in latency. In thisDefinition 4: Suppose that?, is an application DFGg is a

and the following two sections, we address the problem of cosnurce actor iy, andy is an actor in7, that is not identical

puting an optimal resynchronization among all resynchronize z. If pg,(x, ¥) = 0, then we say tha€?, is transparent

tions that do not increase the latency beyond a prespecifi@idh respect to latency input and latency outpuy. If G is

upper bound.,,.,... This enables us to realize some of the bena- synchronization graph that corresponds to a multiprocessor

fits of reduced synchronization overhead due to resynchronizahedule foi7y, we also say that? is transparent.

tion, while maintaining the required latency constraint. If a synchronization graph is transparent with respect to a la-
Definition 3: Suppose&+, is an application DFG(7 is a syn- tency input/output pair, then the latency can be computed effi-

chronization graph that results from a multiprocessor schedualently using longest path calculations onamyclicgraph that

for Gy, = is an execution source (an actor that has no inpigtderived from the input synchronization gra@hThis acyclic

VI. RESYNCHRONIZATION AND LATENCY

BHATTACHARYYA et al: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1603

(V)
CTTLCT T o d e
@+—=>6 ®

Fig. 4. An example used to illustrate the constructiorf &fG). The graph on the right i§i(G) if G is the left-side graph.

graph, which we call théirst-iteration graph of G, denoted Given a synchronization grapd with latency inputz and
fi(@), is constructed by removing all edges frdinthat have latency outputy, and a latency constrairi,,,,, we say that
nonzero-delay; adding a vertex which represents the begin-a resynchronizatiorz of GG is alatency-constrained resyn-
ning of execution; settingv) = 0; and adding delayless edgeshronization (LCR) if Ly(r,¢)(z, ¥) < Lumax. Thus, the la-
from v to each source actor (other thah of the partial con- tency-constrained resynchronization problem is the problem of
struction until the only source actor that remainssisFig. 4 determining a minimal LCR.
illustrates the derivation ofi(G). We have established that the latency-constrained resynchro-
Given two vertices: andy in fi(G) such that there is a pathnization problem is NP-hard even for the very restricted subclass
in fi(G) from z to y, we denote the sum of the execution timesf synchronization graphs in which every synchronization graph
along a path fromx to ¢ that has maximum cumulative execuis transparent, each SCC corresponds to a single actor, and all
tion time by Ts;q)(w, y). Thatis synchronization edges have zero delay [8]. As with the max-
imum-throughput resynchronization problem, the intractability
of this special case of latency-constrained resynchronization can
Trice(z, v) be established by a reduction from set covering.

= max< Z t(z)

ptraverses z

(pis a path frome to y infi(G))).

(6)

VIl. TwO-PROCESSORSYSTEMS

The problem of latency-constrained synchronization for the
If there is no path from: to y, then we defind s (z, y) tobe case where there are only two processors in the system (the
—oo. Note that for allz, i, T (z, y) < +00, sincefi(G) is 2LCR problem) is aninteresting special case. Although the gen-
acyclic. The valueq’s;((x, v) for all pairsz, y can be com- eral LCR problem is NP-hard, the 2LCR problem can be solved
puted inO(n?) time, wheren is the number of actors i¥, by in polynomial time. This reveals a pattern of complexity that
using a simple adaptation of the Floyd—Warshall algorithm spegg-somewhat analogous to the classic, nonpreemptive multipro-
ified in [13]. cessor scheduling problem with deterministic execution times
The following theorem gives an efficient means for com19].
puting the latency. for transparent synchronization graphs. In an instance of théwo-processor latency-constrained
A straightforward proof based on induction can be found in [8iesynchronization (2LCR) problem, we are given two pro-
Theorem 3: Suppose thaf is a synchronization graph thatcessors, called the “source processor” and “sink processor”; a
is transparent with respect to latency inptand latency output set ofsource processor actots, , «», - - -, x, With associated
y. ThenLg(z, y) = T (v,). execution timegt(x;)}, such that each; is theith actor sched-
Since many practical application graphs contain delaylegted on the source processor; a setsofk processor actors
paths from input to output and these graphs admit a particulaghy, %2, - - -, ¥,, With associated execution tim¢s(y;)}, such
efficient means for computing latency, we have targeted oilnat eachy; is theith actor scheduled on the sink processor;
implementation of latency-constrained resynchronization gset of nonredundant synchronization edgesss, -- -, s,
the class of transparent synchronization graphs. However, gugh that for eachs;, src(s;) € {x1, x2, -+, 2} and
overall resynchronization framework described in this paperk(s;) € {v1, v, ---, y.}; and a latency constraift,,x,
does not depend on any particular method for computinghich is a positive integer. It is assumed thatis the latency
latency; thus, it can be fully applied to general graphs (withiaput andy, is the latency output. A solution to such an instance
moderate increase in complexity) using the ASAP simulutiof a minimal resynchronizatioR that satisfiesL¢+ < Lyax,
approach mentioned earlier. Our framework can also be appligtlereG* is the resynchronized graph. In the remainder of this
to subclasses of synchronization graphs other than transpas&ution, we denote the synchronization graph corresponding to
graphs for which efficient techniques for computing latencgur generic instance of 2LCR k.
are discovered. An example of an instance of 2LCR is shown in Fig. 5(a).
Definition 5: An instance of théatency-constrained resyn- Here,p = ¢ = 8 and we assume thatz) = 1 for each actoe,
chronization problem consists of a synchronization gragh and L, = 10. ,
with latency inputz and latency output, and alatency con- In this discussion, we assume tiGitis transparent and that
straint Ly,.x > La(z, y). A solution to such an instance is adelay(s;) = 0 for all s;. We refer to the subproblem that results
resynchronizatior? such that 1)Ly (r, o) (z, y) < Lyax, and from these restrictions atelayless 2LCR In this section, we
2) no resynchronization af that results in a latency less tharillustrate how delayless 2LCR can be solved in time quadratic
or equal tol,,,, has smaller cardinality thaR. in the number of vertices in the synchronization graph. We have

1604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

tpred(xi) = Z t(.TJ) for =]_7 27 P,

J<i
and
tsucc(yi) = Z t(yj) for i=]_7 27 e q.
Jjzi

The setX in the interval covering instance that we derive
from G is the sel{ sy, s2, - -+, s, Of synchronization edges in
G. To derive the interval covering instance, we start by ordering
the synchronization edges according to the order in which the
source actors execute on the source processor. This ordering,
denoted s}, s5, ---, s,,), is specified by

(xq = sre(s;), xy = sre(s)), a < b) = (i <j). (7)

Next, we defineX to be the set of the source processor actors
x; that satisfyt,rea(®;) + €(yy) < Lmax, and for each such
thatx; € Xo, we define an ordered pair of actors (a “resynchro-
nization candidate”) by

v = (xiv yj)7
where J = lnin({thpred(xi) + tsucc(yk) S Lmax)})- (8)

Consider the example shown in Fig. 5(a) (recall that for this
example, we assume thidt) = 1 for each actor, andL ... =
10). Here,Xo = {1, 22, - -+, s}, and from (8), we have

U1 :(‘Tlv y1)7 Va2 = (‘T27 yl)7 V3 = (-T37 y2)7
vy = (24, ¥3), Vs = (T35, %), 6= (T6, ¥s),
v7 2(3777 y6)7 vg = (-7787 y7). 9

The setl” of “interval” subsets of s, s2, -- -, s, } to be cov-
ered is then computed as

T = {x(vi)|z; € Xo}. (10)

Fig. 5. An instance of two-processor latency-constrained resynchronization.In [8] we show that the family of subsets defined by (10) to-

In this example, the execution times of all actors are identically equal to unitgether with the ordering specified by (7) always forms an in-
stance of interval covering, and that given a solution (minimal

extended this approach to solve the general (not necessarily c®rer){ x(v.,), x(v+,), -- -, x(v..)} tothisinstance of interval

layless) 2LCR problem in cubic time; we refer the reader to [8pvering,R = {v,., v,,, - -+, v, } IS an optimal latency-con-

for details on this extension and for formal proofs of the optstrained resynchronization 6f.

mality of our techniques for delayless 2LCR and general 2LCR. For Fig. 5(a), the ordering specified by (7) is

The delayless 2LCR problem can be reduced to a special case

of set covering callethterval covering, in which we are given sy =(x1, y2), 5 = (22, ya), 53 = (¥3, Yo),

an orderingw; , ws, -- -, wy of the members(of (the set that sy =(z5, y7), 5= (27, yg) (11)
must be covered) such that the collection of subsets consists en-

tirely of subsets of the forMw,, wey1, -+, we}, 1 < a < and thus from (9), we have

b < N. Thus, while general set covering involves covering a , ., P
set from a collection of subsets, interval covering amounts v ={s1}, x(v2) ={s1, 52}, x(vs) = {s1, 5, 53},
covering an interval from a collection of subintervals. Intervat(vy) ={sh, s5}, x(vs)={sh, s, s4}, x(ve)={s5, si},
covering can be solved i@(|X||71) time using a straightfor- \(y.) = {,, &, 4}, x(vs) = {s,, sL}. 12)
ward approach [8].
Our algorithm for the 2LCR problem is based on the fol- It is easily verified thatC' = {x(v3), x(v7)} is @ minimal
lowing result. cover for{sy, sz, ---, s, } from the family of subsets speci-
Theorem 4 [8]: If R is a resynchronization af, then fied by (12). Thus, we are guaranteed that the resynchronization
R = {ws, vz} is an optimal latency-constrained resynchroniza-
L&y = max(tprea(sre(s')) + tauce(snk(s))|s" € R), tion of Fig. 5(a). The synchronization graph that results from
where this resynchronization is shown in Fig. 5(b).

BHATTACHARYYA et al: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1605

function Resynchronize
input: a synchronization graph G = (¥, E) , and a latency constraint L, € ({0, 1,...} W {=}).
output: an alternative reduced synchronization graph that preserves G.

compute p.(x,y) forall actor pairs x,y e V

complete =FALSE
while not (complete)
best = NULL, M =0
forx,yeV
if ((p(y,) =) and ((x,) & E) and (L'(x,») < L))
x* = x((xy)
if (1x* > M)
M =[x
best = (x,y)
end if
end if
end for
if (best = NULL)
complete = TRUE
else
E = E—y(best) + {dy(best)}
G = (V,E)
forx,yeV /* update p; */

Prew(,¥) = min({pg(x, y), pg(x, src(best)) + pg(snk(best), y)})
end for
PG = Prew
end if
end while
return G
end function

Fig. 6. A heuristic for latency-constrained resynchronization.

VIII. A H EURISTIC FORGENERAL SYNCHRONIZATION GRAPHS G = is the input synchronization graph, and
(V, E)

In this section, we present a general heuristic for resynchro- . L
P 9 y L'(v1, v2) is the latency of the synchronization graph

nization called AlgorithnResynchronizthat exploits the corre- .
spondence to set covering described in Sections IV and VI. Al- t(:]/é ;{eE; t]é(]:é’niv;;t]i’gr)]t:gt;esunstzoén adding
gorithm Resynchronizés based on the simple greedy approxi: . y . ger, va) i .

: . . Th{e constrainpg(ve, v1) = oo in (13) ensures that inserting
mation algorithm for set covering that repeatedly selects aSUbﬁ}% od 4oes not introduce a cvele. and thus. that it nei-
that covers the largest numberremaining elemenisvhere a th rin?rf)glljc?s? deadlock nor reduces{he ’estimated’ throughput
remaining element is an element that is not contained in anyfFL - then the algorithm effectivelv attempts to cgmr-) '
the subsets that have already been selected. In [21] and [31]’ jgmax = O 1€ alg y PS !

Ze an efficient maximum-throughput resynchronizatiotpf

shown that this set covering technique is guaranteed to compgjt erwise, the algorithm computes a latency-constrained resyn-
a solution whose cardinality is no greater th@n(|.X|) + 1) ’ 9 b Y y

times that of the optimal solution, whepé is the set that is to chronlzz_itlon whose Iatepcy IS no greater t“;%x- .
be covered. Algorithm Resynchronizassumes that the input synchroniza-

To adapt this set covering technique to resynchronization, \%n graph is reduced (e.g., from the redundant synchronization

construct an instance of set covering by choosing the set of el moval techniqL_Je of [5]). The algorithm determine; the fgmily
ments to be covered to be the set of feedforward synchronizatﬁ)nS ubsets specified by (13), chooses amember of this family that

. ; as maximum cardinality, inserts the corresponding delayless
edges, and choosing the family of subsets to be o s
resynchronization edge, removes all synchronization edges

that it subsumes, and updates the valyes(x, y)} for the new
T ={x(v1, v2)[((v1, v2) ¢ B) and (pg(vz, v1) =) synchronization graph that results. This entire process is then
and (L'(v1, v2) < Liax))} (13) repeated on the new synchronization graph, and it continues until
it arrives at a synchronization graph for which the computation
where defined by (13) producesthe empty set. Fig. 6 gives apseudocode
Liax is the maximum tolerable latency, specification of this algorithm.

1606 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

for x,y e (VU {v}) /* update Tﬁ(G) */

Thow(x,y) = max({ The)(% ¥), Tﬁ(G)(x, src(best)) + Tﬁ(G)(snk(best), 23]
end for
Tﬁ(G) = Tpen

Fig. 7. Pseudocode to updakg; for use in the customization of Algorithm Resynchronize to transparent synchronization graphs.

e ~
-~ -~
~
~
Ly = 221
A\ \ \
Lpx = 268 Lo = 276

T - e - -

L, =382 L, = 645

Fig. 8. Synchronization graphs computed by AlgoritResynchronizen a music synthesis example for different value&.gf, ..

A. Latency Computation and Algorithm Complexity Furthermore, T,y (z, ¥) can be updated in the same
gnanner agg. That is, once the resynchronization edgstis

In Section VI, we mentioned that transparent synchronizati
P y sen, we have that for eath, y) € (V U {v}),

graphs are advantageous for performing Iatency-constrair%l?
resynchronization. If the input synchronization graph is trans- Tnew (#, y) = max({Ticcn (x, y), Tricen(w, sre(best
parent, then assuming th@¥;)(z, y) has been determined (= 9) +T(<{ f((G)k((besi) f)grc);)(()()15)
for all z, 4 € V,L' in Algorithm Resynchronizean be Fi(@ s Y

computed inO(1) time from whereT .. denotes the maximum cumulative execution time
between actors in the first iteration graph after the insertion of
/ . the edgebestin G. The computations in (15) can be performed
Lo, v2) = max({(Tic) (v, v1) + Tricey(v2, 01)), Lcl}é)l by inserting the simpléor loop shown in Fig. 7 at the end of
(14) the elseblock in Algorithm ResynchronizeThus, as with the
computation ofp¢;, the Bellman—Ford algorithm need only be
invoked once, at the beginning of AlgorithResynchronizeo
_ initialize T'y;()(z, y). This loop can be inserted immediately
Le s the latency of. before or after théor loop that updateg;.

where
v is the source actor ifii(G),

o, isthe latency output, and

BHATTACHARYYA et al: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1607

TABLE |
PERFORMANCERESULTS FOR THERESYNCHRONIZATIONS OFFIG. 8. THE FIRST COLUMN GIVES THE MEMORY ACCESSTIME; “IP” STANDS FOR"A VERAGE
ITERATION PERIOD"; AND “A/P” STANDS FOR“M EMORY ACCESSES PEFGRAPH | TERATION”

Mem A F B C D E

Acc

Time IP | AP IP AP | IP JAPJ IP JAPR IP [AP | IP | AP
0 210 | 66 184 | 47 219 |59 188 § 60 200 |50 186 347
1 250 | 67 195 |43 274 | 58 225 | 58 222 |50 222 |47
2 292 | 66 216 | 43 302 |58 262 |52 259 |50 248 |46
3 335 |64 249 | 43 334 458 294 |54 298 |50 288 J45
4 368 | 63 273 | 40 373 59 333 53 338 |48 321 J46
5 408 | 63 318 | 43 413 | 58 375 |53 375 149 357 |47
6 459 | 63 350 |43 457 | 58 396 f53 419 §50 396 |47
7 496 | 63 385 | 43 502 | S8 442 |53 461 |51 431 |47
8 540 |63 420 | 43 553 59 480 | 54 490 |50 474 | 47
9 584 |63 455 |1 43 592 S8 523 |53 528 |50 509 |47
10 655 | 65 496 | 43 641 62 554 | 54 573] 51 551 |47

When the algorithm is customized to transparent synchro-Table | shows how the average iteration period (the recip-
nization graphs in the manner described above, the time-comeal of the average throughput) varies with different memory
plexity of Algorithm Resynchronizés O(sysn*), wheren is access times for the various resynchronizations of Fig. 8. Here,
the number of actors in the input synchronization grépland the columns labeled- " respectively represent the resynchro-
sy is the number of feedforward synchronization edges [8]. Faizations depicted in Fig. 8(a)—(f). Thus, as we go from column
general (not necessarily transparent) synchronization graphd; to column “F',” the number of synchronization edges in the
we can use the functional simulation approach described in Sezsynchronized solution decreases monotonically. However, as
tion VI to determineL’/(z, y). This yields a running time of seeninTablel,theaverageiteration periodneednotexactly follow
O(dsgyn* max({n, s})) for Algorithm Resynchronizen gen- this trend. For example, even though synchronization gréph
eral synchronization graphs [8], whesas the number of syn- has one synchronization edge more than grBpkhe iteration

chronization edges i¥, andd = 1 + pg, (z, ¥). period curve for graplB lies slightly above that oft. This is
because the simulations shown in the figure model a shared bus,
B. Example and take bus contention into account. Thus, even though dtaph

oWi‘S one less synchronization edge than gréghentails higher
R s contention, and hence results in a higher average iteration
iod. A similar anomaly is seen between grépénd grapiD.

Fig. 8(a) shows the synchronization graph that results fr
a six-processor schedule of a synthesizer for plucked-stri

musical instruments in 11 voices based on the Karplus—Str : L .
technique. There are ten synchronization edges shown, ever,weob§ervgsuchanomahesonlywﬂhmh|ghlylocal|zeq
none of these is redundant. Fig. 8(b)—(f) show how the nurnbr‘1§|ghborhoods|nwh|chthe numberofsynchronizationedgesdif-

and placement of synchronization edges in the result compuISHS byonlyone. Overall,inaglobal sense, the figure showsaclear

by Algorithm Resynchronizehange as the latency constrain{rend of decreasing iteration period with loosening of the latency

varies. If just over 50 units of latency can be tolerated beyoiﬁnstraint,and reduct_ior_l ofthe numberofsynchronization edges.
the original latency of 170, then the heuristic is able to elimina; éable | also shows a similarly pronounced trend toward reduction

a single synchronization edge. No further improvement can B‘ethe average rate of shared MEMory accesses as the number of
obtained unless roughly another 50 units are allowed, at WhRs’}ﬁnchromzatlon edgesisreduced. Since shared memory accesses

point the number of synchronization edges drops to 8, and thté(ﬂlcally consume significant amounts of energy, such reduction

down to 7 for an additional 8 time units of allowable Iatency}.n th_e ra_lte of shared memory accesses is useful in low power
If the latency constraint is weakened to 382, just over twicaeopllcatmns.
the original latency, then the heuristic is able to reduce the

number of synchronization edges to 6. No further improvementShaffer has developed an algorithm that removes redundant
is achieved over the relatively large range of (383—644). Whegnchronizations in the self-timed execution of a noniterative
L. > 645, the minimal cost of 5 synchronization edge®FG [43]. This technique was subsequently extended to handle
for this system is attained, which is half that of the originaterative execution and DFG edges that have delay [5]. These
synchronization graph. approaches differ from the techniques of this paper in that they

IX. RELATED WORK

1608

only consider the redundancy induced by tingjinal synchro- [5]
nizations; they do not consider the addition of new synchroniza-[ﬁ]
tions.

Filo, et al. have studied synchronization rearrangement in [7]
the context of minimizing the controller area for hardware syn-
thesis of synchronous digital circuitry [14], [15]. However, due 8
to significant differences in both the scheduling models and the
implementation models involved, the techniques developed in[g]
[14] and [15] do not extend in any straightforward manner to
the resynchronization of synchronization graphs for self-timed10]
multiprocessor implementation, and are significantly different
in structure from the methods developed in this paper [7]. [11]

Tradeoffs between latency and throughput have been studied
by Potkonjac and Srivastava in the context of transformation[&;1 2]
for dedicated implementation of linear computations [39]. Be-
cause this work is based on synchronous implementations, [it3]
does not address the synchronization issues and opportunitiﬁﬁ]
that we encounter in our self-timed dataflow context.

Preliminary versions of the material in this paper have been
summarized in [4] and [6]. [15]

X. SUMMARY [16]

The goal of resynchronization is to introduce new synchro{17]
nizations in such a way that the number of original synchroniza-
tions that become redundant significantly exceeds the numberg;
of new synchronizations. To ensure that the serialization im-
posed by resynchronization does not degrade the throughput, th%]
new synchronizations are restricted to lie outside of all cycles.
We have shown that even in the absence of latency constraing§]
(maximum-throughput resynchronizatjpmptimal resynchro-
nization is intractable. However, we have defined a broad clags;
of systems for which optimal, maximum-throughput resynchro-
nization can be performed in polynomial time. [22]

We have also addressed the problem of latency-constrainggh)
resynchronization. Given an upper limit on the allowable
latency, the objective of latency-constrained resynchronization
is to derive a minimal resynchronization that does not violatgz4)
this limit. We have established that optimal latency-constraine®3]
resynchronization is NP-hard even for a very restricted class of
applications; and we have derived an efficient algorithm thatog)
computes optimal latency-constrained resynchronizations for
two-processor systems. 27]

Additionally, we have presented an effective heuristic frame-
work for maximum-throughput and latency-constrained resyni28]
chronization of general systems.

[29]
REFERENCES [30]

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved sched-
uling of signal flow graphs onto multiprocessor systems through an ac-
curate network modeling technigue,” WLSI Signal Processing VIl [31]
IEEE Press, 1994.

[2] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro[32]
pipelining based scheduling on high performance heterogeneous
multiprocessor systems|EEE Trans. Signal Processingol. 43, pp. [33]
1468-1484, June 1995.

[3] A.Benveniste and G. Berry, “The synchronous approach to reactive anfi34]
real-time systems,Proc. |IEEE vol. 79, pp. 1270-1282, 1991.

[4] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Latency-constrained

resynchronization for multiprocessor DSP implementation,Pmc. [35]
Int. Conf. Appl. Specific Syst., Architectures Processdug). 1996.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

——, “Optimizing synchronization in multiprocessor DSP systems,”
IEEE Trans. Signal Processingol. 45, June 1997.

—, “Self-timed resynchronization: A post-optimization for static mul-
tiprocessor schedules,” Proc. Int. Parallel Processing Symi.996.
——, Resynchronization for Multiprocessor DSP Implementation—Part
1: Maximum-Throughput ResynchronizatiorCollege Park: Digital
Signal Processing Lab., Univ. Maryland, July 1998.

] ——, Resynchronization for Multiprocessor DSP Implementation—Part

2: Latency-Constrained ResynchronizatiorCollege Park: Digital
Signal Processing Laboratory, Univ. Maryland, July 1998.

S. Borkaret al,, “iWarp: An integrated solution to high-speed parallel
computing,” inProc. Supercomputing 1988 Can@rlando, FL, 1988.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systdmts,”

J. Computer Simulatigrvol. 4, April 1994.

L.-F. Chao and E. H.-M. Sha, “Static scheduling for synthesis of DSP
algorithms on various modelsJ! VLSI Signal Processingp. 207-223,
1995.

E. G. Coffman Jr.Computer and Job Shop Scheduling Theoriew
York: Wiley, 1976.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algo-
rithms. New York: McGraw-Hill, 1990.

D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, “Interface opti-
mization for concurrent systems under timing constrainEsZE Trans.
Very Large Scale Integratigvol. 1, Sept. 1993.

D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the control-unit
through the resynchronization of operation$yTEGRATION, VLSI J.
vol. 13, pp. 231-258, 1992.

M. R. Garey and D. S. Johnso@pmputers and Intractability: A Guide

to the Theory of NP-Completene¥¥. H. Freeman , 1979.

R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing memory require-
ments in rate-optimal schedules,"®noc. Int. Conf. Appl. Specific Array
ProcessorsSan Francisco, CA, August 1994.

P. Hoang, “Compiling real time digital signal processing applications
onto multiprocessor systems,” Electronics Research Lab., Univ. Cali-
fornia , Berkeley, Memor. UCB/ERL M92/68, June 1992.

T. C. Hu, “Parallel sequencing and assembly line proble@pgrations
Res, vol. 9, 1961.

J. A. Huiskenet al, “Synthesis of synchronous communication hard-
ware in a multiprocessor architecturd,”VLSI Signal Processingol.

6, pp. 289-299, 1993.

D. S. Johnson, “Approximation algorithms for combinatorial problems,”
J. Computer Syst. Sciencesl. 9, pp. 256-278, 1974.

R. Karp, “A note on the characterization of the minimum cycle mean in
a digraph,”Discrete Math, vol. 23, 1978.

D. C. Ku and G. De Micheli, “Relative scheduling under timing con-
straints: Algorithms for high-level synthesis of digital circuitéFEE
Trans. Computer-Aided Design Integrated Circuits Syail. 11, pp.
696-718, June 1992.

S. Y. Kung,VLSI Array ProcessorsPrentice Hall, 1988.

S. Y. Kung, P. S. Lewis, and S. C. Lo, “Performance analysis and opti-
mization of VLSI data-flow arrays,J. Parallel Distributed Computing

pp. 592-618, 1987.

R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J.
Van Ginderdeuren, “GRAPE: A case tool for digital signal parallel
processing,IEEE ASSP Magvol. 7, April 1990.

E. Lawler,Combinatorial Optimization: Networks and Matroiddolt,
Rinehart and Winston, 1976, pp. 65-80.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
dataflow programs for digital signal processingEEE Trans. Com-
puters Feb. 1987.

E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time
DSP,” in Proc. GlobecomNov. 1989.

G. Liao, G. R. Gao, E. Altman, and V. K. Agarwal, “A Comparative
Study of DSP Multiprocessor List Scheduling Heuristics,” School of
Computer Science, McGill University, Technical Rep., 1993.

L. Lovasz, “On the ratio of optimal integral and fractional cove3is-
crete Math, vol. 13, pp. 383-390, 1975.

V. Madisetti,VLSI Digital Signal Processors New York: IEEE Press,
1995.

D. M. Nicol, “Optimal partitioning of random programs across two pro-
cessors,|EEE Trans. Computersol. 15, pp. 134-141, Feb. 1989.

D. R. O'Hallaron, “The assign parallel program generator,” School of
Computer Science, Carnegie Mellon Univ.,, Memo. CMU-CS-91-141,
May 1991.

K. K. Parhi, “High-level algorithm and architecture transformations for
DSP synthesis,J. VLSI Signal Processindan. 1995.

BHATTACHARYYA et al: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal sheduling ¢ -
iterative data-flow programs via optimum unfoldin¢EEE Trans. Com-
puters vol. 40, Feb. 1991.

J. L. Peterson,Petri Net Theory and the Modeling of Sys-
tems Englewood Cliffs, NJ: Prentice-Hall Inc., 1981.

J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis for DS
using Ptolemy,’J. VLSI Signal Processingol. 9, Jan. 1995.

M. Potkonjac and M. B. Srivastava, “Behavioral synthesis of high pe
formance, and low power application specific processors for linear cor,
putations,” inProc. Int. Conf. Appl. Specific Array Processpt894, pp.
45-56.

1609

Sundararajan Sriram (S'92-M'95) received

a Bachelor of Technology degree in electrical
engineering from the Indian Institute of Technology,
Kanpur, in 1989, and a Ph.D. in electrical engi-
neering and computer sciences from the University
of California at Berkeley in 1995.

In 1993, he spent a summer as an Intern with
the VLSI Systems Department at Bell Laboratories
in Holmdel, NJ. He is currently a Member, Group
Technical Staff in the Wireless Communications
Branch at the Digital Signal Processing Solutions

H. Printz, “Automatic mapping of large signal processing systems ®&D Center at Texas Instruments, Dallas, TX. His research interests are in
a parallel machine,” Ph.D. dissertation, School of Computer Scienagesign of algorithms and VLSI architectures for applications in digital signal

Carnegie Mellon Univ., May 1991.

processing and communications, an area in which he has over 12 publications

R. Reiter, “Scheduling parallel computations]” Association Com- and over 8 patent applications. He has also co-authored a book on embedded

puting Machinery Oct. 1968. multiprocessors.

S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for Dr. Sriram is a Member of the IEEE Communications and Signal Processing
signal processing systems,” Broc. Int. Conf. Application Specific Societies, and is serving as an Associate Editor for the |ERANFACTIONS ON

Array ProcessorsBerkeley, Aug. 1992.
P. L. Shaffer, “Minimization of interprocessor synchronization in multi-
processors with shared and private memoryj/hin Conf. Parallel Pro-
cessing 1989.

G.C.SihandE. A. Lee, “Scheduling to account for interprocessor com-
munication within interconnection-constrained processor networks,” in
Int. Conf. Parallel Processingl990.

S. Sriram and E. A. Lee, “Statically scheduling communication re-
sources in multiprocessor DSP architectures,Piac. Asilomar Conf.
Signals, Syst. Computenfdov. 1994.

J. Teich, L. Thiele, and E. A. Lee, “Modeling and simulation of heteroge-
neous real-time systems based on a deterministic discrete event model,
in Proc. Int. Symp. Syst. Synthesi895, pp. 156-161.

V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor scheduling
with a priori node assignment,” iIMLSI Signal Processing VIl New
York: IEEE Press, 1994.

n

Shuvra S. Bhattacharyya (S'87-M'91) received
the B.S. degree from the University of Wisconsin af
Madison, and the Ph.D. degree from the University
of California at Berkeley.

He is an Assistant Professor in the Department @
Electrical and Computer Engineering, and the Insti:
tute for Advanced Computer Studies, at the Univer
sity of Maryland, College Park. The coauthor of two
books and the author or coauthor of more than 30 ret-

CIRCUITS AND SYSTEMS—II.

Edward A. Lee (S'80-S'83-M'86-SM'93—-F'94)
received the bachelors degree (B.S.) from Yale
University (1979), the masters degree (S.M.) from
MIT (1981), and the Ph.D. degree from U.C.
Berkeley (1986).

His is a Professor in the Electrical Engineering
and Computer Science Department at U.C. Berkeley.
His research interests center on design, modeling,
and simulation of embedded, real-time compu-
tational systems. He is director of the Ptolemy
project at U.C. Berkeley. He is co-author of four

ereed technical articles, Dr. Bhattacharyya is a recipghooks and numerous papers. From 1979-1982 he was a Member of technical
ient of the NSF Career Award. His research intereststaff at Bell Telephone Laboratories in Holmdel, NJ, in the Advanced Data

center around architectures and computer-aided design for embedded syst@msimunications Laboratory. He is a co-founder of BDTI, Inc., where he is
He has held industrial positions as a Researcher at Hitachi, and as a Comgilerently a Senior Technical Advisor, and has consulted for a number of other
Developer at Kuck & Associates, and has consulted for industry in the areacofmpanies. He was an NSF Presidential Young Investigator and won the 1997
compiler techniques and multiprocessor architectures for embedded systentgederick Emmons Terman Award for Engineering Education.

