The Ptolemy II Framework for Visual Languages

Xiaojun Liu, Yuhong Xiong, and Edward A. Lee
EECS Dept. University of California, Berkeley
{liuxj, yuhong, eal}@eecs.berkeley.edu

Abstract

This paper presents the Ptolemy II framework that sup-
ports the visual modeling and design of heterogeneous sys-
tems. Models in this framework are structured as
hierarchical clustered graphs. The framework provides the
infrastructure to support the implementation of a variety of
models of computation as domains. Heterogeneous systems
are modeled by hierarchically combining different domains.
We describe the implementation of the *charts formalism (a
generalization of Statecharts) in Ptolemy II as an illustra-
tion of the flexibility of this approach.

1. Introduction

Component-based design is established as an important
approach to designing complex embedded systems, which
often have many concurrent computational activities and
mix widely differing operations. Such systems are often
modeled and designed using a variety of models of compu-
tation. Visual languages, with their ability to explicitly rep-
resent the concurrent activities and distributed structure of
the target systems, can greatly help the designers to under-
stand and reason about system behaviors. To apply visual
languages in the design of heterogeneous systems, it is cru-
cial for these languages to support multiple models of com-
putation in a structured way.

An important class of visual languages that supports het-
erogeneous modeling is pioneered by Statecharts, proposed
by Harel [3]. The *charts formalism (pronounced
“starcharts”) [2] generalizes Statecharts, and allows arbi-
trary hierarchical nesting of finite state machines (FSMs)
with a variety of models of computation.

This paper presents Ptolemy II [1], a visual design envi-
ronment that supports the modeling and design of complex
heterogeneous systems. This environment is based on an
abstract syntax of clustered graphs. A variety of models of
computation, which define the semantics of the graph, are
implemented as Ptolemy II domains. This framework for
visual languages, and the implementation of the *charts for-
malism, are discussed in the following sections.

2. The Ptolemy II framework

2.1. Abstract syntax

In Ptolemy II, system models are represented as clus-
tered graphs of entities and relations. The abstract syntax
for such clustered graphs is illustrated in figure 1. El is a
composite entity. E2, E3 and E4 are component entities,
which are at the bottom of the hierarchy. A composite entity
may contain other composite entities, so the hierarchy can
be arbitrarily nested. Entities have ports, shown as filled
circles. Relations, shown as diamonds, connect the ports.

2.2. Executable entities

The executable entities in Ptolemy II are called actors.
They encapsulate computation and communicate with one
another via some form of message passing. In addition,
actors have an interface that allows fine-grained control of
their execution. Like entities, actors can be composite.

2.3. Domains and message passing

In Ptolemy II, a channel of communication is imple-
mented by an object called a receiver. All the receivers
share a basic interface, but may implement different com-
munication protocols, such as synchronous or asynchronous
message passing. These different protocols, together with
the execution control mechanism, define a set of Ptolemy 11
domains. Each domain implements a model of computation.
For example:

* In the continuous time (CT) domain, actors represent
components that interact via continuous-time signals.
This domain is good for modeling systems with continu-
ous dynamics.

ation

Figure 1. An illustration of the abstract syntax.




+ In the discrete event (DE) domain, actors communicate
via events placed on a real time line. Each event has a
value and a time stamp. This domain is good for model-
ing digital systems.

* In the synchronous dataflow (SDF) domain, actors per-
form regular computations on data streams. The execu-
tion order of actors is statically defined. A valuable
property of SDF models is that deadlock and bounded-
ness are decidable. This domain is good for signal pro-
cessing applications.

* In the synchronous reactive (SR) domain, the connec-
tions represent signals whose values are aligned with glo-
bal clock ticks. The actors represent relations between
input and output signals at each tick, and are usually par-
tial functions with certain technical restrictions to ensure
determinacy. This domain is good for applications with
concurrent and complex control logic.

When heterogeneous systems are modeled in Ptolemy II,
multiple models of computation are hierarchically com-
bined.

3. *charts

The *charts formalism allows nesting FSMs with a vari-
ety of models of computation at any level in a heteroge-
neous model. For example, a state in an FSM can be refined
to a DE model and a DE actor can contain an FSM.

3.1. Domain-polymorphic FSMActor

The *charts formalism is implemented in the FSM
domain in Ptolemy II. The key component of this domain is
FSMActor, which contains an FSM model. This actor can
be embedded in another domain. Figure 2 shows an FSM
actor that performs run-length coding in a DE model. These
models are built in the Ptolemy II user interface environ-
ment called Vergil. The same FSM actor will also work in
other domains.

1E lneTar

Figure 2. An FSM actor that performs run-length coding.

3.2. Modal systems

Many real-life systems exhibit multiple modes of opera-
tion. We use the term modal to describe such systems and
their models. Using the FSM domain, we can build modal
models in a natural way. After identifying the modes of
operation, a model for each mode is built, possibly in differ-
ent domains. Then a mode controller (an FSM encoding the
mode control logic) is constructed; its states represent the
modes of operation.

4. Conclusion

The Ptolemy II approach for visual language is based on
a general abstract syntax, with the semantics given by a
variety of models of computation. This approach supports
the *charts formalism in a straightforward way.

We have developed a formal framework to study the
communication protocols implemented by the receivers in
Ptolemy II domains. More information about this frame-
work and the Ptolemy II project in general can be found in
the Ptolemy II web site [4].

Acknowledgement

This research is part of the Ptolemy project, which is
supported by the Defense Advanced Research Projects
Agency (DARPA), the MARCO/DARPA Gigascale Silicon
Research Center (GSRC), the State of California MICRO
program, and the following companies: Agilent Technolo-
gies, Cadence Design Systems, Hitachi, and Philips.

We thank Joern Janneck for many helpful discussions
during the writing of this paper. We also thank the whole
Ptolemy team for building the wonderful Ptolemy II soft-
ware.

References

[1] J. Davis II, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Tsay, B. Vogel, and Y. Xiong,
“Heterogeneous Concurrent Modeling and Design in Java,”
Technical Memorandum UCB/ERL MO01/12, EECS, Univer-
sity of California, Berkeley, March 15, 2001. (http://
ptolemy.cecs.berkeley.edu/publications/papers/01/HMAD/)

[2] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State
Machines with Multiple Concurrency Models,” I[EEE Transac-
tions On Computer-aided Design Of Integrated Circuits And
Systems, Vol. 18, No. 6, June 1999.

[3] D. Harel, “Statecharts: A Visual Formalism for Complex Sys-
tems,” Science of Computer Programming, vol. 8, no. 3, p.
231-274, June 1987.

[4] The Ptolemy II Project, http://ptolemy.eecs.berkeley.edu/ptole-
myll/.



