
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000 1597

Resynchronization for Multiprocessor DSP Systems
Shuvra S. Bhattacharyya, Member, IEEE, Sundararajan Sriram, Member, IEEE, and Edward A. Lee, Fellow, IEEE

Abstract—This paper introduces a technique, called resynchro-
nization, for reducing synchronization overhead in multiprocessor
implementations of digital signal processing (DSP) systems.
The technique applies to arbitrary collections of dedicated,
programmable or configurable processors, such as combina-
tions of programmable DSP’s, ASICS, and FPGA subsystems.
Thus, it is particularly well-suited to the evolving trend toward
heterogeneous single-chip multiprocessors in DSP systems. Resyn-
chronization exploits the well-known observation [43] that in a
given multiprocessor implementation, certain synchronization
operations may be redundant in the sense that their associated
sequencing requirements are ensured by other synchronizations
in the system. The goal of resynchronization is to introduce new
synchronizations in such a way that the number of original syn-
chronizations that become redundant exceeds the number of new
synchronizations that are added, and thus, the net synchronization
cost is reduced.

Our study is based in the context of self-timed execution for it-
erative dataflow specifications of DSP applications. An iterative
dataflow specification consists of a dataflow representation of the
body of a loop that is to be iterated indefinitely; dataflow program-
ming in this form has been employed extensively in the DSP do-
main.

Index Terms—Embedded multiprocessors, iterative dataflow
graphs, latency, multiprocessor scheduling, pipelining, real-time
signal processing, self-timed systems, set covering, shared memory,
VLSI signal processing.

I. INTRODUCTION

T HIS paper is concerned with implementation of iterative,
dataflow-dominated algorithms on embedded multipro-

cessor systems. In the DSP domain, such multiprocessors
typically consist of one or more CPU’s and one or more
application-specific hardware components. Such embedded
multiprocessor systems are becoming increasingly common
today in applications ranging from digital audio/video equip-
ment to portable devices such as cellular phones and PDA’s.
A digital cellular phone, for example, typically consists of

Manuscript received August 25, 1998; revised March 6, 2000. The work of
S. S. Bhattacharyya was supported in part by the U.S. National Science Foun-
dation (CAREER, MIP9734275). Part of this work was performed as part of the
Ptolemy project, which is supported by the Defense Advanced Research Projects
Agency (DARPA), the Air Force Research Laboratory, the State of California
MICRO program, and the following companies: The Alta Group of Cadence De-
sign Systems, Hewlett Packard, Hitachi, Hughes Space and Communications,
NEC, Philips, and Rockwell. This paper was recommended by Associate Editor
J. Götze.

S. S. Bhattacharyya is with the Department of Electrical and Computer Engi-
neering, and the Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD 20742 USA (ssb@eng.umd.edu).

S. Sriram is with the DSP R&D Research Center, Texas Instruments, Dallas,
TX USA (sriram@hc.ti.com).

E. A. Lee is with the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, CA USA (eal@eecs.berkeley.edu).

Publisher Item Identifier S 1057-7122(00)09920-7.

a micro-controller, a DSP, and custom ASIC circuitry. With
increasing levels of integration, it is now feasible to integrate
such heterogeneous systems entirely on a single chip. The de-
sign task of such multiprocessor systems-on-a-chip is complex,
and the complexity will only increase in the future.

A critical issue in the design of embedded multiprocessors
is managing communication and synchronization between the
heterogeneous processing elements. In this paper, we focus on
the problem of minimizing communication and synchronization
overhead in embedded multiprocessors. We propose algorithms
that automate the process of designing synchronization points
in a shared-memory multiprocessor system with the objective
of reducing synchronization overhead.

Specifically, we develop a technique calledresynchroniza-
tion for reducing the rate at which synchronization operations
must be performed in a shared-memory multiprocessor system.
Resynchronization is based on the concept that there can be re-
dundancy in the synchronization functions of a given multipro-
cessor implementation, and the objective of resynchronization is
to introduce new synchronizations in such a way that the number
of original synchronizations that consequently become redun-
dant is significantly more than the number of new synchroniza-
tions.

We study this problem in the context of self-timed execution
of iterativesynchronous dataflow(SDF) specifications, which
are SDF representations of computations that are to be repeated
indefinitely. In SDF, an application is represented as a directed
graph in which vertices(actors) represent computational tasks
of arbitrary complexity, edges specify data dependences, and
the number of data values(tokens)produced and consumed by
each actor is fixed.

Although the model is too restricted for many general-pur-
pose applications, iterative SDF has proven to be a useful frame-
work for representing a significant class of DSP algorithms, and
it has been used as a foundation for numerous DSP design en-
vironments [10], [26], [40], [42]. A wide variety of techniques
have been developed to schedule SDF specifications for effi-
cient multiprocessor implementation (e.g., [1], [2], [11], [17],
[18], [30], [36], [40], [44] and [47]). The techniques developed
in this paper can be used as a post-processing step to improve
the performance of implementations that use any of these sched-
uling techniques.

Each SDF edge has associated a nonnegative integerdelay.
SDF delays represent initial tokens, and specify dependencies
between iterations of actors in iterative execution. For example,
if tokens produced by theth invocation of actor are con-
sumed by the th invocation of actor then the edge

contains two delays. We assume that the input SDF
graph ishomogeneous, which means that the numbers of to-
kens produced and consumed are identically unity. However,

1057–7122/00$10.00 © 2000 IEEE

1598 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

since efficient techniques have been developed to convert gen-
eral SDF graphs into homogeneous graphs [28], our techniques
can easily be adapted to general SDF graphs.

We refer to a homogeneous SDF graph as adataflow graph
(DFG). We represent a DFG by an ordered pair , where

is the set of actors and is the set of edges. We refer to the
source and sink actors of a DFG edgeby and ,
we denote the delay onby delay , and we frequently repre-
sent by the ordered pair . We say that is an
output edgeof is aninput edgeof , and is
delaylessif .

Our implementation model involves aself-timedscheduling
strategy [29]. Each processor executes the tasks assigned to it
in a fixed order that is specified at compile time. Before firing
an actor, a processor waits for the data needed by that actor
to become available. Thus, processors are required to perform
run-time synchronization when they communicate data. This
provides robustness when the execution times of tasks are not
known precisely or when they may exhibit occasional deviations
from their compile-time estimates.

Interprocessor communication(IPC) between processors is
assumed to take place through shared memory, which could be
global memory between all processors, or could be distributed
between pairs of processors (for example, hardware first-in-
first-out (FIFO) queues or dual ported memory). Such simple
communication mechanisms, as opposed to cross bars and elab-
orate inter-connection networks, are common in embedded sys-
tems, owing to their simplicity and low cost.

Synchronization is performed by setting and testing flags
in shared memory. For example, in theBBSprotocol [5] for
a dataflow edge , a write pointer for is maintained
on the processor that executes , a read pointer
is maintained on the processor that executes ; and a
copy of is maintained in some shared memory location

. The pointers and are initialized to zero
and , respectively. Just after each execution of ,
the new data value produced ontois written into the shared
memory buffer for at off-set is updated by the
operation , where is
the buffer size associated with, and is updated to contain
the new value of . Just before each execution of ,
the value contained in is repeatedly examined (with
interleaved periods of “backoff” from the shared bus) until it is
found to be not equal to ; then the data value residing at
offset of the shared memory buffer foris read and
is updated by the operation .

Similarly, interfaces between hardware and software are
typically implemented using memory-mapped registers in the
address space of the programmable processor, which can be
viewed as a kind of shared memory. Synchronization of such
interfaces is achieved using flags that can be tested and set by
the programmable component, and the same can be done by
an interface controller on the hardware side [20]. Thus, in our
context, effective resynchronization results in a significantly
reduced rate of accesses to shared memory for the purpose of
synchronization.

The resynchronization techniques developed in this paper are
designed to improve the throughput of multiprocessor imple-

mentations. Frequently in real-time signal processing systems,
latency is also an important issue, and although resynchroniza-
tion improves the throughput, it generally degrades (increases)
the latency. In Sections IV and V, we address the problem of
resynchronization under the assumption that a relatively large
increase in latency is acceptable. Such a scenario arises when the
computations occur in a feedforward manner, e.g., audio/video
decoding for playback from media such as DVD (Digital Video
Disk), and also for a wide variety of simulation applications.
Sections VI–VIII, on the other hand, examine the relationship
between resynchronization and latency, and address the problem
of optimal resynchronization when only a limited increase in la-
tency is tolerable. Such latency constraints are present in inter-
active applications such as video conferencing and telephony.

II. BACKGROUND

A path in a directed graph is a finite se-
quence , where each is in , and

, for . We
say that the path contains each
and each contiguous subsequence of ;
is directed from to and each member of

is traversed by
. A path that is directed from some vertex to itself is called

a cycle, and asimple cycle is a cycle of which no proper
subsequence is a cycle.

Given a path , the path delay of ,
denoted Delay , is given by

(1)

Since the delays on all DFG edges are restricted to be nonneg-
ative, it is easily seen that between any two vertices ,
either there is no path directed fromto , or there exists a
minimum-delay path between and . Given a DFG , and
vertices in , we define to be equal to if there
is no path from to , and equal to the path delay of a min-
imum-delay path from to if there exist one or more paths
from to . If is understood, then we may drop the subscript,
and simply write “ ” in place of “ .”

By a subgraph of , we mean the directed graph
formed by any together with the set of edges

. We denote the subgraph
associated with the vertex–subsetby subgraph . We say
that is strongly connectedif for each pair of distinct
vertices , there is a path directed fromto and there is
a path directed from to . We say that a subset is
strongly connected if subgraph is strongly connected. A
strongly connected component (SCC)of is a strongly
connected subset such that no strongly connected
subset of properly contains . If is an SCC, then when
there is no ambiguity, we may also say that subgraph is an
SCC. An SCC is asource SCCif it has no predecessor SCC;
an SCC is asink SCC if it has no successor SCC; and an SCC
is aninternal SCC if it is neither a source SCC nor a sink SCC.
An edge is afeedforward edge if it is not contained in an SCC,

BHATTACHARYYA et al.: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1599

or equivalently, if it is not contained in a cycle; an edge that is
contained in at least one cycle is called afeedbackedge.

We denote the number of elements in a finite setby .

III. SYNCHRONIZATION MODEL

In this section, we review the model that we use for ana-
lyzing synchronization in self-timed multiprocessor systems.
The model was originally developed in [45] to study the exe-
cution patterns of actors under self-timed evolution, and in [5],
the model was augmented for the analysis of synchronization
overhead.

A DFG representation of an application is called anapplica-
tion DFG. For each task in a given application DFG , we
assume that an estimate (a nonnegative integer) of the exe-
cution time is available. Given a multiprocessor schedule for,
we derive a data structure called theIPC graph, denoted ,
by instantiating a vertex for each task, connecting an edge from
each task to the task that succeeds it on the same processor, and
adding an edge that has unit delay from the last task on each pro-
cessor to the first task on the same processor. Also, for each edge

in that connects tasks that execute on different proces-
sors, anIPC edgeis instantiated in from to . Fig. 1(c)
shows the IPC graph that corresponds to the application DFG
of Fig. 1(a, b) and the processor assignment / actor ordering of
Fig. 1(a, b).

Each edge in represents thesynchronization con-
straint

(2)

where start and end respectively represent the
times at which invocation of actor begins execution and
completes execution.

A. The Synchronization Graph

Initially, an IPC edge in represents two functions:
reading and writing of tokens into the corresponding buffer,
and synchronization between the sender and the receiver. To
differentiate these functions, we define another graph called
the synchronization graph, in which edges between tasks
assigned to different processors, calledsynchronization edges,
representsynchronization constraints only.

Initially, the synchronization graph is identical to . How-
ever, resynchronization modifies the synchronization graph by
adding and deleting synchronization edges. After resynchro-
nization, the IPC edges in represent buffer activity and are
implemented as buffers in shared memory, whereas the synchro-
nization edges represent synchronization constraints and are im-
plemented by updating and testing flags in shared memory. If
there is an IPC edge as well as a synchronization edge between
the same pair of actors, then the synchronization protocol is ex-
ecuted before the buffer corresponding to the IPC edge is ac-
cessed to ensure sender–receiver synchronization. On the other
hand, if there is an IPC edge between two actors in the IPC
graph, but there is no synchronization edge between the two,
then no synchronization needs to be done before accessing the
shared buffer. If there is a synchronization edge between two

Fig. 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a)
and the processor assignment / actor ordering of part (b). A D on top of an edge
represents a unit delay.

actors but no IPC edge, then no shared buffer is allocated be-
tween the two actors; only the corresponding synchronization
protocol is invoked. Details on the operation of synchronization
protocols for self-timed dataflow schedules can be found in [5].

B. Estimated Throughput

If the execution time of each actoris a fixed constant
for all invocations of , and the time required for IPC is ignored
(assumed to be zero), then as a consequence of Reiter’s analysis
[41], the throughput (number of DFG iterations per unit time)
of a synchronization graph is given by , where

(3)

If the maximum in (3) is infinite, there exists at least one delay
free cycle in , which means that the schedule modeled by the
synchronization graph is deadlocked. In the remainder of this
paper, we are concerned only with synchronization graphs that
result from schedules that are not deadlocked. Thus, we assume
the absence of delay-free cycles. In practice, this assumption is
not a problem since delay-free cycles can be detected efficiently
[22].

The quotient in (3) is called thecycle meanof the cycle ,
and the entire quantity on the RHS of (3) is called themax-
imum cycle meanof . A cycle whose cycle mean is equal to
the maximum cycle mean is called acritical cycle. Since in our
problem context we only have execution time estimates avail-
able instead of exact values, we replace with the corre-
sponding estimate in (3) to obtain an estimate of the max-
imum cycle mean. The reciprocal of this estimate of the max-
imum cycle mean is called theestimated throughput. The ob-
jective of resynchronization is to increase theactual throughput
by reducing the rate at which synchronization operations must
be performed, while making sure that the estimated throughput
is not degraded.

C. Preservation and Subsumption in Synchronization Graphs

Any transformation that we perform on the synchronization
graph must respect the synchronization constraints implied by

. If we ensure this, then we only need to implement the

1600 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

synchronization edges of the optimized synchronization graph.
If and are synchronization graphs
with the same vertex-set and the same set of intraprocessor
edges (edges that are not synchronization edges), we say that

preserves if for all such that , we have
.

Theorem 1 [5]: The synchronization constraints [as speci-
fied by (2)] of imply the constraints of if preserves

.
Intuitively, Theorem 1 is true because if preserves ,

then for every synchronization edgein , there is a path in
that enforces the synchronization constraint specified by.

A synchronization edge isredundant in a synchroniza-
tion graph if its removal yields a graph that preserves.
The synchronization graph is reduced if contains no
redundant synchronization edges. For example, in Fig. 1(c),
the synchronization edge is redundant due to the path

.
Given a synchronization graph, let be a synchro-

nization edge in , and let be an ordered pair of ac-
tors in . We say that subsumes in if

. Thus, every syn-
chronization edge subsumes itself, and intuitively, if
is a synchronization edge, then subsumes if
and only if a zero-delay synchronization edge directed from
to makes redundant.

Given an ordered pair of actors, the set of syn-
chronization edges that are subsumed by is denoted

.

IV. RESYNCHRONIZATION

We refer to the process of adding one or more new synchro-
nization edges and removing the redundant edges that result as
resynchronization(defined more precisely below). Fig. 2(a) il-
lustrates how this concept can be used to reduce the total number
of synchronizations in a multiprocessor implementation. Here,
the dashed edges represent synchronization edges. Observe
that if we insert the new synchronization edge ,
then two of the original synchronization edges— and

—become redundant. Since redundant synchronization
edges can be removed from the synchronization graph to yield
an equivalent synchronization graph, we see that the net effect
of adding the synchronization edge is to reduce the
number of synchronization edges that need to be implemented
by 1. In Fig. 2(b), we show the synchronization graph that
results from inserting theresynchronization edge
into Fig. 2(a), and then removing the redundant synchronization
edges that result.

Definition 1 gives a formal definition of resynchronization
that we will use throughout the remainder of this paper. This
considers resynchronization only “across” feedforward edges.
Resynchronization that includes inserting edges into SCC’s
is also possible; however, in general, such resynchronization
may increase the estimated throughput (see Theorem 2).
Thus, for our objectives, it must be verified that each new
synchronization edge introduced in an SCC does not decrease

Fig. 2. An example of resynchronization.

the estimated throughput. To avoid this complication, which re-
quires a check of significant complexity ,
where is the modified synchronization graph—this is
using the Bellman–Ford algorithm described in [27])for each
candidate resynchronization edge, we focus only on “feed-
forward” resynchronization in this paper. Future research will
address combining the insights developed here for feedforward
resynchronization with efficient techniques to estimate the
impact that a givenfeedbackresynchronization edge has on the
estimated throughput.

Opportunities for feedforward resynchronization are partic-
ularly abundant in the dedicated hardware implementation of
dataflow graphs. If each actor is mapped to a separate piece of
hardware, as in the VLSI dataflow arrays of Kunget al. [25],
then for any application graph that is acyclic, every communica-
tion channel between two units will have an associated feedfor-
ward synchronization edge. Feedforward synchronization edges
also arise naturally in multiprocessor software implementations
as well. A software example of a music synthesis application is
presented in detail in Section VIII.

Definition 1: Suppose that is a synchro-
nization graph, and is the set of all
feedforward edges in . A resynchronization of is a finite
set of edges that are not necessarily
contained in , but whose source and sink vertices are in,
such that a) are feedforward edges in the DFG

; and b) preserves —that is,
for all .

Each member of that is not in is called aresynchro-
nization edge of the resynchronization , is called the
resynchronized graph associated with , and this graph is
denoted by .

If we let denote the graph in Fig. 2, then the set of feed-
forward edges is ;

is a resynchronization of
; Fig. 2(b) shows the DFG ; and

from Fig. 2(b), it is easily verified that , , and satisfy
conditions (a) and (b) of Definition 1.

BHATTACHARYYA et al.: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1601

Lemma 1 [7]: Suppose that and are synchronization
graphs such that preserves , and is a path in from actor

to actor . Then there is a path in from to such
that , and , where
denotes the set of actors traversed by the path.

Thus, if a synchronization graph preserves another syn-
chronization graph and is a path in from actor to actor
, then there is at least one pathin such that 1) the path

is directed from to ; 2) the cumulative delay on does
not exceed the cumulative delay on; and 3) every actor that is
traversed by is also traversed by (although may traverse
one or more actors that are not traversed by).

As a consequence of Lemma 1, the estimated throughput of a
given synchronization graph is always less than or equal to that
of every synchronization graph that it preserves.

Theorem 2: If is a synchronization graph, and
is a synchronization graph that preserves, then

.
Proof: Suppose that is a critical cycle in . Lemma

1 guarantees that there is a cycle in such that a)
and b) the set of actors that are

traversed by is a subset of the set of actors traversed by.
Now clearly, b) implies that

(4)

and this observation together with a) implies that the cycle mean
of is greater than or equal to the cycle mean of. Since
is a critical cycle in , it follows that .
Q.E.D.

Thus, any saving in synchronization cost obtained by rear-
ranging synchronization edges may come at the expense of a
decrease in estimated throughput. As implied by Definition 1,
we avoid this complication by restricting our attention to feed-
forward synchronization edges. Clearly, resynchronization that
rearranges only feedforward synchronization edges cannot de-
crease the estimated throughput since no new cycles are intro-
duced and no existing cycles are altered.

We refer to the problem of finding a resynchronization with
the fewest number of elements as themaximum-throughput
resynchronization problem, or simply, theresynchronization
problem. In [7], we show that the resynchronization problem is
NP-hard by deriving a reduction from the classic setcovering
problem[13], which is a well-known NP-hard problem.

V. EFFICIENT, OPTIMAL RESYNCHRONIZATION FOR ACLASS

OF SYNCHRONIZATION GRAPHS

In this section, we show that although optimal resynchro-
nization is intractable for general synchronization graphs,
a broad class of synchronization graphs exists for which
optimal resynchronizations can be computed using an efficient
polynominal-time algorithm.

Definition 2: Suppose that is an SCC in a synchronization
graph , and is an actor in . Then is aninput hub of
if for each feedforward synchronization edgein whose sink
actor is in , we have . Similarly, is an
output hub of if for each feed-forward synchronization edge

Fig. 3. An illustration of input and output hubs for synchronization graph
SCC’s.

in whose source actor is in, we have .
We say that is linkable if there exist actors in such
that is an input hub, is an output hub, and . A
synchronization graph ischainable if each SCC is linkable.

For example, consider the SCC in Fig. 3(a), and assume that
the dashed edges represent the synchronization edges that con-
nect this SCC with other SCC’s. This SCC has exactly one
input hub, actor , and exactly one output hub, actor, and
since , it follows that the SCC is linkable. How-
ever, if we remove the edge , then the resulting graph
[shown in Fig. 3(b)] is not linkable since it does not have an
output hub. A class of linkable SCC’s that occur commonly
in practical synchronization graphs are those SCC’s that corre-
spond to single-processor subsystems, such as the SCC shown in
Fig. 3(c). In such cases, the first actor executed on the processor
is always an input hub and the last actor executed is always an
output hub.

In the remainder of this section, we assume that for each link-
able SCC, an input hub and output hub are selected such
that , and these actors are referred to as theselected
input hub and theselected output hubof the associated SCC.
Which input hub and output hub are chosen as the “selected”
ones make no difference to our discussion of the techniques in
this section as long they are selected so that .

An important property of linkable synchronization graphs is
that if and are distinct linkable SCC’s, then all synchro-
nization edges directed from to are subsumed by the
single ordered pair , where denotes the selected output
hub of and denotes the selected input hub of. Fur-
thermore, if there exists a path between two SCC’s of
the form where is the
selected output hub of , is the selected input hub of ,

1602 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

and there exist distinct SCC’s
such that for are respectively the
selected input hub and the selected output hub of , then all
synchronization edges between and are redundant.

From these properties, an optimal resynchronization for a
chainable synchronization graph can be constructed efficiently
by computing a topological sort of the SCC’s, instantiating a
zero delay synchronization edge from the selected output hub
of the th SCC in the topological sort to the selected input hub
of the th SCC, for , where is the
total number of SCC’s, and then removing all of the redundant
synchronization edges that result.

This chaining technique can be viewed as a generalized form
of pipelining, where each SCC in the output synchronization
graph corresponds to a pipeline stage. Pipelining has been used
extensively to increase throughput via improved parallelism in
multiprocessor DSP implementations (see for example, [2], [18]
and [35]). However, in our application of pipelining, the load
of each processor is unchanged, and the estimated throughput
is not affected (since no new cyclic paths are introduced), and
thus, the benefit to theoverall throughput of our chaining tech-
nique arises chiefly from the optimal reduction of synchroniza-
tion overhead.

The chaining technique defined above can be generalized
to optimally resynchronize a somewhat broader class of syn-
chronization graphs. This class consists of all synchronization
graphs for which each source SCC has an output hub (but not
necessarily an input hub), each sink SCC has an input hub
(but not necessarily an output hub), and each internal SCC
is linkable. In this case, the internal SCC’s are pipelined as
in the previous algorithm, and then for each source SCC, a
synchronization edge is inserted from one of its output hubs
to the selected input hub of the first SCC in the pipeline of
internal SCC’s, and for each sink SCC, a synchronization edge
is inserted to one of its input hubs from the selected output hub
of the last SCC in the pipeline of internal SCC’s. If there are no
internal SCC’s, then the sink SCC’s are pipelined by selecting
one input hub from each SCC, and joining these input hubs
with a chain of synchronization edges. Then a synchronization
edge is inserted from an output hub of each source SCC to an
input hub of the first SCC in the chain of sink SCC’s.

VI. RESYNCHRONIZATION AND LATENCY

Effective resynchronization reduces the net synchronization
overhead in the implementation of a multiprocessor schedule,
and improves the overall throughput. However, since additional
serialization is imposed by the new synchronizations, resyn-
chronization can produce significant increase in latency. In this
and the following two sections, we address the problem of com-
puting an optimal resynchronization among all resynchroniza-
tions that do not increase the latency beyond a prespecified
upper bound . This enables us to realize some of the bene-
fits of reduced synchronization overhead due to resynchroniza-
tion, while maintaining the required latency constraint.

Definition 3: Suppose is an application DFG, is a syn-
chronization graph that results from a multiprocessor schedule
for is an execution source (an actor that has no input

edges or has nonzero delay on all input edges) in, and is
an actor in other than . We define thelatency from to
by . We refer to as the
latency input associated with this measure of latency, and we
refer to as thelatency output.

Intuitively, the latency is the time required for the first invo-
cation of the latency input to influence the associated latency
output, and thus, the latency corresponds to the critical path in
the dataflow implementation to the first output invocation that
is influenced by the input. This interpretation of the latency as
the critical path is widely used in VLSI signal processing [24],
[32].

In general, the latency can be computed by performing a
simple simulation of the ASAP (as soon as possible) execu-
tion for through the th execution of . Such
a simulation can be performed as a functional simulation of a
DFG that has the same topology (vertices and edges) as,
and that maintains the simulation time of each processor in the
values of data tokens. Each initial token (delay) in is ini-
tialized to have the value zero, since these tokens are all present
at time zero. Then, a data driven simulation of is carried
out. In this simulation, an actor may execute whenever it has
sufficient data, and the value of the output token produced by
the invocation of any actor in the simulation is given by

(5)

where is the set of token values consumed
during the actor execution. In such a simulation, theth token
value produced by an actorgives the completion time of the
th invocation of in the ASAP execution of . Thus, the la-

tency can be determined as the value of the th
output token produced by. With careful implementation of the
functional simulator described above, the latency can be deter-
mined in time, where ,
and denotes the number of synchronization edges in. The
simulation approach described above is similar to approaches
described in [46].

For a broad class of synchronization graphs, latency can be
analyzed even more efficiently during resynchronization. This
is the class of synchronization graphs in which the first invo-
cation of the latency output is influenced by the first invoca-
tion of the latency input. Equivalently, it is the class of graphs
that contain at least one delayless path in the corresponding ap-
plication DFG directed from the latency input to the latency
output. For this class of synchronization graphs, we can directly
apply well-known longest-path based techniques for computing
latency.

Definition 4: Suppose that is an application DFG, is a
source actor in , and is an actor in that is not identical
to . If , then we say that is transparent
with respect to latency input and latency output . If is
a synchronization graph that corresponds to a multiprocessor
schedule for , we also say that is transparent.

If a synchronization graph is transparent with respect to a la-
tency input/output pair, then the latency can be computed effi-
ciently using longest path calculations on anacyclicgraph that
is derived from the input synchronization graph. This acyclic

BHATTACHARYYA et al.: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1603

Fig. 4. An example used to illustrate the construction offi(G). The graph on the right isfi(G) if G is the left-side graph.

graph, which we call thefirst-iteration graph of , denoted
, is constructed by removing all edges fromthat have

nonzero-delay; adding a vertex, which represents the begin-
ning of execution; setting ; and adding delayless edges
from to each source actor (other than) of the partial con-
struction until the only source actor that remains is. Fig. 4
illustrates the derivation of .

Given two vertices and in such that there is a path
in from to , we denote the sum of the execution times
along a path from to that has maximum cumulative execu-
tion time by . That is

is a path from to in

(6)

If there is no path from to , then we define to be
. Note that for all , since is

acyclic. The values for all pairs can be com-
puted in time, where is the number of actors in , by
using a simple adaptation of the Floyd–Warshall algorithm spec-
ified in [13].

The following theorem gives an efficient means for com-
puting the latency for transparent synchronization graphs.
A straightforward proof based on induction can be found in [8].

Theorem 3: Suppose that is a synchronization graph that
is transparent with respect to latency inputand latency output
. Then .
Since many practical application graphs contain delayless

paths from input to output and these graphs admit a particularly
efficient means for computing latency, we have targeted our
implementation of latency-constrained resynchronization to
the class of transparent synchronization graphs. However, the
overall resynchronization framework described in this paper
does not depend on any particular method for computing
latency; thus, it can be fully applied to general graphs (with a
moderate increase in complexity) using the ASAP simulution
approach mentioned earlier. Our framework can also be applied
to subclasses of synchronization graphs other than transparent
graphs for which efficient techniques for computing latency
are discovered.

Definition 5: An instance of thelatency-constrained resyn-
chronization problem consists of a synchronization graph
with latency input and latency output , and alatency con-
straint . A solution to such an instance is a
resynchronization such that 1) , and
2) no resynchronization of that results in a latency less than
or equal to has smaller cardinality than.

Given a synchronization graph with latency input and
latency output , and a latency constraint , we say that
a resynchronization of is a latency-constrained resyn-
chronization (LCR) if . Thus, the la-
tency-constrained resynchronization problem is the problem of
determining a minimal LCR.

We have established that the latency-constrained resynchro-
nization problem is NP-hard even for the very restricted subclass
of synchronization graphs in which every synchronization graph
is transparent, each SCC corresponds to a single actor, and all
synchronization edges have zero delay [8]. As with the max-
imum-throughput resynchronization problem, the intractability
of this special case of latency-constrained resynchronization can
be established by a reduction from set covering.

VII. T WO-PROCESSORSYSTEMS

The problem of latency-constrained synchronization for the
case where there are only two processors in the system (the
2LCR problem) is an interesting special case. Although the gen-
eral LCR problem is NP-hard, the 2LCR problem can be solved
in polynomial time. This reveals a pattern of complexity that
is somewhat analogous to the classic, nonpreemptive multipro-
cessor scheduling problem with deterministic execution times
[19].

In an instance of thetwo-processor latency-constrained
resynchronization (2LCR) problem, we are given two pro-
cessors, called the “source processor” and “sink processor”; a
set ofsource processor actors , with associated
execution times , such that each is the th actor sched-
uled on the source processor; a set ofsink processor actors

, with associated execution times , such
that each is the th actor scheduled on the sink processor;
a set of nonredundant synchronization edges
such that for each , and

; and a latency constraint ,
which is a positive integer. It is assumed thatis the latency
input and is the latency output. A solution to such an instance
is a minimal resynchronization that satisfies ,
where is the resynchronized graph. In the remainder of this
section, we denote the synchronization graph corresponding to
our generic instance of 2LCR by.

An example of an instance of 2LCR is shown in Fig. 5(a).
Here, and we assume that for each actor ,
and .

In this discussion, we assume thatis transparent and that
delay for all . We refer to the subproblem that results
from these restrictions asdelayless 2LCR. In this section, we
illustrate how delayless 2LCR can be solved in time quadratic
in the number of vertices in the synchronization graph. We have

1604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

Fig. 5. An instance of two-processor latency-constrained resynchronization.
In this example, the execution times of all actors are identically equal to unity.

extended this approach to solve the general (not necessarily de-
layless) 2LCR problem in cubic time; we refer the reader to [8]
for details on this extension and for formal proofs of the opti-
mality of our techniques for delayless 2LCR and general 2LCR.

The delayless 2LCR problem can be reduced to a special case
of set covering calledinterval covering, in which we are given
an ordering of the members of (the set that
must be covered) such that the collection of subsets consists en-
tirely of subsets of the form

. Thus, while general set covering involves covering a
set from a collection of subsets, interval covering amounts to
covering an interval from a collection of subintervals. Interval
covering can be solved in time using a straightfor-
ward approach [8].

Our algorithm for the 2LCR problem is based on the fol-
lowing result.

Theorem 4 [8]: If is a resynchronization of , then

where

for

and

for

The set in the interval covering instance that we derive
from is the set of synchronization edges in

. To derive the interval covering instance, we start by ordering
the synchronization edges according to the order in which the
source actors execute on the source processor. This ordering,
denoted , is specified by

(7)

Next, we define to be the set of the source processor actors
that satisfy , and for each such

that , we define an ordered pair of actors (a “resynchro-
nization candidate”) by

where (8)

Consider the example shown in Fig. 5(a) (recall that for this
example, we assume that for each actor , and

). Here, , and from (8), we have

(9)

The set of “interval” subsets of to be cov-
ered is then computed as

(10)

In [8] we show that the family of subsets defined by (10) to-
gether with the ordering specified by (7) always forms an in-
stance of interval covering, and that given a solution (minimal
cover) to this instance of interval
covering, is an optimal latency-con-
strained resynchronization of.

For Fig. 5(a), the ordering specified by (7) is

(11)

and thus from (9), we have

(12)

It is easily verified that is a minimal
cover for from the family of subsets speci-
fied by (12). Thus, we are guaranteed that the resynchronization

is an optimal latency-constrained resynchroniza-
tion of Fig. 5(a). The synchronization graph that results from
this resynchronization is shown in Fig. 5(b).

BHATTACHARYYA et al.: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1605

Fig. 6. A heuristic for latency-constrained resynchronization.

VIII. A H EURISTIC FORGENERAL SYNCHRONIZATION GRAPHS

In this section, we present a general heuristic for resynchro-
nization called AlgorithmResynchronizethat exploits the corre-
spondence to set covering described in Sections IV and VI. Al-
gorithmResynchronizeis based on the simple greedy approxi-
mation algorithm for set covering that repeatedly selects a subset
that covers the largest number ofremaining elements, where a
remaining element is an element that is not contained in any of
the subsets that have already been selected. In [21] and [31] it is
shown that this set covering technique is guaranteed to compute
a solution whose cardinality is no greater than
times that of the optimal solution, where is the set that is to
be covered.

To adapt this set covering technique to resynchronization, we
construct an instance of set covering by choosing the set of ele-
ments to be covered to be the set of feedforward synchronization
edges, and choosing the family of subsets to be

(13)

where
is the maximum tolerable latency,

is the input synchronization graph, and

is the latency of the synchronization graph
that results from adding

the resynchronization edge to .
The constraint in (13) ensures that inserting
the edge does not introduce a cycle, and thus, that it nei-
ther introduces deadlock nor reduces the estimated throughput.
If , then the algorithm effectively attempts to com-
pute an efficient maximum-throughput resynchronization of;
otherwise, the algorithm computes a latency-constrained resyn-
chronization whose latency is no greater than .

AlgorithmResynchronizeassumes that the input synchroniza-
tion graph is reduced (e.g., from the redundant synchronization
removal technique of [5]). The algorithm determines the family
of subsets specified by (13), chooses a member of this family that
has maximum cardinality, inserts the corresponding delayless
resynchronization edge, removes all synchronization edges
that it subsumes, and updates the values for the new
synchronization graph that results. This entire process is then
repeated on the new synchronization graph, and it continues until
it arrives at a synchronization graph for which the computation
definedby (13) produces the emptyset. Fig.6givesa pseudocode
specificationof thisalgorithm.

1606 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

Fig. 7. Pseudocode to updateT for use in the customization of Algorithm Resynchronize to transparent synchronization graphs.

Fig. 8. Synchronization graphs computed by AlgorithmResynchronizeon a music synthesis example for different values ofL .

A. Latency Computation and Algorithm Complexity

In Section VI, we mentioned that transparent synchronization
graphs are advantageous for performing latency-constrained
resynchronization. If the input synchronization graph is trans-
parent, then assuming that has been determined
for all in Algorithm Resynchronizecan be
computed in time from

(14)
where

is the source actor in ,

is the latency output, and

is the latency of .

Furthermore, can be updated in the same
manner as . That is, once the resynchronization edgebestis
chosen, we have that for each ,

(15)

where denotes the maximum cumulative execution time
between actors in the first iteration graph after the insertion of
the edgebestin . The computations in (15) can be performed
by inserting the simplefor loop shown in Fig. 7 at the end of
the elseblock in Algorithm Resynchronize. Thus, as with the
computation of , the Bellman–Ford algorithm need only be
invoked once, at the beginning of AlgorithmResynchronize, to
initialize . This loop can be inserted immediately
before or after thefor loop that updates .

BHATTACHARYYA et al.: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1607

TABLE I
PERFORMANCERESULTS FOR THERESYNCHRONIZATIONS OFFIG. 8. THE FIRST COLUMN GIVES THE MEMORY ACCESSTIME; “IP” STANDS FOR“A VERAGE

ITERATION PERIOD”; AND “A/P” STANDS FOR“M EMORY ACCESSES PERGRAPH ITERATION”

When the algorithm is customized to transparent synchro-
nization graphs in the manner described above, the time-com-
plexity of Algorithm Resynchronizeis , where is
the number of actors in the input synchronization graph, and

is the number of feedforward synchronization edges [8]. For
general (not necessarily transparent) synchronization graphs,
we can use the functional simulation approach described in Sec-
tion VI to determine . This yields a running time of

for Algorithm Resynchronizeon gen-
eral synchronization graphs [8], whereis the number of syn-
chronization edges in , and .

B. Example

Fig. 8(a) shows the synchronization graph that results from
a six-processor schedule of a synthesizer for plucked-string
musical instruments in 11 voices based on the Karplus–Strong
technique. There are ten synchronization edges shown, and
none of these is redundant. Fig. 8(b)–(f) show how the number
and placement of synchronization edges in the result computed
by Algorithm Resynchronizechange as the latency constraint
varies. If just over 50 units of latency can be tolerated beyond
the original latency of 170, then the heuristic is able to eliminate
a single synchronization edge. No further improvement can be
obtained unless roughly another 50 units are allowed, at which
point the number of synchronization edges drops to 8, and then
down to 7 for an additional 8 time units of allowable latency.
If the latency constraint is weakened to 382, just over twice
the original latency, then the heuristic is able to reduce the
number of synchronization edges to 6. No further improvement
is achieved over the relatively large range of (383–644). When

, the minimal cost of 5 synchronization edges
for this system is attained, which is half that of the original
synchronization graph.

Table I shows how the average iteration period (the recip-
rocal of the average throughput) varies with different memory
access times for the various resynchronizations of Fig. 8. Here,
the columns labeled - respectively represent the resynchro-
nizations depicted in Fig. 8(a)–(f). Thus, as we go from column
“ ” to column “ ,” the number of synchronization edges in the
resynchronized solution decreases monotonically. However, as
seeninTableI, theaverageiterationperiodneednotexactlyfollow
this trend. For example, even though synchronization graph
has one synchronization edge more than graph, the iteration
period curve for graph lies slightly above that of . This is
because the simulations shown in the figure model a shared bus,
and take bus contention into account. Thus, even though graph
has one less synchronization edge than graph, it entails higher
bus contention, and hence results in a higher average iteration
period. A similar anomaly is seen between graphand graph .
However,weobservesuchanomaliesonlywithinhighlylocalized
neighborhoodsinwhichthenumberofsynchronizationedgesdif-
fersbyonlyone.Overall, inaglobalsense, thefigureshowsaclear
trend of decreasing iteration period with loosening of the latency
constraint,andreductionof thenumberofsynchronizationedges.
Table I also shows a similarly pronounced trend toward reduction
in the average rate of shared memory accesses as the number of
synchronizationedges is reduced.Sincesharedmemoryaccesses
typically consume significant amounts of energy, such reduction
in the rate of shared memory accesses is useful in low power
applications.

IX. RELATED WORK

Shaffer has developed an algorithm that removes redundant
synchronizations in the self-timed execution of a noniterative
DFG [43]. This technique was subsequently extended to handle
iterative execution and DFG edges that have delay [5]. These
approaches differ from the techniques of this paper in that they

1608 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 11, NOVEMBER 2000

only consider the redundancy induced by theoriginal synchro-
nizations; they do not consider the addition of new synchroniza-
tions.

Filo, et al. have studied synchronization rearrangement in
the context of minimizing the controller area for hardware syn-
thesis of synchronous digital circuitry [14], [15]. However, due
to significant differences in both the scheduling models and the
implementation models involved, the techniques developed in
[14] and [15] do not extend in any straightforward manner to
the resynchronization of synchronization graphs for self-timed
multiprocessor implementation, and are significantly different
in structure from the methods developed in this paper [7].

Tradeoffs between latency and throughput have been studied
by Potkonjac and Srivastava in the context of transformations
for dedicated implementation of linear computations [39]. Be-
cause this work is based on synchronous implementations, it
does not address the synchronization issues and opportunities
that we encounter in our self-timed dataflow context.

Preliminary versions of the material in this paper have been
summarized in [4] and [6].

X. SUMMARY

The goal of resynchronization is to introduce new synchro-
nizations in such a way that the number of original synchroniza-
tions that become redundant significantly exceeds the number
of new synchronizations. To ensure that the serialization im-
posed by resynchronization does not degrade the throughput, the
new synchronizations are restricted to lie outside of all cycles.
We have shown that even in the absence of latency constraints
(maximum-throughput resynchronization), optimal resynchro-
nization is intractable. However, we have defined a broad class
of systems for which optimal, maximum-throughput resynchro-
nization can be performed in polynomial time.

We have also addressed the problem of latency-constrained
resynchronization. Given an upper limit on the allowable
latency, the objective of latency-constrained resynchronization
is to derive a minimal resynchronization that does not violate
this limit. We have established that optimal latency-constrained
resynchronization is NP-hard even for a very restricted class of
applications; and we have derived an efficient algorithm that
computes optimal latency-constrained resynchronizations for
two-processor systems.

Additionally, we have presented an effective heuristic frame-
work for maximum-throughput and latency-constrained resyn-
chronization of general systems.

REFERENCES

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved sched-
uling of signal flow graphs onto multiprocessor systems through an ac-
curate network modeling technique,” inVLSI Signal Processing VII:
IEEE Press, 1994.

[2] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro
pipelining based scheduling on high performance heterogeneous
multiprocessor systems,”IEEE Trans. Signal Processing, vol. 43, pp.
1468–1484, June 1995.

[3] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,”Proc. IEEE, vol. 79, pp. 1270–1282, 1991.

[4] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Latency-constrained
resynchronization for multiprocessor DSP implementation,” inProc.
Int. Conf. Appl. Specific Syst., Architectures Processors, Aug. 1996.

[5] , “Optimizing synchronization in multiprocessor DSP systems,”
IEEE Trans. Signal Processing, vol. 45, June 1997.

[6] , “Self-timed resynchronization: A post-optimization for static mul-
tiprocessor schedules,” inProc. Int. Parallel Processing Symp., 1996.

[7] , Resynchronization for Multiprocessor DSP Implementation—Part
1: Maximum-Throughput Resynchronization. College Park: Digital
Signal Processing Lab., Univ. Maryland, July 1998.

[8] , Resynchronization for Multiprocessor DSP Implementation—Part
2: Latency-Constrained Resynchronization. College Park: Digital
Signal Processing Laboratory, Univ. Maryland, July 1998.

[9] S. Borkaret al., “iWarp: An integrated solution to high-speed parallel
computing,” inProc. Supercomputing 1988 Conf., Orlando, FL, 1988.

[10] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”Int.
J. Computer Simulation, vol. 4, April 1994.

[11] L.-F. Chao and E. H.-M. Sha, “Static scheduling for synthesis of DSP
algorithms on various models,”J. VLSI Signal Processing, pp. 207–223,
1995.

[12] E. G. Coffman Jr.,Computer and Job Shop Scheduling Theory. New
York: Wiley, 1976.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algo-
rithms. New York: McGraw-Hill, 1990.

[14] D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, “Interface opti-
mization for concurrent systems under timing constraints,”IEEE Trans.
Very Large Scale Integration, vol. 1, Sept. 1993.

[15] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the control-unit
through the resynchronization of operations,”INTEGRATION, VLSI J.,
vol. 13, pp. 231–258, 1992.

[16] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness: W. H. Freeman , 1979.

[17] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing memory require-
ments in rate-optimal schedules,” inProc. Int. Conf. Appl. Specific Array
Processors, San Francisco, CA, August 1994.

[18] P. Hoang, “Compiling real time digital signal processing applications
onto multiprocessor systems,” Electronics Research Lab., Univ. Cali-
fornia , Berkeley, Memor. UCB/ERL M92/68, June 1992.

[19] T. C. Hu, “Parallel sequencing and assembly line problems,”Operations
Res., vol. 9, 1961.

[20] J. A. Huiskenet al., “Synthesis of synchronous communication hard-
ware in a multiprocessor architecture,”J. VLSI Signal Processing, vol.
6, pp. 289–299, 1993.

[21] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
J. Computer Syst. Sciences, vol. 9, pp. 256–278, 1974.

[22] R. Karp, “A note on the characterization of the minimum cycle mean in
a digraph,”Discrete Math., vol. 23, 1978.

[23] D. C. Ku and G. De Micheli, “Relative scheduling under timing con-
straints: Algorithms for high-level synthesis of digital circuits,”IEEE
Trans. Computer-Aided Design Integrated Circuits Syst., vol. 11, pp.
696–718, June 1992.

[24] S. Y. Kung,VLSI Array Processors: Prentice Hall, 1988.
[25] S. Y. Kung, P. S. Lewis, and S. C. Lo, “Performance analysis and opti-

mization of VLSI data-flow arrays,”J. Parallel Distributed Computing,
pp. 592–618, 1987.

[26] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J.
Van Ginderdeuren, “GRAPE: A case tool for digital signal parallel
processing,”IEEE ASSP Mag., vol. 7, April 1990.

[27] E. Lawler,Combinatorial Optimization: Networks and Matroids: Holt,
Rinehart and Winston, 1976, pp. 65–80.

[28] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
dataflow programs for digital signal processing,”IEEE Trans. Com-
puters, Feb. 1987.

[29] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time
DSP,” in Proc. Globecom, Nov. 1989.

[30] G. Liao, G. R. Gao, E. Altman, and V. K. Agarwal, “A Comparative
Study of DSP Multiprocessor List Scheduling Heuristics,” School of
Computer Science, McGill University, Technical Rep., 1993.

[31] L. Lovasz, “On the ratio of optimal integral and fractional covers,”Dis-
crete Math., vol. 13, pp. 383–390, 1975.

[32] V. Madisetti,VLSI Digital Signal Processors. New York: IEEE Press,
1995.

[33] D. M. Nicol, “Optimal partitioning of random programs across two pro-
cessors,”IEEE Trans. Computers, vol. 15, pp. 134–141, Feb. 1989.

[34] D. R. O’Hallaron, “The assign parallel program generator,” School of
Computer Science, Carnegie Mellon Univ., Memo. CMU-CS-91-141,
May 1991.

[35] K. K. Parhi, “High-level algorithm and architecture transformations for
DSP synthesis,”J. VLSI Signal Processing, Jan. 1995.

BHATTACHARYYA et al.: RESYNCHRONIZATION FOR MULTIPROCESSOR DSP SYSTEMS 1609

[36] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal sheduling of
iterative data-flow programs via optimum unfolding,”IEEE Trans. Com-
puters, vol. 40, Feb. 1991.

[37] J. L. Peterson,Petri Net Theory and the Modeling of Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall Inc., 1981.

[38] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis for DSP
using Ptolemy,”J. VLSI Signal Processing, vol. 9, Jan. 1995.

[39] M. Potkonjac and M. B. Srivastava, “Behavioral synthesis of high per-
formance, and low power application specific processors for linear com-
putations,” inProc. Int. Conf. Appl. Specific Array Processors, 1994, pp.
45–56.

[40] H. Printz, “Automatic mapping of large signal processing systems to
a parallel machine,” Ph.D. dissertation, School of Computer Science,
Carnegie Mellon Univ., May 1991.

[41] R. Reiter, “Scheduling parallel computations,”J. Association Com-
puting Machinery, Oct. 1968.

[42] S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for
signal processing systems,” inProc. Int. Conf. Application Specific
Array Processors, Berkeley, Aug. 1992.

[43] P. L. Shaffer, “Minimization of interprocessor synchronization in multi-
processors with shared and private memory,” inInt. Conf. Parallel Pro-
cessing, 1989.

[44] G. C. Sih and E. A. Lee, “Scheduling to account for interprocessor com-
munication within interconnection-constrained processor networks,” in
Int. Conf. Parallel Processing, 1990.

[45] S. Sriram and E. A. Lee, “Statically scheduling communication re-
sources in multiprocessor DSP architectures,” inProc. Asilomar Conf.
Signals, Syst. Computers, Nov. 1994.

[46] J. Teich, L. Thiele, and E. A. Lee, “Modeling and simulation of heteroge-
neous real-time systems based on a deterministic discrete event model,”
in Proc. Int. Symp. Syst. Synthesis, 1995, pp. 156–161.

[47] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor scheduling
with a priori node assignment,” inVLSI Signal Processing VII. New
York: IEEE Press, 1994.

Shuvra S. Bhattacharyya (S’87–M’91) received
the B.S. degree from the University of Wisconsin at
Madison, and the Ph.D. degree from the University
of California at Berkeley.

He is an Assistant Professor in the Department of
Electrical and Computer Engineering, and the Insti-
tute for Advanced Computer Studies, at the Univer-
sity of Maryland, College Park. The coauthor of two
books and the author or coauthor of more than 30 ref-
ereed technical articles, Dr. Bhattacharyya is a recip-
ient of the NSF Career Award. His research interests

center around architectures and computer-aided design for embedded systems.
He has held industrial positions as a Researcher at Hitachi, and as a Compiler
Developer at Kuck & Associates, and has consulted for industry in the areas of
compiler techniques and multiprocessor architectures for embedded systems.

Sundararajan Sriram (S’92–M’95) received
a Bachelor of Technology degree in electrical
engineering from the Indian Institute of Technology,
Kanpur, in 1989, and a Ph.D. in electrical engi-
neering and computer sciences from the University
of California at Berkeley in 1995.

In 1993, he spent a summer as an Intern with
the VLSI Systems Department at Bell Laboratories
in Holmdel, NJ. He is currently a Member, Group
Technical Staff in the Wireless Communications
Branch at the Digital Signal Processing Solutions

R&D Center at Texas Instruments, Dallas, TX. His research interests are in
design of algorithms and VLSI architectures for applications in digital signal
processing and communications, an area in which he has over 12 publications
and over 8 patent applications. He has also co-authored a book on embedded
multiprocessors.

Dr. Sriram is a Member of the IEEE Communications and Signal Processing
Societies, and is serving as an Associate Editor for the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II.

Edward A. Lee (S’80–S’83–M’86–SM’93–F’94)
received the bachelors degree (B.S.) from Yale
University (1979), the masters degree (S.M.) from
MIT (1981), and the Ph.D. degree from U.C.
Berkeley (1986).

His is a Professor in the Electrical Engineering
and Computer Science Department at U.C. Berkeley.
His research interests center on design, modeling,
and simulation of embedded, real-time compu-
tational systems. He is director of the Ptolemy
project at U.C. Berkeley. He is co-author of four

books and numerous papers. From 1979–1982 he was a Member of technical
staff at Bell Telephone Laboratories in Holmdel, NJ, in the Advanced Data
Communications Laboratory. He is a co-founder of BDTI, Inc., where he is
currently a Senior Technical Advisor, and has consulted for a number of other
companies. He was an NSF Presidential Young Investigator and won the 1997
Frederick Emmons Terman Award for Engineering Education.

