
An Extensible Type System for Component-Based Design

Yuhong Xiong and Edward A. Lee
{yuhong, eal}@eecs.berkeley.edu

Abstract. We present the design and implementation of the type system for
Ptolemy II, which is a tool for component-based heterogeneous modeling and
design. This type system combines static typing with run-time type checking. It
supports polymorphic typing of components, and allows automatic lossless type
conversion at run-time. To achieve this, we use a lattice to model the lossless
type conversion relation among types, and use inequalities defined over the type
lattice to specify type constraints in components and across components. The
system of inequalities can be solved efficiently, with existence and uniqueness of
a solution guaranteed by fixed-point theorems. This type system increases the
safety and flexibility of the design environment, promotes component reuse, and
helps simplify component development and optimization. The infrastructure we
have built is generic in that it is not bound to one particular type lattice. The type
system can be extended in two ways: by adding more types to the lattice, or by
using different lattices to model different system properties. Higher-order func-
tion types and extended types can be accommodated in this way.

1 Introduction
Ptolemy II [5] is a system-level design environment that supports component-based
heterogeneous modeling and design. The focus is on embedded systems. In compo-
nent-based design, each component has an interface, which includes the data type of
the messages sent or received by the component, and the communication protocols
used by the component to exchange information with others. In Ptolemy II, the inter-
connection of components is represented by hierarchical clustered graphs. Intercon-
nections imply type constraints. In addition, components themselves may have
constraints on their interface and internal state variables.

A good type system is particularly important for embedded systems. A type system
can increase safety though type checking, promote component reuse through polymor-
phic typing, provide services such as automatic type conversion, and help optimize the
design by finding low cost typing for polymorphic components.

Ptolemy II supports heterogeneous design by providing a variety of models of
computation (MoCs) [5]. It can be viewed as a coordination language where it man-
ages the communication among independent components without much knowledge
about the computation they carry out. In this regard, it is similar to other coordination
languages like Manifold [2]. In different MoCs, component interaction obeys different
semantics. However, this level of detail can be ignored in data level type system
design, and a general message passing semantics can be assumed. This abstraction
enables the same type system to work with widely differing models. Fig.1 shows a
simplified graph representation of a Ptolemy II model. In Ptolemy II terminology, each
of the components A, B, and C is an actor, and actors contain ports, denoted by the

small circles on the actors. Actors send and receive messages through ports. Messages
are encapsulated in tokens, which are typed.

In general-purpose languages, there are two approaches for type system design:
static typing and dynamic typing. Research in this area is driven to a large degree by
the desire to combine the flexibility of dynamically typed languages with the security
and early error-detection potential of statically typed languages. Polymorphic type sys-
tems of modern languages have achieved this goal to a large extent [14]. Since
Ptolemy II is intended for large, complex, and possibly safety-critical system design,
we choose static typing for its obvious advantages. To do this, we give each actor port
a type. This type restricts the type of tokens that can pass though the port. Based on the
port types and the graph topology, we can check the type consistency in the model stat-
ically, before it is executed. In Ptolemy II, static checking alone is not enough to
ensure type safety at run-time because Ptolemy II is a coordination language, its type
system does not have detailed information about the operation of each actor, except the
declared types of the ports and the type constraints provided by the actors. In fact,
Ptolemy II places no restriction on the implementation of an actor. So an actor may
wrap a component implemented in a different language, or a model built by a foreign
tool [11]. Therefore, even if a source actor declares its port type to be Int, no static
structure prevents it from sending a token containing Double at run-time. The declared
type Int in this case is only a promise from the actor, not a guarantee. Analogous to the
run-time type checking in Java, the components are not trusted. Static type checking
checks whether the components can work together as connected based on the informa-
tion given by each component, but run-time type checking is also necessary for safety.
With the help of static typing, run-time type checking can be done when a token is sent
from a port. I.e., the run-time type checker checks the token type against the type of
the port. This way, a type error is detected at the earliest possible time, and run-time
type checking (as well as static type checking) can be performed by the system infra-
structure instead of by the actors.

Another benefit of static typing is that it allows the system to perform lossless type
conversion. For example, if a sending port with type Int is connected to a receiving
port with type Double, the integer token sent from the sender can be converted to a
double token before it is passed to the receiver. This kind of run-time type conversion
is done transparently by the Ptolemy II system (actors are not aware it). So the actors
can safely cast the received tokens to the type of the receiving port. This makes actor
development easier. As a design principle of Ptolemy II, the system does not implicitly

Fig. 1. A simplified Ptolemy II model.

A

C

B

perform data type conversions that lose information. The lossless type conversion rela-
tion among different types is modeled as a partially ordered set, called the type lattice.

In Ptolemy II, polymorphic actors are actors that can accept multiple types on their
ports. In general, the types on some or all of the ports of a polymorphic actor are not
rigidly defined to specific types when the actor is written, so the actor can interact with
other actors having different types. The acceptable types on polymorphic actors are
described by a set of type constraints, which have the form of inequalities defined over
the type lattice. The static type checker checks the applicability of a polymorphic actor
in a topology (an interconnection of components) by finding specific types for them
that satisfy the type constraints. This process, called type resolution, can be done by a
very efficient algorithm.

In addition to maintaining type consistency for data transfer, our type system plays
a larger role. In a component-based architecture, there are two ways to get data to com-
ponents: static configuration (via parameters) and dynamic message passing (via
ports). Our system allows constraints on the types of parameters, as well as the types
of ports. In addition, Ptolemy II permits state variables that are local to a component to
be typed, so type constraints between ports, parameters, and state variables can all be
expressed.

Besides the models based on message passing, Ptolemy II also supports control ori-
ented models, such as finite state machines (FSM), which represent a system as a
sequence of state transitions in response to events. In this model, type constraints can
link the transition guard and the event of the state machine. Hierarchical FSMs can be
mixed with other concurrency models [7]. In these mixed models, type constraints can
be propagated between the events of the control model and the data of the other con-
currency models. Section 4.2 below shows an example of this.

Our type system is related to the work of Fuh and Mishra [6] that extended poly-
morphic type inference in ML [12] with subtypes. The lossless type conversion rela-
tion is a subtype relation. However, there are several key differences between our
approach and the ML type system and the system of Fuh and Mishra. First, the ML
type inference algorithm produces principal types. Principal types are the most general
types for a program in that any other legal type assignment is a substitution instance of
it. In our system, the type resolution algorithm finds the most specific type rather than
the most general type. This specific type is the least fixed point solution for the type
constraints rather than the greatest fixed point. As we will see, using the most specific
type may help optimize the system under design, as the most specific type usually has
a lower implementation cost. Second, the ML type system does all the checking stati-
cally, while our system combines static and run-time checking. As discussed above,
we assume that the system components are opaque to the type system. The type system
does not have detailed knowledge of the operation of the components, so static check-
ing alone cannot guarantee run-time safety. Our combined approach can detect errors
at the earliest possible time and minimize the computation of run-time checking.
Third, the system of Fuh and Mishra allows arbitrary type conversion, represented by a
coercion set, while our system concentrates on lossless conversion. This focus permits
the conversion relation to form a lattice structure, and the type constraints to be
expressed as inequalities on the lattice. As a result, the type constraints can be solved

by a linear time algorithm, which is more efficient than the algorithm to check the con-
sistency of a coercion set.

The advantage of a constraint-based approach, like ours, is that constraint resolu-
tion can be separated from constraint generation, and resolution can employ a sophisti-
cated algorithm. Although the users need to understand the constraint formulation,
they do not have to understand the details of the resolution algorithm in order to use
the system. In addition, the constraint resolution algorithm can be built as a generic
tool that can be used for other applications. Even more important in Ptolemy II, the
types are not aware of the constraints, so more types can be added to the type lattice,
resulting in an extensible type system.

2 Ptolemy II
Ptolemy II offers a unified infrastructure for implementation of a number of models of
computation. It consists of a set of Java packages. The key packages relevant to the
type system are the kernel, actor, data, and graph packages.

2.1 The Kernel Package
The kernel package defines a small set of Java classes that implement a data structure
supporting a general form of uninterpreted clustered graphs, plus methods for access-
ing and manipulating such graphs. These graphs provide an abstract syntax for netlists,
state transition diagrams, block diagrams, etc. A graph consists of entities and rela-
tions. Entities have ports. Relations connect entities through ports. Relations are multi-
way associations. Hierarchical graphs can be constructed by encapsulating one graph
inside the composite entity of another graph. This encapsulation can be nested arbi-
trarily.

2.2 The Actor Package
The actor package provides basic support for executable entities, or actors. It supports
a general form of message passing between actors. Messages are passed between ports,
which can be inputs, outputs or bidirectional ports. Actors can be typed, which means
that their ports have a type. The type of the ports can be declared by the containing
actor, or left undeclared on polymorphic actors; type resolution will resolve the types
according to type constraints. Messages are encapsulated in tokens that are imple-
mented in the data package or in user-defined classes extending those in the data pack-
age.

A subpackage of the actor package contains a library of (currently) about 40 poly-
morphic actors.

2.3 The Data Package
The data package provides data encapsulation, polymorphism, parameter handling,
and an expression language. Data encapsulation is implemented by a set of token
classes. For example, IntToken contains an integer, DoubleMatrixToken contains a
two-dimensional array of doubles. The tokens can be transported via message passing

between Ptolemy II objects. Alternatively, they can be used to parameterize Ptolemy II
objects. Such encapsulation allows for a great degree of extensibility, permitting devel-
opers to extend the library of data types that Ptolemy II can handle.

One of the goals of the data package is to support polymorphic operations between
tokens. For this, the base Token class defines methods for the primitive arithmetic
operations, such as add(), multiply(), subtract(), divide(), modulo() and equals().
Derived classes override these methods to provide class specific operations where
appropriate.

Parameter handling and an extensible expression language, including its inter-
preter, are supported by a subpackage inside the data package. A parameter contains a
token as its value. This token can be set directly, or specified by an expression. An
expression may refer to other parameters, and dependencies and type relationships
between parameters are handled transparently.

2.4 The Graph package
This package provides algorithms for manipulating and analyzing mathematical
graphs. Mathematical graphs are simpler than Ptolemy II clustered graphs in that there
is no hierarchy, and arcs link exactly two nodes. Both undirected and directed graphs
are supported. Acyclic directed graphs, which can be used to model complete partial
orders (CPOs) and lattices [4], are also supported with more specialized algorithms.
This package provides the infrastructure to construct the type lattice and implement
the type resolution algorithm. However, this package is not aware of the types; it sup-
plies generic tools that can used in different applications.

3 Type System Formulation

3.1 The Type Lattice
A lattice is a partially ordered set in which every subset of elements has a least upper
bound and a greatest lower bound [4]. This mathematical structure is used to represent
the lossless type conversion relation in a type system. An example of a type lattice is
shown in Fig.2. This particular lattice is constructed in the data package using the
infrastructure of the graph package. In the diagram, type α is greater than type β if
there is a path upwards from β to α. Thus, ComplexMatrix is greater than Int. Type α
is less than type β if there is a path downwards from β to α. Thus, Int is less than Com-
plexMatrix. Otherwise, types α and β are incomparable. Complex and Long, for
example, are incomparable. The top element, General, which is “the most general
type,” corresponds to the base token class; the bottom element, NaT (Not a Type), does
not correspond to a token. Users can extend a type lattice by adding more types.

In the type lattice, a type can be losslessly converted to any type greater than it. For
example, an integer can be losslessly converted to a double. Here, we assume an inte-
ger is 32 bits long and a double is 64 bits using the IEEE 754 floating point format, as
in Java. This hierarchy is related to the inheritance hierarchy of the token classes in
that a subclass is always less than its super class in the type lattice, but some adjacent
types in the lattice are not related by inheritance. So this hierarchy is a combination of

the subtyping relation in object oriented languages, and ad hoc subtyping rules, such as
Int ≤ Double [13]. Organizing types in a hierarchy is fairly standard. For example,
Abelson and Sussman [1] organized the coercion relation among types in a hierarchy.
However, they did not deliberately model the hierarchy as a lattice. Long ago, Hext [9]
experimented with using a lattice to model the type conversion relation, but he was not
working with an object oriented language and did not intend to support polymorphic
system components. This work predates the popular use of those concepts.

Type conversion is done by a method convert() in the token classes. This method
converts the argument into an instance of the class implementing this method. For
example, DoubleToken.convert(Token token) converts the specified token into an
instance of DoubleToken. The convert() method can convert any token immediately
below it in the type hierarchy into an instance of its own class. If the argument is sev-
eral levels down the type hierarchy, the convert() method recursively calls the con-
vert() method one level below to do the conversion. If the argument is higher in the

Fig. 2. An example of a type lattice.

String

ComplexMatrixLongMatrixFixMatrixBooleanMatrix

DoubleMatrix

IntMatrix

Boolean Fix Long Complex

Double

Int

NaT

General

Object

Numerical

Scalar

type hierarchy, or is incomparable with its own class, convert() throws an exception. If
the argument to convert() is already an instance of its own class, it is returned without
any change.

3.2 Type Constraints
In Ptolemy II, to guarantee that information is not lost during data transfer, we require
the type of a port that sends tokens to be the same as or lower than the type of the
receiving port:

sendType ≤ receiveType (1)

If both the sendType and receiveType are declared, the static type checker simply
checks whether this inequality is satisfied, and reports a type conflict if it is not.

In addition to the above constraint imposed by the topology, actors may also
impose constraints among ports and parameters. For example, the Ramp actor in
Ptolemy II, which is a source actor that produces a token on each execution with a
value that is incremented by a specified step, stores the first output and the step value
in two parameters. This actor will not declare the type of its port, but will specify the
constraint that the port type is greater than or equal to the types of the two parameters.
As another example, a polymorphic Distributor actor, which splits a single token
stream into a set of streams, will specify the constraint that the type of a sending port is
greater than or equal to that of the receiving port. This Distributor will be able to work
on tokens of any type. In general, polymorphic actors need to describe the acceptable
types through type constraints.

All the type constraints in Ptolemy II are described in the form of inequalities like
the one in (1). If a port or a parameter has a declared type, its type appears as a con-
stant in the inequalities. On the other hand, if a port or a parameter has an undeclared
type, its type is represented by a type variable in the inequalities. The domain of the
type variable is the elements of the type lattice. The type resolution algorithm resolves
the undeclared types in the constraint set. If resolution is not possible, a type conflict
error will be reported. As an example of a constraint set, consider Fig.3.

The port on actor A1 has declared type Int; the ports on A3 and A4 have declared
type Double; and the ports on A2 have their types undeclared. Let the type variables
for the undeclared types be α, β, and γ; the type constraints from the topology are:

Int ≤ α
Double ≤ β
γ ≤ Double

Fig. 3. A topology (interconnection of components) with types.

Int

Double

Doubleα

β

γ
A1

A3

A2 A4

Now, assume A2 is a polymorphic adder, capable of doing addition for integer,
double, and complex numbers. Then the type constraints for the adder can be written
as:

α ≤ γ
β ≤ γ
γ ≤ Complex

The first two inequalities constrain the precision of the addition result to be no less
than that of the summands, the last one requires that the data on the adder ports can be
converted to Complex losslessly. These six inequalities form the complete set of con-
straints and are used by the type resolution algorithm to solve for α, β, and γ.

This inequality formulation is inspired by the type inference algorithm in ML [12].
There, type equations are used to represent type constraints. In Ptolemy II, the lossless
type conversion hierarchy naturally implies inequality relations among the types
instead of equalities. In ML, the type constraints are generated from program con-
structs. In a heterogeneous graphical programming environment like Ptolemy II, where
details of the components are hidden, the system does not have enough information
about the function of the actors, so the actors must present their type information by
either declaring the type on their port, or by specifying a set of type constraints to
describe the acceptable types on the undeclared ports. The Ptolemy II system also gen-
erates type constraints based on (1).

This formulation converts type resolution into a problem of solving a set of ine-
qualities defined over a finite lattice. An efficient algorithm for doing this is given by
Rehof and Mogensen [15]. The appendix of this paper describes this algorithm through
an example. Essentially, the algorithm starts by assigning all the type variables the bot-
tom element of the type hierarchy, NaT, then repeatedly updating the variables to a
greater element until all the constraints are satisfied, or until the algorithm finds that
the set of constraints are not satisfiable. This process can be formulated as the search
for the least fixed point of a monotonic function on the lattice. The least fixed point is
the set of most specific types. It is unique [4], and satisfies the constraints if it is possi-
ble to satisfy the constraints.

If the set of type constraints are not satisfiable, or some type variables are resolved
to NaT, the static type checker flags a type conflict error. The former case can happen,
for example, if the port on actor A1 in figure Fig.3 has declared type Complex. The lat-
ter can happen if an actor does not specify any type constraints on an undeclared send-
ing port. If the type constraints do not restrict a type variable to be greater than NaT, it
will stay at NaT after resolution. To avoid this, any sending port must either have a
declared type, or some constraints to force its type to be greater than NaT.

A solution satisfying the constraints may not be unique. In fact, the algorithm
given in [15] can be used to find either the most specific solution (least in the lattice)
or the most general solution (greatest in the lattice). The ML type inference algorithm
finds the most general types for a given program, which allows maximal reuse of com-
piled code. In our case, multiple occurrences of an actor in a topology are treated as
different actors, even though they specify the same set of type constraints, so we do not
need to use the most general type. In fact, our choice of using the most specific types
has a key advantage: types lower in the type lattice usually have a lower implementa-
tion cost. For example, in embedded system design, hardware is often synthesized

from a component-based description of a system. If a polymorphic adder is going be
synthesized into hardware, and it receives Int tokens and sends the addition result to a
Double port, our scheme will resolve the types of all the ports on the adder to Int,
rather than Double. Using an integer adder will be more economical than a double
adder. This is analogous to using types to generate more optimized code in compilers.

3.3 Run-time Type Checking and Lossless Type Conversion
The declared type is a contract between an actor and the Ptolemy II system. If an actor
declares that a sending port has a certain type, it asserts that it will only send tokens
whose types are less than or equal to that type. If an actor declares a receiving port to
have a certain type, it requires the system to only send tokens that are instances of the
class of that type to that port. Run-time type checking is the component in the system
that enforces this contract. When a token is sent from a sending port, the run-time type
checker finds its type, and compares it with the declared type of the port. If the type of
the token is not less than or equal to the declared type, a run-time type error will be
reported.

As discussed before, type conversion is needed when a token sent to a receiving
port has a type less than the type of that port but is not an instance of the class of that
type. Since this kind of lossless conversion is done automatically, an actor can safely
cast a received token to the declared type. On the other hand, when an actor sends
tokens, the tokens being sent do not have to have the exact declared type of the sending
port. Any type that is less than the declared type is acceptable. For example, if a send-
ing port has declared type Double, the actor can send IntToken from that port without
having to convert it to a DoubleToken, since the conversion will be done by the sys-
tem. So the automatic type conversion simplifies the input/output handling of the
actors.

Note that even with the convenience provided by the type conversion, actors
should still declare the receiving types to be the most general that they can handle and
the sending types to be the most specific that includes all tokens they will send. This
maximizes their applications. In the previous example, if the actor only sends
IntToken, it should declare the sending type to be Int to allow the port to be connected
to a receiving port with type Int.

If an actor has ports with undeclared types, its type constraints can be viewed as
both a requirement and an assertion from the actor. The actor requires the resolved
types to satisfy the constraints. Once the resolved types are found, they serve the role
of declared types at run time. I.e., the type checking and type conversion system guar-
antees to only put tokens that are instances of the class of the resolved type to receiv-
ing ports, and the actor asserts to only send tokens whose types are less than or equal to
the resolved type from sending ports.

3.4 Discussion of Type Resolution and Polymorphism
Rehof and Mogensen proved that their algorithm for solving inequality constraints is
linear time in the number of occurrences of symbols in the constraints, which in our
case, can be translated into linear time in the number of constraints. This makes type
resolution very efficient. On the other hand, one might be tempted to extend the formu-

lation to achieve more flexibility in type specification. For example, it would be nice
to introduce a OR relation among the constraints. This can be useful, in the case of a
two-input adder, for specifying the constraint that the types of the two receiving ports
are comparable. This constraint will prohibit tokens with incomparable types to be
added. As shown in [15], this cannot be easily done. The inequality constraint problem
belongs to the class of meet-closed problems. Meet-closed, in our case, means that if A
and B are two solutions to the constraints, their greatest lower bound in the lattice is
also a solution. This condition guarantees the existence of the least solution, if any
solution exists at all. Introducing the OR relation would break the meet-closed prop-
erty of the problem. Rehof and Mogensen also showed that any strict extension of the
class of meet-closed problems solved by their algorithm will lead to an NP-complete
problem. So far, the inequality formulation is generally sufficient for our purpose, but
we are still exploring its limitations and workarounds.

We have been using the term polymorphic actor broadly to mean the actors that can
work with multiple types on their ports. In [3], Cardelli and Wegner distinguished two
broad kinds of polymorphism: universal and ad hoc polymorphism. Universal poly-
morphism is further divided into parametric and inclusion polymorphism. Parametric
polymorphism is obtained when a function works uniformly on a range of types. Inclu-
sion polymorphism appears in object oriented languages when a subclass can be used
in place of a superclass. Ad hoc polymorphism is also further divided into overloading
and coercion. In terms of implementation, a universally polymorphic function will
usually execute the same code for different types, whereas an ad-hoc polymorphic
functions will execute different code.

In an informal sense, Ptolemy II exhibits all of the above kinds of polymorphism.
The Distributor actor, discussed in section 3.2 shows parametric polymorphism
because it works with all types of tokens uniformly. If an actor declares its receiving
type to be General, which is the type of the base token class, then that actor can accept
any type of token since all the other token classes are derived from the base token
class. This is inclusion polymorphism. The automatic type conversion during data
transfer is a form of coercion; it allows an receiving port with type Complex, for exam-
ple, to be connected to sending ports with type Int, Double or Complex. An interesting
case is the arithmetic and logic operators, like the Add actor. In most languages, arith-
metic operators are overloaded, but different languages handle overloading differently.
In standard ML, overloading of arithmetic operators must be resolved at the point of
appearance, but type variables ranging over equality types are allowed for the equality
operator [16]. In Haskell, type classes are used to provide overloaded operations [8].
Ptolemy II takes advantage of data encapsulation. The token classes in Ptolemy II are
not passive data containers, they are active data in the sense that they know how to do
arithmetic operations with another token. This way, the Add actor can simply call the
add() method of the tokens, and work consistently on tokens of different type. An
advantage of this design is that users can develop new token types with their imple-
mentation for the add() method, achieving an effect similar to user defined operator
overloading in C++.

4 Examples
This section provides two examples of type resolution in Ptolemy II.

4.1 Fork Connection
Consider two simple topologies in Fig.4. where a single sending port is connected to
two receiving ports in Fig.4(a) and two sending ports are connected to a single receiv-
ing port in Fig.4(b). Denote the types of the ports by a1, a2, a3, b1, b2, b3, as indicated
in the figure. Some possibilities for legal and illegal type assignments are:
• In Fig.4(a), if a1 = Int, a2 = Double, a3 = Complex. The topology is well typed. At

run-time, the IntToken sent out from actor A1 will be converted to DoubleToken
before transferred to A2, and converted to ComplexToken before transferred to
A3. This shows that multiple ports with different types can be interconnected as
long as the sender type can be losslessly converted to the receiver type.

• In Fig.4(b), if b1 = Int, b2 = Double, and b3 is undeclared. The the resolved type
for b3 will be Double. If b1 = Int and b2 = Boolean, the resolved type for b3 will
be String since it is the lowest element in the type hierarchy that is higher than
both Int and Boolean. In this case, if the actor B3 has some type constraints that
require b3 to be less than String, then type resolution is not possible, a type con-
flict will be signaled.

A Java applet that demonstrates the situation in Fig.4(b) and shows the type resolu-
tion process is available at the URL: http://ptolemy.eecs.berkeley.edu/ptolemyII/
ptII0.3/ptII0.3/ptolemy/domains/sdf/demo/Type/Type.htm

4.2 Mixing FSM and SDF
In [7], Girault, Lee and Lee showed how to mix finite-state machines (FSMs) with
other concurrency models. For example FSM can be mixed with synchronous dataflow
(SDF) [10], as shown in Fig.5. In this figure, the top of the hierarchy is an SDF system.
The middle actor B in this system is refined to a FSM with two states, each of which is
further refined to a SDF subsystem. One type constraint on the receiving port of B is
that its type must be less than or equal to the types of both of the receiving ports of the
SDF subsystems D and E, because tokens may be transported from the receiving port
of B to the receiving ports of D or E. Assuming the types of the receiving ports on D
and E are Int and Double, respectively, type resolution will resolve the type of the
receiving port of B to Int. Similarly, a type constraint for the sending port of B is that

Fig. 4. Two simple topologies with types.

a1
a2

(a)

A1

A2

a3

A3

b1

(b)

B1

B3

B2
b2

b3

its type must be greater than or equal to the types of both of the sending ports of D and
E, and its resolved type will be Double.

Note that this result is consistent with function subtyping [13]. If we consider the
order in the type lattice as subtype relations, and the actors as functions, then D:
Int→Int, E: Double→Double, and B: α→β before type resolution. Since D and E can
take the place of B during execution, their types should be considered as subtypes of
the type of B. Since function subtyping is contravariant for function arguments and
covariant for function results, the type α should be a subtype of Int and Double and β
should be a super type of Int and Double. This is exactly what the type constraints
specify, and the resulting type for B: Int→Double is indeed a supertype of both of the
types of D and E.

5 Conclusion and Future Work
In the design of the Ptolemy II type system, we have taken the approach of polymor-
phic static typing combined with run-time type checking. We use a lattice structure to
model the lossless type conversion relation and provide automatic type conversion
during data transfer. Polymorphism is supported by allowing the system components
to specify type constraints, and a linear time algorithm is used for constraint resolu-
tion. This type system increases the safety and usability of the component-based
design environment, promotes component reuse, and helps with design optimization.
The infrastructure is built to operate on any type lattice, and so can be used to experi-
ment with extended type systems.

Currently, we are working on extending this system to support structured types
such as array and record types. The goal is to allow the elements of arrays and records
to contain tokens of arbitrary types, including structured types, and to be able to spec-
ify type constraints on them. One of the major difficulty with this extension is that the
type lattice will become infinite, which raises questions on the convergence of type
resolution.

Fig. 5. Mixing FSM with SDF.

SDF

A C

a b

FSM

D

SDF

B

E

SDF

Int Int Double Double

Int Double

Int Complex

In the longer term, we will try to characterize the communication protocols used
between system components, or some of the real-time properties of the system as
types, and design a process-level type system to facilitate heterogeneous real-time
modeling. This may potentially bring some of the benefit of data typing to the process
level.

Acknowledgments
This work is part of the Ptolemy project, which is supported by the Defense

Advanced Research Projects Agency (DARPA), the State of California MICRO pro-
gram, and the following companies: The Cadence Design Systems, Hewlett Packard,
Hitachi, Hughes Space and Communications, Motorola, NEC, and Philips.

Appendix. The Type Resolution Algorithm
The type resolution algorithm starts by assigning all the type variables the bottom ele-
ment of the type hierarchy, NaT, then repeatedly updating the variables to a greater ele-
ment until all the constraints are satisfied, or until the algorithm finds that the set of
constraints are not satisfiable. This iteration can be viewed as repeated evaluation of a
monotonic function, and the solution is the least fixed point of the function. The kind
of inequality constraints for which the algorithm can determine satisfiability are the
ones with the greater term being a variable or a constant. By convention, we write ine-
qualities with the lesser term on the left and the greater term on the right, as in α ≤ β,
not β ≥ α. The algorithm allows the left side of the inequality to contain monotonic
functions of the type variables, but not the right side. The first step of the algorithm is
to divide the inequalities into two categories, Cvar and Ccnst. The inequalities in Cvar
have a variable on the right side, and the inequalities in Ccnst have a constant on the
right side. In the example of Fig.3, Cvar consists of:

Int ≤ α
Double ≤ β
α ≤ γ
β ≤ γ

And Ccnst consists of:
γ ≤ Double
γ ≤ Complex

The repeated evaluations are only done on Cvar, Ccnst are used as checks after the
iteration is finished, as we will see later. Before the iteration, all the variables are
assigned the value NaT, and Cvar looks like:

Int ≤ α(NaT)
Double ≤ β(NaT)
α(NaT) ≤ γ(NaT)
β(NaT) ≤ γ(NaT)

Where the current value of the variables are inside the parenthesis next to the variable.
At this point, Cvar is further divided into two sets: those inequalities that are not

currently satisfied, and those that are satisfied:

Not-satisfied Satisfied
Int ≤ α(NaT) α(NaT) ≤ γ(NaT)
Double ≤ β(NaT) β(NaT) ≤ γ(NaT)

Now comes the update step. The algorithm selects an arbitrary inequality from the
Not-satisfied set, and forces it to be satisfied by assigning the variable on the right side
the least upper bound of the values of both sides of the inequality. Assuming the algo-
rithm selects Int ≤ α(NaT), then

α = Int∨NaT = Int (2)

After α is updated, all the inequalities in Cvar containing it are inspected and are
switched to either the Satisfied or Not-satisfied set, if they are not already in the appro-
priate set. In this example, after this step, Cvar is:

Not-satisfied Satisfied
Double ≤ β(NaT) Int ≤ α(Int)
α(Int) ≤ γ(NaT) β(NaT) ≤ γ(NaT)

The update step is repeated until all the inequalities in Cvar are satisfied. In this
example, β and γ will be updated and the solution is:

α = Int, β = γ = Double
Note that there always exists a solution for Cvar. An obvious one is to assign all the

variables to the top element, General, although this solution may not satisfy the con-
straints in Ccnst. The above iteration will find the least solution, or the set of most spe-
cific types.

After the iteration, the inequalities in Ccnst are checked based on the current value
of the variables. If all of them are satisfied, a solution to the set of constraints is found.

As mentioned earlier, the iteration step can be seen as a search for the least fixed
point of a monotonic function. In this view, the computation in (2) is the application of
a monotonic function to type variables. Let L denote the type lattice. In an inequality r
≤ α, where α is a variable, and r is either a variable or a constant, the update function f:

L2 → L is α’ = f(r, α) = r ∨ α. Here, α represents the value of the variable before the
update, and α’ represents the value after the update. f can easily be seen to be mono-
tonic and non-decreasing. And, since L is finite, it satisfies the ascending chain condi-
tion, so f is also continuous. Let the variables in the constraint set be α1, α2, ... , αN,
where N is the total number of variables, and define Α = (α1, α2, ... , αN). The com-

plete iteration can be viewed as repeated evaluation of a function F: LN → LN of Α,
where F is the composition of the individual update functions. Clearly, F is also con-

tinuous. The iteration starts with the variables initialized to the bottom, Α = ⊥N, and

computes the sequence Fi(⊥N) (i ≥ 0), which is a non-decreasing chain. By the fixed
point theorem in [4], the least upper bound of this chain is the least fixed point of F,
corresponding to the most specific types in our case.

Rehof and Mogensen [15] proved that the above algorithm is linear time in the
number of occurrences of symbols in the constraints, and gave an upper bound on the
number of basic computations. In our formulation, the symbols are type constants and
type variables, and each constraint contains two symbols. So the type resolution algo-
rithm is linear in the number of constraints.

References
1. H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Pro-

grams, The MIT Press, 1985.

2. F. Arbab, MANIFOLD Version 2.0, CWI, Software Engineering Cluster, Kruis-
laan 413, 1098 SJ Amsterdam, The Netherlands, June, 1998.

3. L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and
Polymorphism,” ACM Computing Surveys, Vol.17, No.4, Dec. 1985.

4. B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge
University Press, 1990.

5. J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Muli-
adi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay and Y. Xiong, Overview of the
Ptolemy Project, ERL Technical Report UCB/ERL No. M99/37, Dept. EECS,
University of California, Berkeley, CA 94720, July 1999. (http://
ptolemy.eecs.berkeley.edu/publications/papers/99/HMAD/)

6. Y-C. Fuh and P. Mishra, “Type Inference with Subtypes,” Second European Sym-
posium on Programming, Nancy, France, 1988.

7. A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines with Mul-
tiple Concurrency Models,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol.18, No.6, June 1999.

8. C. V. Hall, K. Hammond, S.L. Peyton Jones, and P. L. Wadler, “Type Classes in
Haskell,” ACM Transactions on Programming Languages, Vol.18, No.2, Mar.
1996.

9. J. B. Hext, “Compile-Time Type-Matching,” Computer Journal, 9, 1967.

10. E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing,” IEEE Transaction on Computer,
Jan. 1987.

11. J. Liu, B. Wu, X. Liu, and E. A. Lee, “Interoperation of Heterogeneous CAD
Tools in Ptolemy II,” Symposium on Design, Test, and Microfabrication of
MEMS/MOEMS, Paris, France, Mar. 1999.

12. R. Milner, “A Theory of Type Polymorphism in Programming,” Journal of Com-
puter and System Sciences, 17, pp. 384-375, 1978.

13. J. C. Mitchell, Foundations for Programming Languages, The MIT Press, 1998.

14. M. Odersky, “Challenges in Type Systems Research,” ACM Computing Surveys,
Vol.28, No.4es, 1996.

15. J. Rehof and T. Mogensen, “Tractable Constraints in Finite Semilattices,” Third
International Static Analysis Symposium, LNCS 1145, Springer, Sept., 1996.

16. J. D. Ullman, Elements of ML Programming, Prentice Hall, 1998.

