
DESIGN AND SIMULATION OF HETEROGENEOUS
CONTROL SYSTEMS USING PTOLEMY II

Johan Eker, Chamberlain Fong, Jörn W. Janneck, Jie Liu

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, CA 94720-1770, US
{johane,chf,janneck,liuj}@eecs.berkeley.edu

Abstract: Complex control systems are heterogeneous from both an implementa-
tion and a modeling perspective. Design and simulation environments for such
systems need to integrate different component interaction styles, like differential
equations, discrete events, state machines, dataflow networks, and real-time
scheduling. This paper motivates the use of Ptolemy II software environment for
modeling and simulation of heterogeneous control systems. Ptolemy II advocates a
component-based design methodology, and hierarchically integrates multiple mod-
els of computation, which can be used to capture different design perspectives. A
Furuta pendulum control system is used as a motivating example. After designing
a three-mode hybrid controller under idealized assumptions, implementation ef-
fects, like real-time scheduling and network protocols, are taken into consideration
to achieve a more realistic simulation. The 3D animation package in Ptolemy II
helps designers to visualize the control results. In this process of refining the
design, components modeled in early phases can be reused. Copyright 2001 IFAC

Keywords: Simulators, real-time computers, embedded systems

1. INTRODUCTION

The heterogeneity of modern embedded control
systems puts high demands on design and simu-
lation tools. A typical hybrid control system con-
sists of a set of subcontrollers and some switch-
ing logic. The controllers themselves are conve-
niently described using discrete equations, the
switching logic may be expressed using state
machines, the controller is implemented as a
task under a real-time operating system, the
controlled plant is modeled as differential equa-
tions, and so on.

The above subsystems differ in the way their
components interact, both in terms of the way
they exchange information, and in terms of the
flow of control between them—synchronous or
asynchronous, buffered or unbuffered, sequen-

tial or parallel, etc. Ideally, a designer should
be able to model each of these in their natural
computational domain, based on a correspond-
ing model of computation.

This requirement makes the Ptolemy II envi-
ronment an interesting candidate for creating
such models of heterogeneous control systems.
Ptolemy II provides a wide (and extensible)
range of computational models which are based
on a common notion of “domain”. Sub-models
in different domains may be hierarchically com-
bined, which makes the simulation model much
clearer and more understandable, and facili-
tates the modeling of complex systems without
the need for an equally complex simulation con-
figuration.



Typically, a controller design project proceeds in
several distinct phases: modeling, design, sim-
ulation and implementation. Clearly, if possible
it is preferable to use the same tool through
all of the above phases and reuse the compo-
nents designed earlier. The extensive compo-
nent libraries and hierarchical compositionality
of heterogeneous models make Ptolemy II suit-
able for refining designs through these phases.
The 3D graphical animation support allows the
designer to visualize the simulation, and the re-
targetable code generation facility supports the
implementation phase by producing e.g. Java
or C code for a particular embedded control
system.

This paper shows the application of these con-
cepts and the Ptolemy II environment to the
design of a heterogeneous controller by first in-
troducing a small example problem (Section 2)
to motivate the Ptolemy approach, and then
presenting the pertinent modeling concepts and
domains provided by Ptolemy II (Section 3). In
Section 4 these concepts are then applied to the
example.

2. MOTIVATING EXAMPLE

The inverted pendulum is a classic control prob-
lem basically for two reasons: it is nonlinear and
unstable. A picture of the inverted pendulum
is shown in Fig. 1. The pendulum consists of
two moving parts, the arm that moves in the
horizontal plane and the pendulum that moves
in the vertical plane.

Fig. 1. The rotating inverted pendulum.

A hybrid controller can be designed to swing-
up and stabilize the pendulum. The controller
consists of three modal subcontrollers: a swing-
up controller, a catch controller, and a stabiliz-
ing controller. Initially, the pendulum starts in
the downward position and the swing-up mode
is used to bring it to the top position. Once it
is sufficiently close to the top equilibrium, the
controller enters the catch mode. The task of

the catch mode is to reduce the speed of the
pendulum and the arm before the third mode,
stabilize, is entered. The catch and stabilize
modes are linear state feedback controllers. The
swing-up controller uses a nonlinear energy
based algorithm for bringing the pendulum to
upward position. The controller switching logic
can be described using a finite state machine,
where each state corresponds to a control mode,
and each of the subcontrollers can be described
as a dataflow computation, as shown in Fig. 2.

FSM
SDF

Fig. 2. The hybrid pendulum controller consist-
ing of three subcontrollers.

The above system is straightforward to model
and simulate in many modern design tools.
One example of it is shown in Fig. 3, where
the controller in Fig. 2 is integrated with the
plant dynamics, which is modeled as ordinary
differential equations (ODEs). However, this

FSM

ODE

Sampler

ZOH

44

CT

SDF

Fig. 3. A basic controller model.

model does not capture many issues related to
an actual implementation. Here we make the
usual assumptions that the execution time is
negligible and that we have no computation
and communication jitter. Of course, this is not
the case in the real-world. When the controller
is running on a real computer and on top of
a real-time operating system (RTOS), it will
compete with other tasks for resources, e.g.
the CPU and I/O. This will give rise to input-
output delays and variations in the sampling
period. Furthermore, the actuators and the sen-
sors are usually not directly connected to the
controller, but instead some network is used
for transferring data. The network is a common
resource possibly shared by many other control
loops, and again the loops compete for the net-
work bandwidth. We would like to capture the
above properties so that we can predict the real
behavior of the embedded system, and evalu-
ate scheduling mechanisms and communication
protocols in terms of applications performance.



In this process of refining a design, designers
need to gradually add design considerations to
the existing model and migrate the control sys-
tem from algorithms to implementation. Differ-
ent design perspectives usually imply hetero-
geneous component interaction styles. It is de-
sirable that a design environment can support
multiple component interaction styles and the
components designed in earlier phases can be
reused under new interaction styles, so that the
verified properties can be preserved as much
as possible. We argue that integrating differ-
ent models of computation will help decompose
design perspectives and achieve elegant and
reusable models.

3. PTOLEMY II COMPONENT
ARCHITECTURE AND MODELS OF

COMPUTATION

The Ptolemy II modeling and design environ-
ment addresses the heterogeneity and design
migration issues using a component-based de-
sign methodology, disciplined component inter-
actions, and component reuse. In Ptolemy II,
we acknowledge the existence of well-defined
models of computation, which guide the com-
munication style and the execution of a com-
position of components. Each model of com-
putation asserts certain properties that could
be desirable for certain aspects of a system.
These heterogeneous models of computation can
be composed hierarchically to preserve under-
standability, manage complexity, and encour-
age component reuse. This section presents the
Ptolemy II component structure and the models
of computation that are useful for simulation
and visualization of control system designs.

3.1 Model structure

In Ptolemy II, a model is a hierarchical aggre-
gation of components, which are called actors.
Actors encapsulate an atomic execution and
provide communication interfaces (called ports)
to other actors. An actor can be atomic, meaning
that it is at the bottom of the hierarchy. An actor
can be composite, meaning that it contains other
actors. A composite actor can be contained by
another composite actor, so hierarchies can be
arbitrarily nested.

A port of an actor can be an input, output,
or both. Communication channels among actors
are established by connecting ports. A port for
a composite actor can have connections both to
the inside and to the outside, and thus mediates
the communication from inside actors to outside
actors.

A model of computation associated with a com-
posite actor is implemented as a domain. A
domain defines the communication semantics
and the execution order among actors. The com-
munication mechanism is implemented using
receivers. To ensure a clear model of computa-
tion at a level of hierarchy, all receivers within
one composite actor are the same. Receivers
could represent FIFO queues, mailboxes, prox-
ies for a global queue, or rendezvous points. Ac-
tors, when resident in a domain, adopt domain-
specific receivers. By separating computation
and communication in this way, many actors
can be reused in different domains.

Actors, both atomic and composite, are exe-
cutable. The execution order of the actors con-
tained in a composite actor is controlled by
a director. Since receivers and directors must
work together, the director is also responsible
for creating receivers. When a composite actor is
executed, the director associated with the com-
posite actor executes the actors of the contained
model. The directors are carefully designed so
that they both respect the model of computa-
tion they implement and provide a polymorphic
execution interface to the outside domain. This
compositionality of execution is the key to man-
aging heterogeneity hierarchically.

3.2 Domains

A wide variety of domains have been imple-
mented in Ptolemy II. We discuss here a subset
of them, which are useful for designing control
systems.

3.2.1. Continuous time The continuous time
(CT) domain (Liu, 1998) models ordinary dif-
ferential equations (ODEs), extended to allow
the handling of discrete events. Special actors,
which represent integrators, are connected in
feedback loops in order to represent the ODEs.
Event generators, e.g. periodic samplers, trig-
gered samplers, and zero crossing detectors, and
waveform generators, like a zero order hold, are
implemented to convert between continuous-
time signals and discrete events.

The execution of a CT model involves the com-
putation of a numerical solution to the ODEs
at a discrete set of time instance. In order to
support the detection of discrete events and
interact with discrete models of computation,
the time progression and the execution order
of a CT model are carefully controlled (Liu and
Lee, 2000).



3.2.2. Discrete event In the discrete event
(DE) domain of Ptolemy II, actors communicate
through events placed on a (continuous) time
line. Each event has a value and a time stamp.
Actors process events in chronological order.
The output events produced by an actor are
required to be no earlier in time than the input
events that were consumed. In other words, DE
models are causal.

Discrete event models, having the continuous
notion of time and the discrete notion of events,
are suitable for modeling hardware and soft-
ware timing properties, communication net-
works, and queuing systems. A good refer-
ence on discrete event systems is (Cassandras,
1993).

3.2.3. Dataflow models By “dataflow" we re-
fer to a class of models that interact using
asynchronous message passing (Lee and Parks,
1995). In these models, components are pro-
cesses which communicate by sending messages
through FIFO queues. The sender of a mes-
sage need not wait for the receiver to be ready
to receive the message. Most dataflow models
only specify the data dependency among com-
ponents, imposing only a partial ordering on
the execution of components. These properties
match them well with signal processing and
control algorithms, and allow highly efficient
execution.

Synchronous dataflow (SDF) (Lee and Messer-
schmitt, 1987) is a particularly restricted spe-
cial case of dataflow models with extremely use-
ful properties. In SDF, whenever a component
executes, it consumes a fixed amount of input
data and produces a fixed amount of outputs.
For a consistent SDF model, a schedule can
be computed, such that the components do not
have to test for sufficient data before execution.
So, for algorithms with a fixed structure, SDF
is very efficient and predictable.

3.2.4. Finite State Machines Finite state ma-
chine (FSM) models, see (Hopcroft and Ull-
man, 1979), are used at two levels, within
a component or across components. Within a
component, state machines specify precise se-
quencing of component states and transitions
among them. When used across components,
state machines can be used to coordinate other
models. The typical use is to specify operation
modes and sequences among components. These
components can be built using other domains
(Girault et al., 1999). Hierarchically combining
state machines with concurrent models makes
state machines concurrent and helps to prevent

the explosion of the number of states in complex
systems.

3.2.5. RTOS The real-time operating system
(RTOS) domain in Ptolemy II allows designers
to explore priority-based scheduling policies and
their effects on real-time software. In this do-
main, components are software tasks with pri-
orities. The director of this domain implements
a prioritized event dispatching mechanism and
invokes tasks according to their feasibility and
priority. Both preemptive and nonpreemptive
scheduling, as well as static and dynamic prior-
ity assignment, can be captured.

3.2.6. 3D visualization/graphics The graph-
ics (GR) domain (described in more detail in
(Fong, 2001)) provides a component-based in-
frastructure for displaying three-dimensional
graphics in Ptolemy II. The GR domain follows
loop-free synchronous semantics. The basic idea
behind the GR domain is to arrange geome-
try and transform actors in a directed acyclic
graph to represent the location and orienta-
tion of objects in a world scene. This topology
of connected GR actors forms what is com-
monly known in computer graphics literature
as a scene graph. Fig. 4 shows an example
scene graph topology in Ptolemy II. The ge-
ometry actors are source actors that produce
basic 3D shapes such as spheres, cylinders,
and boxes. The transform actors perform linear
transformations on these shapes in order to
place them properly in the world scene. Hier-
archically combining graphics subsystems with
other domains in Ptolemy II is useful for pro-
ducing animated simulations. The availability
of 3D graphics complements Ptolemy’s hetero-
geneous modeling and simulation capabilities,
facilitating visualization and understanding of
dynamic model behavior.

Fig. 4. GR model of the pendulum.



4. REFINING THE MODEL

In this section we will show how a much de-
tailed design of the pendulum control system
can be constructed from a basic model us-
ing hierarchical composition of domains. The
controller is modeled as running on top of a
RTOS model, while the sensor and the actua-
tor are distributed and communicate with the
controller over a network.

4.1 Basic model

The initial model described in section 2 is con-
structed using three domains in Ptolemy II. The
pendulum is modeled in the continuous time do-
main using differential equations. The switch-
ing logic of the hybrid controller is described
as a finite state machine, whose states refine to
subcontrollers. These subcontrollers are in turn
modeled in the synchronous dataflow domain.
Here, we assume that the controller takes no
time to execute.

4.2 Model refinement

This model does not reflect the effects intro-
duced in a concrete implementation, such as
controller latency and communication delay. A
more accurate model would include a model
of the real-time operating system and the net-
work. This is done in two steps in Ptolemy II.
First, to consider the real-time issues, we em-
bed the controller designed in the basic model
(i.e. the composite actor that contains the finite
state machine and the subcontrollers) into an
RTOS domain to capture the effects of the in-
teraction between the different tasks running
concurrently on the system.

The composite actor for the modal controllers is
treated as a task in the RTOS domain. Some
other tasks are added to capture the dynamics
of concurrent tasks running on the same real-
time kernel. Notice that the composite actor
we built in the basic model only specifies the
computational part of the controller. To actually
reflect the implementation, another task, which
models the I/O part of the controller, is added,
similarly to the task model used in (Eker and
Cervin, 1999). This I/O task may compete for
resources with other I/O operations running on
the system.

The next step is to include a model of the net-
work communication. This is done by using a
discrete event domain at the top level, and in-
troducing a network actor, which models the be-
havior of a given network protocol. We connect

both the pendulum model and the controller
to the network actor so that the event going
through the network will be delayed according
to the load of the network. This extended model
is shown in Fig. 5. The top-level domain has
been changed to DE and it now contains five
actors: the pendulum, the controller, the net-
work, an actor that represents other network
components, and a visualization actor. Much of
the pendulum composite actor reusing the pre-
vious pendulum model, which is implemented in
the CT domain. The controller is implemented
using the RTOS domain described above. The
network actor simulates the communication be-
tween the nodes in the control system. Arbi-
trarily many nodes may be connected to the
network. The basic functionality of the network
actor is to simulate the network behavior, i.e.
model multi-node network access, packet drop-
ping, and message latency. The animation com-
posite actor is modeled in the GR domain, and
explained further in the next section.

Fig. 6. A 3D model of the Furuta pendulum.

4.3 Model animation

To visualize the Furuta pendulum system, we
model its core 3D shape in the GR domain.
A lofted shape is used to represent the base
that supports the moving parts. Cylinders of
various cross-sections are used to represent the
rotational base, the arm, and the pendulum
tip. After translating and rotating these shapes
into the right place, we connect them into a
scene graph actor. The GR scene graph diagram
is shown in Fig. 4. This scene graph specifies
that the motions of the rotational base are
inherited by the arm and pendulum, and that
the motions of the arm are inherited by the
pendulum. The whole GR model is a composite
actor contained by the top-level DE model. The
GR model uses two inputs from the sampler -



FSM

SDF

����
����
����

ODE

Sampler

ZOH

44

CTRTOS

Controller
tasksome other

tasks

Controller

Network

other network
nodes

DE

I/O
task

4

Animation
GR

Fig. 5. A refined controller model, which also models execution times and communication latencies
and allows us to study how they influence the closed loop performance.

the horizontal angle for the arm and the vertical
angle for the pendulum. Since the GR model
only represents object geometry, containment,
and motion, the velocities are not used as inputs
for the animation. It is possible that angular
velocity values are needed to produce motion
blur of the animation, but we did not implement
it. Fig. 6 shows an image from our animated
simulation of the pendulum.

5. CONCLUSION

We presented an approach to create models of
heterogeneous control systems by following a
discipline of hierarchical composition of various
domains. A domain implements the rules of
communication and control flow between model
components in that domain. Domain interac-
tions are well-defined, since they are based on
a common framework notion used to express
these models of computation. As a consequence,
model components are reusable in almost arbi-
trary contexts.

We have demonstrated these concepts by tak-
ing a small control model and embedding its
components in environments that better repre-
sent real-world influences on the actual system.
We also showed how to use the same concepts
to incorporate three-dimensional animation and
interaction capabilities into the model, which
significantly aid in understanding controller be-
havior and locating problems.

Further research is needed in identifying, defin-
ing, and implementing a more complete col-
lection of domains pertinent to control system
modeling. As domains form the semantical basis
of the modeling framework, it is essential that
they be orthogonal and that they interoperate in
meaningful ways with a minimum of emergent
behavior.

References

Christos G. Cassandras. Discrete Event Sys-
tems: Modeling and Performance Analysis.
Richard D. Irwin Publ., 1993.

Johan Eker and Anton Cervin. A Matlab toolbox
for real-time and control systems co-design.
In Proceedings of the 6th International Con-
ference on Real-Time Computing Systems and
Applications, pages 320–327, Hong Kong, P.R.
China, December 1999.

Chamberlain Fong. Discrete-Time Dataflow
Models for Visual Simulation in Ptolemy II.
Memo M01/9, UCB/ERL, University of Cali-
fornia at Berkeley, 2001.

Alain Girault, Bilung Lee, and Edward A. Lee.
Hierarchical finite state machines with mul-
tiple concurrency models. IEEE Transactions
on Computer-aided Design of Integrated Cir-
cuits and Systems, 18(6):742–760, June 1999.

John E. Hopcroft and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

Edward A. Lee and David G. Messerschmitt.
Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, September 1987.

Edward A. Lee and Thomas M. Parks. Dataflow
process networks. Proceedings of the IEEE, 83
(5):773–801, May 1995.

Jie Liu. Continuous time and mixed-signal
simulation in Ptolemy II. Memo M98/74,
UCB/ERL, EECS UC Berkeley, CA 94720,
July 1998.

Jie Liu and Edward A. Lee. Component-based
hierarchical modeling of systems with contin-
uous and discrete dynamics. In 2000 IEEE
International Symposium on Computer-Aided
Control System Design, Anchorage, Alaska,
USA, pages 95–100, September 2000.


