0-7803-6495-3/01/$10.00 © 2001 AACC

Proceedings of the American Control Conference
Arlington, VA June 25-27, 2001

Modeling Distributed Hybrid Systems in Ptolemy 11

Jie Liu, Xiaojun Liu, and Edward A. Lee
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720, USA
{liuj, liuxj, eal } @eecs.berkeley.edu

1. Introduction

We present Ptolemy II as a modeling and simulation envi-
ronment for distributed hybrid systems. In Ptolemy II, a dis-
tributed hybrid system is specified as a hierarchy of models:
an event-based top level and distributed islands of hybrid
systems. Each hybrid system is in turn a hierarchy of contin-
uous-time models and finite state machines.

Ptolemy II [2] supports the modeling of heterogeneous sys-
tems by using a hierarchical component-based architecture
and well-defined models of computation. The basic compo-
nent in Ptolemy II is called an actor. Actors have ports,
which are their communication interface to other actors. An
aggregation of actors and their connections is called a com-
posite actor. A composite actor can have it own ports,
which mediate the communication between inside actors
and outside actors. Note that a composite actor is also an
actor, so that components can be arbitrarily nested.

The interaction among actors within a composite actor is
defined by a model of computation and implemented by a
director of that composite actor. In particular, a director
defines the communication mechanism and the execution
order of the actors under its control. The hierarchical com-
position of actors allows directors to be hierarchically
nested. Thus, heterogeneous models can co-exist in a sys-
tem, and within each level, the model of computation is
well-defined. A variety of models of computation has been
implemented in Ptolemy II. We only present the models that
are needed for modeling distributed hybrid systems.

2. Hierarchical Hybrid Systems

In Ptolemy II, hybrid systems are modeled by hierarchically
nesting finite state machines (FSM) with continuous-time
(CT) models, as shown in Figure 1.

Finite state machines are modeled using a special actor
called an FSMActor, shown as actor B in Figure 1. An FSM

This work is part of the Ptolemy project, which is supported
by DARPA/ITO, the State of California MICRO program, and
the following companies: Cadence Design Systems, Hewlett
Packard, Hitachi, Hughes Space and Communications, Motor-
ola, NEC, and Philips.

actor contains states and transitions and exposes an actor
interface. States in an FSM actor can refine into other com-
ponents, which means that when the state machine is in that
state, the component that refines the state will replace the
FSM actor. Transitions have guards and actions. A guard on
a transition is a predicate that indicate when the transition
will be taken. For example, in Figure 1, the guard on the
transition from g; to g, could be expressed in terms of the
input of B and the output of B;. When the transition is
taken, the actions on the transition will be performed.
Actions may reset variables in the refinement of the destina-
tion state, or produce outputs for the FSM actor.

In hybrid systems, an FSM state can refine into continuous-
time differential equations, like

flx,u,ty (1
glx,u, 1)

X
y

where x is the continuous state variable, u is the input, and y
is the output. Such differential equations are modeled using
integrators with feedback, where f and g are built using
actors, which may internally implement other models, such
as another hybrid subsystem. In order to interact with dis-
crete models, event generators and waveform generators are
introduced in the CT model [3]. These generators convert
between continuous signals and discrete events. FSM actors
can use the generated events in their guards.

3. Hybrid Simulation

The simulation of hybrid systems alternates between solv-

ing differential equations numerically and making discrete

FSM transitions. Two challenges in the simulation are:

» managing the discretization of numerical integration
steps to achieve both accuracy of continuous-time trajec-
tories and precise timing of discrete events;

1By BM_\’W |

Figure 1. A hierarchical hybrid system.

4984

* managing the control flow across levels of hierarchy.

These issues are tackled in Ptolemy II by using variable step
size numerical methods enhanced with event handling and
coordinating CT and FSM directors [4]. The step size con-
trol mechanism in [4] handles both timed events (whose
occurrence time is known beforehand) and state events
(whose occurrence time depends on the value of the state
variables).

4. Coordinating Hybrid Systems

Many complex systems consist of multiple hybrid sub-
systems that communicate through events. In Ptolemy II, the
model that coordinates hybrid subsystems does not have to
be a CT model. Instead, we can choose the best models that
capture the properties of interest. In many cases, these mod-
els only need to manage a discrete set of events.

One advantage of using an event-based model to coordinate
hybrid subsystems is that integration step sizes in the sub-
systems are decoupled. Other than detecting events, individ-
ual subsystems can adjust their step sizes solely according to
their local continuous dynamics and independent of each
other. This allows a subsystem with slow dynamics to exe-
cute with relatively large step sizes, without unnecessary
synchronization with its fast peers. '

We introduce two models to coordinate hybrid systems dis-
cretely — a discrete event (DE) model and a publish/sub-
scribe (P/S) model. DE models feature a global notion of
time, so it is possible to study the impact of communication
delays and timing behaviors. The P/S model decouples the
senders and the receivers of messages, so it is easy to model
federations of subsystems with dynamic configurations.

4.1. Discrete-event model

In a discrete-event model, time is global to all components.
An event has a value and a time stamp. Components, which
could be internally implemented as a hybrid system, com-
municate via a set of events located discretely on the time
line. A component, when executing, consumes input events
and produces output events. In particular, components can
increase the input time stamps to compute output time
stamps. For example, a communication channel can be mod-
eled as a component that delays its input packets for an
(uncertain) amount of time, and may occasionally drop
packets.

Additional subtlety has to be taken care of when using dis-
crete event model to coordinate multiple continuous-time
subsystems. That is the continuous subsystems have to run
ahead of the discrete-event time and prepare for rolling back

31

4.2, Publish and subscribe model

Publish and subscribe is a model for three-tier communica-
tion [1], [5], [6]. In this model, an event channel, also known
as a persistent object space, mediates the communication
between senders and receivers. Since no direct channel
needs to be established between senders and receivers, P/S
models are good at managing communicating peers that join
and leave a federation.

Many P/S models are untimed. Time stamps on an event
produced by one subsystem may not make sense in another
subsystem. In such cases, systems usually need to synchro-
nize with real time to exhibit reasonable relative execution
progress. In Ptolemy II, special actors have been developed
that use JavaSpaces [6] as the event channel. These actors
can be integrated with hybrid system models to achieve
coordination.

5. Conclusion

Ptolemy II provides a component-based architecture for
modeling heterogeneous systems. Distributed hybrid sys-
tems can be modeled in this architecture using event-based
high-level models and hybrid subsystems. The continuous-
time simulation engine in Ptolemy II manages variable step
sizes and handles event generation. Event-based high-level
models allow the hybrid subsystems to adjust their step sizes
independently. Among the event-based models, discrete-
event models are good at studying timing properties, and
publish/subscribe models are good at managing join-and-
leave peers.

Reference

[1] T.H. Harrison, D.L. Levine, and D.C. Schmidt, "The Design
and Performance of a Real-time CORBA Event Service," in
Proceedings of OOPSLA '97, Atlanta, GA, October 1997,
ACM.

[2] J.W. Janneck, E.A. Lee, J. Liu, X. Liu, S. Neuendorffer, S.
Sachs, and Y. Xiong, “Disciplining Heterogeneity: the Ptolemy
Approach,” to appear in ACM SIGPLAN 2001 Workshop on
Languages, Compilers, and Tools for Embedded Systems
(LCTES 2001), Snowbird, Utah, June 22 - 23, 2001.

[3] J. Liu and E.A. Lee, “Component-based Hierarchical Modeling
of Systems with Continuous and Discrete Dynamics,” Proc. of
2000 IEEE Symposium on Computer-Aided Control System
Design (CACSD’00), Anchorage, AK, Sept. 2000.

[4] J. Liu, X. Liu, T.J. Koo, B. Sinopoli, S.S. Sastry, and E.A. Lee,
"A Hierarchical Hybrid System Model and Its Simulation,"
38th IEEE Conference on Decision and Control (CDC'99),
Phoenix, Arizona, Dec. 1999.

[5] R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time Pub-
lisher/Subscriber Inter-Process Communication Model for Dis-
tributed Real-Time Systems: Design and Implementation,” in
First IEEE Real-Time Technology and Applications Sympo-
sium, May 1995.

[6] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces: Principles,
Patterns and Practice, Addison-Wesley, 1999.

4985

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	894_01:

