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Abstract. Complex embedded systems that do not target mass markets often have design and engineering
costs that exceed production costs. One example is the triggering and data acquisition system (DAQ)
integrated into high-energy physics experiments. Parameterizable and reprogrammable architectures are
natural candidates as platforms for specialized embedded systems like high-speed data acquisition systems.
In order to facilitate the design of specialized embedded systems, design strategies and tools are needed
that greatly increase the efficiency of the design process. End-user programmability of reprogrammable
platforms is essential, because system designers, without training in low-level programming languages, are
required to change the base design, compare designs, and generate configuration data for the
reprogrammable platforms. This paper presents a methodology for designing and evaluating high-speed
data acquisition systems using reprogrammable platforms.

1. Introduction

High energy physics experiments study properties of elementary particles. Accelerator
based experiments can currently produce particle energies up to a few TeV while cosmic
rays are found up to 10! V.

The design of these experiments and specifically the detectors requires highly special-
ized systems engineering because they have to satisfy performance requirements which
are often close to the physical limits of the available technology while the funding is often
limited.

The data acquisition system (DAQ) of a physics experiment captures the data generated
by a detector. A DAQ system simulation model includes a number of distinct components:

— An event generator simulates properties of the physical events under observation.

— Adetector model simulates the detector technology and must include its sensitivity
and the errors it produces.
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— Ananalog DAQ front end model simulates the analog signal processing and digiti-
zation process, including its limitations.

— Adigital DAQ back end model captures the performance of the low-level data ac-
quisition system, e.g., buffer memory size, dead-time, latency etc.

— A CPU farm, an application specific multiprocessor system which controls the ex-
periment, performs event triggering and building. An event trigger is a filter that
analyzes critical parts of every data set, passing to the event builder only those
events that satisfy certain trigger conditions, such as total energy, hit multiplicity,
signal to noise ratio, etc. The event builder sorts, formats, and compresses the raw
data in such a way that all relevant information can be stored on disk or tape media
for later retrieval and analysis.

This framework is valid for the majority of DAQ systems in high energy physics and
cleanly defines all interfaces between the physical and technical sub-systems.

An important assumption made to simplify the engineering process is that the per-
formance required of each component is completely specified by the stage in front of
it. While detector specific analog front-end circuits are required, generic digital back-
ends based on a reconfigurable architecture and a library of physics specific digital
function blocks like digital filters, feature extractors, trigger circuits, etc., can serve a
variety of experiments. The historically “manual” system integration strategy of these
designs can be automated if the DAQ is treated like an SoC (System on Chip) design.
The latter can create systems of very high complexity by properly interfacing existing
function blocks.

The key to creating complex designs from library elements is a design tool which uses
interfaces which are correct by design and transparent to the user. In effect even less ex-
perienced (physics) users can model, design, modify and upgrade large parts of the DAQ
after the system becomes operational.

2. The Ptolemy II Modeling Framework

Systems such as the one considered in this paper are heterogeneous in the sense that they
are composed of subsystems with different characteristics which interact in a variety of
ways. Many tools have been developed for modeling individual aspects of such systems,
e.g., data and control flow, analog or digital subsystems. In order to evaluate the complete
system, these models need to be composed, and the interactions between subsystems can
lead to hard-to-analyze, undesirable and unexpected behavior. An in-depth discussion on
the modeling of heterogeneous systems is presented in [4].

In the Ptolemy II framework [3], [10], subsystems are hierarchically composed so that
the properties of the complete system can be simulated without having to resort to ad-
hoc integration of multiple models. These subsystems are able to communicate through
asynchronous, synchronous, buffered, and unbuffered mechanisms.
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The basic Ptolemy II building blocks are called actors. Actors atomically execute a task
and communicate with other actors through ports. Communication channels are estab-
lished by connecting ports between actors. A composite actor is a set of connected actors,
whose execution is the controlled execution of the actors it contains.

The model of computation associated with a composite actor is implemented in Ptol-
emy II as a domain. Domains define communication semantics and execution order
among actors. The communication mechanism is implemented using receivers. Receivers
are contained in input ports, and there is one receiver for each communication channel.
Receivers could represent FIFO queues, mailboxes, proxies for a global queue, or rendez-
vous points.

The communicating sequential processes (CSP) domain represents actor processes that
communicate by instantaneous rendezvous [5]. The continuous time (CT) domain [12]
models ordinary differential equations (ODEs), extended to allow the handling of discrete
events. Special actors which represent integrators are connected in feedback loops in order
to represent the ODEs. In the discrete event (DE) domain, actors communicate through
events placed on a (continuous) time line. Events have a value and a time stamp, and are
processed in chronological order. The synchronous dataflow (SDF) domain [11] is a special
case of a Process Network (PN) [7]. An actor executed in an SDF model consumes a fixed
number of tokens from each input port and produces a fixed number of tokens to each
output port. Finite-state machine (FSM) domain [10] entities are states, and inputs to a
FSM actor result in state transitions. Outputs of a FSM actor are associated with state
transitions. For a more detailed discussion of domains in Ptolemy II, see [10] , [3].

3. High Energy Physics Events

The DAQ system under investigation was primarily designed for neutrino astrophysics
experiments. Since the physics of these experiments is very simple, they are good examples
for applying the proposed design strategy. In order to better understand the requirements
of the DAQ system, we briefly summarize the physics.

3.1. Neutrino Astronomy Experiments

Neutrino astrophysics experiments are intended to detect high energy neutrinos in the
cosmic ray flux. The neutrinos are generated by violent cosmic processes like Gamma
Ray Bursters (GRBs), believed to occur in the final seconds of the colliding components
of binary neutron stars and Active Galactic Nuclei (AGNs), the massive black holes in the
center of most galaxies.

Neutrinos are very weakly interacting particles and can penetrate galactic dust clouds
and even the entire earth without being stopped. They are therefore ideal carriers of infor-
mation about astrophysical objects which are shielded by large amounts of interstellar
matter.

Despite their weak interactions, some neutrinos hit nucleons and generate high energy
secondary muons. The electrically charged muons can be detected directly. At very high
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energies (>100 GeV) the average muon energy is approximately half the neutrino energy
and the muon track points in the same direction as the neutrino’s momentum vector (with
an error of one degree or less). Hence a particle detector which can measure energy and
momentum of the muons is a telescope which can map the angular distribution of neutrino
sources in the sky with a resolution of approximately twice the angular diameter of the
moon (which is 30 seconds). However, at these energies, the neutrino induced muon flux
is so small that detectors have to cover an area of one km? and a volume on the order of one
km? or more to detect astrophysical neutrinos with statistical significance.

Very few detector technologies can instrument such a large volume. The predominant
method is based on optical detection of Cherenkov radiation. Cherenkov radiation is elec-
tromagnetic radiation generated by all charged particles (in this case the muons) moving
faster through a polarizable medium than the local speed of light. Cherenkov radiation can
be detected from the radio spectrum all throughout the far ultraviolet. The power spec-
trum of Cherenkov radiation is proportional to the frequency of the emitted photons and
the visible fraction of the Cherenkov spectrum therefore looks blueish.

Liquid water and ice are the only Cherenkov media which are available in the required
volume. Pure water and ice have very low optical scattering and absorption coefficients for
blue and near ultraviolet light and are almost ideal Cherenkov media. Neutrino experi-
ments must be shielded against light and background muons generated in the upper atmo-
sphere by cosmic rays. They are either located in underground laboratories at the bottom of
deep mines (like the Kamiokande and Super-Kamiokande experiments which are de-
signed to detect low energy solar neutrinos) or in the deep ocean (Dumand, Nestor [13],
Antares [1]) or the Antarctic ice shield (IceCube [6]). Cherenkov radiation is very faint;
only a few tens of photons are generated per cm track length. These photons have to be
detected by photomultiplier tubes (PMT5) with 8”-12” diameter which are enclosed by
transparent, pressure resistant optical module (OM) spheres. Approximately 5000 OMs
will be used in the IceCube experiment which has 60 OMs on each of the 81 vertical
strings. These strings are placed on a regular grid at a distance of 100 m from each other.
The distance between adjacent OMs on the same string is 10-15 m.

3.2.  Cherenkov Cone Geometry

In an optical medium with refraction index #n ultra-relativistic, charged particles emit
Cherenkov radiation at a fixed angle a with n cos(a) = 1 relative to the momentum vector
of the radiating particle. For water and ice and blue to near UV wavelengths this angle is
approximately 42 degrees. The particle travels at the tip of the cone shaped Cherenkov
wavefront. The effect is the optical analog of a sonic boom.

Vertical strings of detector modules (like the ones used in IceCube) intercept Cherenkov
cones along cone sections, i.c., a wedge or a hyperbola. This intersection creates a charac-
teristic hit time profile along the string: the relative timing of photons registered by OMs is
a function of the position of the OM and the direction of the particle track. If the distance
between the particle track and the string is called r, the projection of the nearest point onto
the string coordinate (here chosen to be z) is named z, the angle of the track relative to the
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Figure 1. Model to calculate the timing of the Cherenkov cone.

string (the zenith angle) is called 6, and ¢ denotes the speed of light, the equation for the hit
time #(z) becomes:

\/r% +(z— 20)2 sin’(6)

ct(z) = (z — z0) cos(f) + tan(a)

()

While this geometric model is an oversimplification of the physics, it is sufficient for an
initial exploration for systems engineering purposes.

A Ptolemy II model calculating the timing is shown in Figure 1. This model creates the
coordinates of equidistant modules and the hit times for given particle parameters using
formula 1. These times are used by the top level DE discrete event simulation model of the
system. The Ptolemy II synchronous data flow (SDF) Cherenkov model itself executes in
zero time. The SDF domain orders operations logically but does not assign an execution
time to them. It can be used whenever calculations are needed as part of a timed model
which have to be available instantaneously. The calculated times are converted into timed
discrete events by the timedDelay actors of the system model shown in Figure 9.

Figure 2 shows the simulated hit times of modules in the case of a muon track passing
perpendicular to the string in a distance of 100 m, i.e., close to an adjacent string. The tim-
ing of a track of a particle passing through a string would have a sharp tip. The further away
the particle track is from the string, the more the timing curve takes on a smooth hyper-
bolic shape. The total event length in this case is approximately 800 ns between the first hits
near the center of the string and the last hits at the ends. In an experiment of the size of
IceCube, the muon, traveling at the speed of light, traverses the 1.7 km diagonal of the de-
tector in approximately 5 us. A physical event can therefore last up to 67 us.
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Figure 2. The Cherenkov cone timing [ns] vs. string position for a horizontal track 100 meters from the string.

4. Cherenkov Detector Model

In a Cherenkov detector, very faint light has to be detected with ns time resolution. The
photomultiplier tubes used in these detectors are close to being ideal photon counting de-
vices. Despite this fact, the technical performance of the PMTs limits the detector effi-
ciency, which has to be understood in detail to perform the physics analysis of detector
data. The timing and stochastic properties of PMTs can be simulated with a combination
of DE and CTmodels.

4.1. Stochastic Properties

Photomultiplier tubes are stochastic amplifiers: a photon creates a single photoelectron at
the surface of the photocathode with a probability of approximately 10-25%. This quan-
tum efficiency (QE) depends on the photocathode material and the wavelength of the
photon. Most PMTs have their peak sensitivity in the blue and near ultraviolet. The photo-
electrons are accelerated towards an electron multiplier chain by a strong electrostatic field
where they create (a few) multiple secondary electrons on the activated surface of the mul-
tiplier electrodes. PMTs with 10-14 secondary electron multiplier stages have an average
gain of 103 to 10°. Because only 3—5 secondary electrons are generated by the primary
photoelectron, the amplitude of the output anode current pulse fluctuates strongly, even
though the pulse shape is relatively constant. The resulting pulse height distribution
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Figure 3. Discrete event model of the stochastic amplification properties of a PMT.

(PHD) is the most important performance characteristic of a PMT. A good PHD is nearly
Gaussian with width 0%, ~ 1.

Individual photoelectrons are also delayed by a random drift time due to the inhomo-
geneity of the accelerating electrostatic field. The average drift time (20 ns) and the time
spread (=2 ns) of the drift time distribution can be modeled with a normal distribution
Ntarifs: Opie)-

The Ptolemy model shown in Figure 3 uses two Gaussian random sources to create dis-
crete events which approximate the pulse height as well as the drift time statistics. These
discrete events trigger the following pulse shaper models which simulate the time depen-
dence of the PMTcurrent pulses.

The model can be refined in multiple ways. A well known problem is so called “flashers,”
leaking PMTs which generate light when they are triggered. Flashers can be seen by other
optical modules and can be modeled by feeding the output of the PMTmodel back into the
trigger event chain.

Figure 4 shows a histogram of a pulse height distribution generated by the model in
Figure 3. The model agrees reasonably well with the measured distribution in the data
sheet of the photomultiplier R5912 from Hamamatsu [§].

4.2. Electronic Properties

The normalized, time dependent output current waveform of a PMTcan be approximated
with an electrical model of a bandwidth limited Dirac pulse. The electrical waveforms are
best described by a continuous time (CT) model which can solve the systems of time de-
pendent differential equations describing analog electronic circuits. The PMT waveform
generation and the simulation of the analog front-end circuit are very similar and have
been integrated into a single CTmodel, which will be discussed below.
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Figure 4. Pulse height distribution calculated by the PMTmodel in Figure 3 (number of events vs. pulse height).

5. DAQ Front-End Simulation

A typical DAQ front-end consists of a pre-amplifier, a signal shaper to limit the band-
width of the circuit and improve the signal-to-noise ratio of detector signals, a sample/
hold (S/H) circuit, and an analog-to-digital converter (ADC). The specific implementa-
tion of these circuits is chosen in such a way that the relevant information carried by the
detector signals can be captured with the given precision without violating the size, power
and cost constraints of the experiment. In the case of Cherenkov detectors, most informa-
tion is in the timing of the signal.

5.1. Generating the Sampled Pulse Shape

The PMT waveform and pre-amplifier model in Figure 5 converts a discrete event at its
Trrigger input into a step function using a Zero-Order-Hold actor. The step function is then
shaped into an exponential decay with an integrator with negative feedback and further
filtered with a fourth-order low-pass filter with 5 ns time constants. The resulting wave-
form corresponds to the pulse response of a well damped pre-amplifier with ~60 MHz
bandwidth excited by PMT pulses.

The pre-amplified and shaped waveforms shown in Figure 6 are sampled at 10 ns inter-
vals and the samples are quantized with an ADC resolution of 12 bits, i.e., the output of this
model is an integer with a range between 0 and 4095. The model does not account for ADC
errors like noise and non-linearity but these could be integrated if necessary.
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Figure 6. PMT pulse shape generated by the model in Figure 6 (relative current vs. time [ns]).

5.2. Simulation Efficiency

An important issue for mixed DE/CT simulations is efficiency. While a DE simulation is
only evaluated at times at which at least one state-variable changes due to the model dy-
namics, CTmodels are evaluated continuously at time intervals which are set by the differ-
ential equation solver of the simulator. A S/H stage model is achieved with a periodic
sampling actor, which also requires the simulator to evaluate the model every 10 ns. This
is very inefficient since the average hit rate of a PMT is 1 kHz and the PMT pulse is only
100 ns long. A free running CTmodel would create unnecessary computational overhead,
evaluating the model in time increments of a few ns.
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By embedding the pulse shaper into a modal model, a FSM determines when the CT
model has to be executed. The controller of the embedded modal model is a state machine
with two states, an inactive Init state and a Pulse state which activates the CT PMTmodel.
The transition from the Init to the Pulse state is triggered by the presence of a trigger sig-
nal, the transition back into the /nit state occurs as soon as the output of the CTmodel falls
below a given threshold. This allows low overhead simulation without losing any relevant
information. The technique is shown in Figures 7 and 8.

The remainder of the front-end model is the ADC and control flow logic which ensures
that at least eight samples are generated for the following DAQ back-end models. In this
work a down-scaled front-end with eight channels was simulated. The complete model is
shown in Figure 9.

5.3. Timing Extraction

Timing can be extracted from a PMT pulse by sampling it with high resolution (e.g., 12 bit)
at a high rate (e.g., 100 MSPS) and fitting a parameterized analytical expression for the
expected waveform to the sampled data. For PMT pulses three free parameters—baseline,
pulse height and pulse time—are used and at least three samples are necessary to estimate
the parameters. In practice the signal is sampled continuously and the average of many
samples is used to predict the baseline. Two or more non-zero samples are thus sufficient
to estimate the pulse height and the pulse time. PMT pulses are the result of a stochastic
process and show slight variations in shape which limit the precision with which the timing
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Figure 9. Complete system model.

can be estimated. Theoretical considerations and experience with this technique show that
with 3 to 5 non-zero samples the timing can be resolved with an error of approximately
20% of the pulse width. A PMT pulse of 15-20 ns width gives 3 to 5 non-zero samples at
100 MSPS, which is a good choice for the sampling rate. The statistical error for the time
parameter fit is then 20% of the sampling period or about 2 ns.

6. DAQ Back-End Simulation

High-speed data acquisition systems are platforms for acquiring, processing, and moving
data around. These platforms have limited bandwidth, latency, memory size, logic density,
etc. They may use different digital signal processing algorithms, data rates, data formats,
and network topologies.

The problems to be solved by DAQ system designers are: (i) how to get the data; (ii)
how to store it; (iii) how to move it efficiently to a destination for processing; (iv) how to
process the data; (v) how to test the correctness of the result; and (vi) how to ensure that
the quality of the process is within given constraints.

A reconfigurable platform is an economic way to solve these problems because it can be
adapted to a new application without the need to redesign physical hardware. One of the
problems of interest is to create a reusable hardware design strategy for a variety of appli-
cations that operates efficiently within the platform specific bandwidth, latency, and
resource limitations.
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In this section we describe the architecture of a reconfigurable hardware platform for
DAQ applications and an efficient programming model in the Ptolemy II framework.
Using the high level of abstraction provided in Ptolemy II, user-level programming can
include all components of a heterogeneous architecture that entails fabrics of FPGAs,
CPUs, memory, network links, algorithms, firmware and software while hiding low level
details. Without knowing how to program reconfigurable platforms users can easily mod-
ify parts of the architecture.

In Section 7, we show how an application model is mapped to the platform model. After
the application is mapped to the hardware platform, users receive feedback on how they
are utilizing the hardware. Based on this feedback, the system designer can make changes
to the platform, which allows him to create different variants of the design and to compare
and optimize performance, functionality, cost etc.

6.1. The Back-End Network Architecture

The communication of data and control messages between the DAQ front-end hard-
ware—analog electronics and ADC—and the back-end hardware—digital signal proces-
sing and storage (on a CPU farm)—is accomplished with a static network of transmitting
and receiving nodes.

For the application in question, the platform has up to 64 input channels with 12 bit
ADC running at 100 MHz and with latency of 100 clock cycles.

The digitized signals from eight analog channels are fed into one FPGA' which writes
them into 27 Mbit DDR SRAM waveform memories. Digital signal processing algo-
rithms inside the FPGA are used to extract trigger information such as event energy and
timing. Processing of the 8 x 12 bit « 100 MHz = 1.2 GByte/s data stream is continuous
and dead-time-free. Waveform data in the memory is associated with a 64 bit time stamp, a
32 bit integer counting seconds of universal time and a 32 bit integer resolving fractions of
a second with 0.24 ns resolution. A network of eight FPGAs acquires the input from the 64
channels. In this architecture, we connect the eight FPGAs in a ring topology which is
favorable due to the simplicity of the board design and the nearly optimal electrical line
length, which helps minimizing noise problems in the analog section. Figure 10 illustrates
the network of FPGAs.

The DAQ hardware is controlled exclusively by messages which are transmitted using a
custom datagram protocol. This protocol is specifically optimized for the FPGA architec-
ture so that network nodes and routing circuits can be implemented in a small fraction of
available FPGA logic.

A network node is either a transmitter or a receiver circuit. A transmitter node contains
a control state machine, a source and a destination address generator, a data shift register
and an input register. A receiver node contains a slightly different state machine, an ad-
dress discriminator, a shift register, and an output register. Packets are routed between
transmitter and receiver nodes by router and combiner circuits. Figure 11 illustrates the
network structures of an FPGA.



REPROGRAMMABLE PLATFORMS FOR HIGH-SPEED DATA ACQUISITION 353

W
FPGA, b

ouT,
Memory
-]
e 2
FPGA, 2
s (U
)
g
Memory o
-—
FPGA
CPU Controller ___/

Optical Fiber Link

Figure 10. Network of FPGAs.

FPGA,

To FPGA,, -
L ' [Combiner

Router

== Circuit Circuit —_—
Input |

? OQutput
Packet i\} Packet
Receiver |[Transmitte:
MNode Nodes
S L3

I

To Local
Subnetwork

High-Speed Serial Link
High-Speed Serial Link

12 Bal Sarples

From Input
Channels

Figure 11. Network structures within a FPGA.

NETWORK TRANSMITTER NODE

The transmitter circuit is a synchronous design driven by a clock signal CLK and can be
triggered by a transmit enable signal TxEnable. After being triggered, the transmitter
node starts transmitting blocks of data available on its inputs to the selected destination,
formatting the data into packets. Flow control codes are used to indicate packet start, stop
and idle line states. Transmitters have a fixed number of clock delays between the time
transmit is activated and the time data appears at the output.
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The physical interface of the transmitter node has as inputs:

CLK = clock signal
DestAddr|[(Address Width — 1)..0]
SrcAddr[(Address Width — 1)..0]
IN[(n —1)..0]

= a bit string of fixed length n
TxEn signal

= transmit enable signal

and as outputs:

FCF =1 bit flow control flag
DATA[6..0] = 7 bit data

TxRdy = transmit ready signal.

The transmitter state machine needs one clock cycle between assertion of 7xEn and the
first output byte. If the flow control flag is inactive FCF = 1), DATA[6..0] is interpreted
as 7 bit wide sections of the input bit string IN[(n — 1)..0].

A sequence of 8 bit wide output words forms a packet which is submitted on one of the
network sub-nets. The packet structure is the following:

IDLE =0 or
PACKET_STOP = 64
PACKET_START =1

DestAddr|(Address Width — 1)..0]
SrcAddr|[(Address Width — 1)..0]
IN[6..0]..IN[7 % nwords — 1..7 * (nwords — 1)]
nwords = ceil(n/7)

PACKET_STOP

IDLE or PACKET _START

The IN portion of a typical packet will carry either time stamped signal energy informa-
tion or sampled data. Packet error is not modeled in this paper. Future refinements of our
models will include overflow detection. When a packet is partially lost due to FIFO over-
flow,a PACKET _ERROR flag can be appended to the partially lost packet.

NETWORK RECEIVER NODE

Receiver nodes listen to packets on their sub-net and store message data in a parallel
output register when they identify their own address in the DestAddr field of a packet
header. In a DAQ application most messages are short (8—16 bytes) and most nodes are
specialized to transmit or receive a single, fixed format message type.
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The receiver node has as inputs:

CLK = clock signal
RecAddr[(AddressWidth — 1)..0]
FCF =1 bit flow control
DATAI6..0] = 7 bit data

and as outputs:

SrcAddr|[(Address Width — 1)..0]
oUT|[(n—1)..0]
RxRdy = Rx ready signal

One clock cycle after PACKET _STOP is received, the receiver asserts RecRdy.

NETWORK ROUTER AND COMBINER STRUCTURES

The datagram network uses independent data paths for reception and transmission, is
collision free and loss-less. A simple high performance packet routing strategy with static
routing tables is used to transport messages between nodes of the hardware network. Rou-
ter circuits split nets into sub-nets. A router has one input port, two output ports, and two
constants for network address, DestAddr and sub-net mask, NetMask. It reads every
packet destination address and reroutes the packet to the internal network if the packet’s
destination address matches NetAddr—the address of the local sub-net, i.e., if
DestAddr& NetMask == NetAddr. Otherwise, the packet is routed to the next node in
the ring.

In the current implementation, a router requires 7 clock cycles to route data from its
input to one of its outputs, and never looses or drops data. If a packet is wrongly addressed,
it is dropped. Applications which require control over correct packet reception may mod-
ify the token passing implementation to include a “return to sender” mechanism.

Data from multiple sub-nets are merged by combiner circuits into one output stream.
Since the transmitter architecture is non-blocking, a combiner uses FIFOs on its inputs to
buffer incoming data until the output line becomes available. The arbitration controller
state machine of the combiner circuit always selects the input FIFO with the most data
as the next source to optimize FIFO efficiency. If both input buffers have the same number
of words in them, the controller state machine toggles in a ping-pong scheme. The combi-
ner circuit is lossy. Due to the stochastic nature of the data sources, the network begins to
drop packets when the input rate exceeds 6 * R,where R is the maximum data rate and 6 is
a constant <1. One of the goals of modeling and simulating this network is to find safe
limits for the network load, depending on the chosen sub-net topology and the stochastic
properties of the data. Figure 12 illustrates the structure of the combiner circuit.

The minimum delay of a combiner is one clock cycle, and the maximum delay depends
on the number of words in the FIFO buffers. The worst case delay is unbounded if a short
packet is waiting to be transmitted in one input FIFO while the other input FIFO is filled
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Figure 12. Combiner circuit.

constantly with new incoming packets at the same or a higher rate. As part of future work,
we plan to use other combiner schemes to trade optimal FIFO utilization against guaran-
teed latency or guaranteed throughput.

6.2. The Ptolemy Il Back-End Model

In this section we model the data flow across the network to collect statistics on the queue
lengths used in combiner nodes. Modeling the receiver and router nodes is only necessary
when modeling the control flow across the network. In this paper we do not study the con-
trol flow of the system.

TRANSMITTER MODEL

The transmitter model is a hierarchical model that combines the Synchronous Data
Flow (SDF) [11] and the Finite State Machine (FSM) [9], [10] models of computation. The
high-level model is shown in Figure 13.

The top-level model, executing in an SDF domain, takes as inputs event data and a glo-
bal clock, which in turn are inputs to a FSM.

The transmit controller has a single state with transitions depending on whether event
data, a clock signal (trigger), or both inputs exist at the time(s) when execution of the trans-
mit node is scheduled. This controller makes sure that data is only taken into the transmit-
ter when a valid clock signal is present. The controller generates as outputs a data variable
and a Boolean variable to indicate whether or not the data is valid. The transmit controller
model is shown in Figure 14.

Each controller output drives a SamplerWith Default actor that generates the most re-
cent input token when its trigger port receives a token. The output of the samplers and the
(constant) source/destination network addresses are fed into the SDF transmitter model
shown in Figure 15. If no token has been received on the input port when a token is received
on the trigger port, the initial value of the sampler is produced.
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Figure 13. Model of the transmitter node.
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Figure 14. Model of the transmit controller.

The packet data is first combined with the source address, destination address,
PACKET _START, and PACKET _END flags to form a complete packet. This task is
performed by the SDF model named aggregate in Figure 15. The transmission policy, re-
presented in Figure 15 by the transmit policy actor, is a SDF model that takes as input the
queue length of the last cycle of the transmitter. If the queue length is zero and if transmit-
Enable input is true, the policy generates a true output. The policy output is used by the
Boolean Multiplexor actor to select either the assembled packet or a sequence of IDLE
flags for transmission. The data packet or the sequence of IDLFE flags is stored in a
synchronous queue.
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Figure 16. Transmit policy used by the transmitter node.

The Figure 16 depicts the Ptolemy II model of the transmit policy used by the transmit-
ter node.

COMBINER MODEL

The combiner model is also a hierarchical model using the SDF and FSM models of
computation. Figure 17 depicts the top level model of a combiner node. The top level model
is a SDF model that takes as inputs data stored in two queues, modeled by Synchronous-
Queue actors. For each cycle of the model, the output of one queue is selected by a FSM
controller. Sample Delay actors are used to break dependency cycles in directed loops of
SDF models. This actor declares an initial production parameter in its output port that is
used by the SDF scheduler to properly schedule the model. The initial outputs permit the
computation to get started. The SynchronousQueue actor generates a queue length output
and allows the controller to look ahead to the next queued value. The combiner controller,
shown in Figure 18, looks at the queue length of both queues and decides to empty the one
that has the largest number of packets. It starts in the packet start state, staying there while
both queues are empty. In this state, the queue selection is not important, thus the
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Figure 18. Model of the controller for the combiner node.

controller simply outputs a true value or the same Boolean value used before transitioning
back into this state. If the length of the second queue is greater than the length of the first
queue or if they have the same length, are not empty, and the second queue was last se-
lected, the controller moves to the Queue?2 state, selecting the second queue for output.
The controller moves to the Queuel state if the same conditions are true for the first queue,
selecting the first queue for output. While in state Queuel or Queue?2, it selects the corre-
sponding queue untila PACKET_END or a PACKET _IDLE tag is seen, at which time
the controller goes back to the packet start state, indicating what the last output selection
was.

Figure 18 depicts the Ptolemy II model of the controller for the combiner node. The
model of the network of FPGAs is formed by connecting the output ports of one FPGA
model to the input port of the next FPGA in the ring. Figure 19 depicts the Ptolemy I1
model of this network of FPGAs.
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Figure 19. Model of a network of FPGAs

6.3. Simulation Results

The performance of the system is closely related to the performance of the configurable
hardware platform. The two implementations of the system under design at Lawrence Ber-
keley National Laboratory are an eight channel and a 64 channel DAQ board.

The eight channel board uses Altera Mercury FPGAs running at a clock frequency of
100 MHz.This board can achieve 100 MByte/s on any part of the network internal to one
FPGA, and implements four sub-networks in each of the two chips used for data acquisi-
tion. This results in an aggregate data rate of 400 MByte/s per chip.

The external ring bus topology uses the SerDes circuits and LVDS drivers of the Mer-
cury family to achieve 1 GByte/s. With two FPGAs collecting data from § channels this is
avery well balanced network design. The 64 channel board will use Altera Apex II chips
and improve upon the performance of the 8 channel system, although the ratio between
source data rate and network bandwidth has to be smaller.

On the eight channel board a packet with 24 words has a duration of 240 ns and passes a
switch in 70 ns. The minimum round-trip time of a packet in the proposed network struc-
ture is ~12 x 70 ns = 840 ns. The combiner FIFOs have a depth of 256 words and a packet
can be held up by an average of 200 clock cycles per combiner when the network is running
near its limits without dropping packets. In this case the round-trip time on the ring-bus
will still be <48 pus. The main limitation of the non-blocking protocol is the finite FIFO
depth resulting in occasional packet loss.
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In a high energy physics DAQ environment, most of the events are simply noise and
contain no interesting physics information. Thus, packet losses are tolerable if they are lim-
ited to a small fraction (e.g., 10~3) of the total data flow. However, the system design has to
make sure that packet losses do not occur frequently under “normal” circumstances, i.e., if
the quality of data generated by the detector is as good as or better than specified by the
design requirements. The simulation model can help to address these questions by creating
histograms of the FIFO congestion. Figure 20 shows the distribution of the number of by-
tes in the FIFO of the last and therefore most congested combiner circuit. The highest ob-
served congestion is well below the physical FIFO depth of 256 bytes, therefore no packets
were lost in this simulation.

7. Mapping the Simulation Model to Hardware

In the previous sections the modeling and general structure of the system design were dis-
cussed. The important result was that a complete and sufficiently realistic system model
could be expressed within the Ptolemy II framework. It remains to be shown how this si-
mulation approach lends itself in a natural way to design automation.

7.1. Analog Front End Design Automation
Generally analog circuits, especially high-speed, low-noise, mixed signal board-level de-

signs are hard to generate automatically. However, the design space of waveform-recording
DAQ applications is relatively limited and design space exploration is possible. A high
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energy DAQ front-end can be divided into two independent parts: the input amplifier and
signal shaper and the digitizer. The main parameters of a digitizer are sampling frequency,
effective ADC resolution and precision. In the case of high speed digitizers, currently
available analog chips limit the designer to combinations of these parameters which are
below the current technological limits of approximately {18 bit, | MSPS}, {16 bit, 10
MSPS}, {12 bit, 100 MSPS} and {8 bit, 1 GSPS}. While this limit is moving constantly,
doubling the maximum sampling rate at a given precision every couple of years, the gen-
eral shape of the design space boundary is given by the physical noise, stability and speed
limits of converter circuits based on silicon technology and remains relatively constant.
Given the few possible choices, the decision for a certain speed/resolution tradeoff is
usually straight forward. Input amplifier noise and the transfer function of the shaper am-
plifier have the biggest impact on physics performance. Both have to be optimized care-
fully. The required noise density and transfer functions depend on the specific detector
type and have to be adjusted for any single application.

If a sufficiently well defined detector model exists, the choice of the ideal filter coeffi-
cients, expressed as Laplace actor parameters in Ptolemy II, is a well understood linear
optimization problem which can be automated. Deriving a Spice or APLAC model [1]
from these parameters and choosing one or several integrated amplifier chips from the
small set of available high-speed operational amplifiers can also be automated. By using
the optimization routines of a circuit simulator like APLAC, the required transfer func-
tions can be approximated with off-the-shelf components by tuning component values.
Research to this effect is currently done by one of the authors and is only slightly different
from similar attempts to automate analog chip design.

7.2. Digital Logic Code Generation

In case of the digital back-end design, the previously discussed Ptolemy I1 simulation mod-
els are ideally suited for code generation and design automation of the digital back-end
design. In general, models using the SDF and FSM domains can be synthesized if the se-
mantics is suitably extended to represent that of a digital system with a single clock domain.
SDF actors performing integer and logic operations can be trivially mapped onto digital
circuits. A similar relationship exists between a Ptolemy II FSM model and a digital im-
plementation of a state machine. Apart from naming conventions, a Ptolemy II state ma-
chine can be mapped directly onto a VHDL description.

Most DE models do not correspond in a trivial way to hardware elements (even if asyn-
chronous digital circuits were to be used, the restrictions are very limiting). However, their
synthesis is usually not required because they either describe physical models, i.e., parts of
the system design which are not synthesized into hardware at all, or they are used to in-
crease the performance of embedded CTand SDF models by triggering them only when
required. Ptolemy II cleanly assigns a single domain to each (sub-)model. Therefore the
code generation facility can trivially distinguish between sub-models which need to be
synthesized and those which constitute the model of the physical environment of the ac-
tual DAQ system.
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7.3.  Network Synthesis

The most relevant difference between a “classical” DAQ system and the presented design
is the exclusive use of datagram packets on a custom network to represent and transport
non-local information. This networked approach maps abstract data structures, i.c., the
objects that system designers and users care about, unambiguously to an implementation
on the hardware level. The presented implementation is simple, correct by design, reason-
ably efficient in terms of bandwidth and resource usage and can be code generated easily.
Network transmitters and receivers are essentially shift registers. Packet router and com-
biner circuits use minimal FPGA resources in terms of logic cells and memory blocks.

We developed a network code generator program that maps a list of packet data words
to ports and registers of parameterized VHDL models of the transmitter and receiver
blocks for synthesis of the FPGA designs. Since the packets have to be processed by an
instance of a software algorithm running on a trigger and event builder CPU farm, the
code generator also creates Java and C++ classes with methods to access elements of the
packet data structure. While specialized actors correspond to the network nodes, Ptolemy
II relations are equivalent to a physical net-list of interconnections and can be translated to
VHDL mapping files which connect multiple network circuits and other code generated
function blocks to a complete DAQ system design. The Ptolemy II simulator is dynamic
and interactive. A direct coupling of code generated hardware and a Ptolemy 11 model by
means of a hardware interface (serial port, parallel port, 10/ 100 BaseT etc.) is possible. Thus
Ptolemy II can also be used to test and debug a code generated design on a programmable
platform.

Notes

1. Recently available FPGA products have transmitter/receiver circuits that can carry up to 1.2 GByte/s
per link.
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