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Multidimensional Synchronous Dataflow

Praveen K. MurthyMember, IEEEand Edward A. LegFellow, IEEE

Abstract—Signal flow graphs with dataflow semantics have been sual languages have always been attractive in the engineering
used in signal processing system simulation, algorithm develop- community, especially in computer-aided design, because engi-
ment, and real-time system design. Dataflow semantics implicitly neers most often conceptualize their systems in terms of hier-

expose function parallelism by imposing only a partial ordering . . .
constraint on the execution of functions. One particular form of archical block diagrams or flowcharts. The 1980s witnessed the

dataflow called synchronous dataflow (SDF) has been quite pop- @cceptance in industry of logic-synthesis tools, in which circuits
ular in programming environments for digital signal processing are usually described graphically by block diagrams, and one

(DSP) since it has strong formal properties and is ideally suited expects the trend to continue in the evolving field of high-level
for expressing multirate DSP algorithms. However, SDF and other synthesis and rapid prototyping.

dataflow models use first-in first-out (FIFO) queues on the com- h fl . . h .
munication channels and are thus ideally suited only for one-di- ~ SyNnchronous dataflow and its variants have been quite pop-

mensional (1-D) signal processing algorithms. While multidimen- ular in design environments for DSP. Reasons for its popularity
sional systems can also be expressed by collapsing arrays into 1-Dinclude its strong formal properties like deadlock detection, de-
streams, such modeling is often awkward and can obscure poten- terminacy, static schedulability, and, finally, its ability to model
tial data parallelism that might be present. multirate DSP applications (like filterbanks) well, in addition to

SDF can be generalized to multiple dimensions; this model is i S . . .
called multidimensional synchronous dataflow (MDSDF). This nonmultirate DSP applications (like IR filters). Static schedu-

paper presents MDSDF and shows how MDSDF can be efficiently lability is important because to get competitive real-time im-
used to model a variety of multidimensional DSP systems, as well plementations of signal processing applications, dynamic se-
as other types of systems that are not modeled elegantly in SDF. quencing, which adds overhead, should be avoided whenever

However, MDSDF generalizes the FIFO queues used in SDF 10 o,oqinie The overhead issue becomes even more crucial for
arrays and, thus, is capable only of expressing systems sampled!

on rectangular lattices. This paper also presents a generalization IMage and video signal processing where the throughput re-
of MDSDF that is capable of handling arbitrary sampling lattices ~quirements are even more stringent.

and lattice-changing operations such as nonrectangular decima-  The SDF model suffers from the limitation that its streams
tion and interpolation. An example of a practical system is given zre one-dimensional (1-D). For multidimensional signal pro-

to show the usefulness of this model. The key challenge in general- - . . .
izing the MDSDF model is preserving static schedulability, which cessing algorithms, it is necessary to have a model where this

eliminates the overhead associated with dynamic scheduling, and restriction is not there so that effective use can be made of
preserving a model where data parallelism, as well as functional the inherent data-parallelism that exists in such systems. As is
parallelism, is fully explicit. the case for 1-D systems, the specification model for multidi-
mensional systems should expose, to the compiler or hardware
|. INTRODUCTION synthesis tool, as much static information as possible so that
usq—time decisionmaking is avoided as much as possible and so
» dtao el of computaton forcigtalsgnal o 1ECAE use cen b e of bt unconaand et pa
cessing (DSP) because of the proliferation of block diagram .~ 9 .
. . o ; within a 1-D stream, it may be awkward to do so [10]. In par-
programming environments for specifying and rapidly protci.- oL .
; . : cular, compile-time information about the flow of control may
typing DSP systems. Dataflow is a very natural abstraction fOBt be immediately evident. Most multidimensional signal pro-
a block-diagram language, and many subsets of dataflow héls Sing svstems )elllso havé a predictable flow of cogntrolplike
attractive mathematical properties that make them useful as é g sy P '
|_

basis for these block-diagram programming environments. ;ystem;, and for this reason, an extension of SDF.’ called
multidimensional synchronous dataflow, was proposed in [20].

However, the MDSDF model developed in [20] is restricted
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Fig. 2. Nested iteration described using SDF.

Fig. 1. Simple synchronous dataflow graph.

The paper is organized as follows. In Section I-A, we review 2 3 ON'Q
the SDF model and describe the MDSDF model in Section II.
In Section II-A-G, we describe the types of systems that may @
@ — 4@

be described using MDSDF graphs. In Section Ill, we develop

a generalization of the MDSDF model to allow arbitrary sam-

pling lattices and arbitrary decimation and interpolation. We

give an example of a practical video aspect ratio conversion Fig. 3. SDF graph and its corresponding precedence graph.
system in Section IV that can be modeled in the generalized

form of MDSDF. In Section V, we discuss related work of other 1
researchers and conclude the paper in Section VI. @

A. Synchronous Dataflow

For several years, we have been developing software en-
vironments for signal processing that are based on a special
case of dataflow that we call synchronous dataflow (SDF)

[19]. The Ptolemy [8], [11] program uses this model. It has

also been used in Aachen, Germany, [29] in the COSS&B’]a"eSt' nonzero one (i.e, the blocking factor is 1). Given this
i Y, '&:olution, a precedence graph can be automatically constructed,

system and at Camegie Mellon University, Pittsburgh, Psbecifying the partial ordering constrains between firings [19].

[28] for programming the Warp. Industngl topls making USErom this precedence graph, good compile-time multiprocessor
of dataflow models for signal processing include System hedules can be automatically constructed [30]

Canvas and DSP Canvas from Angeles Design Systems [ZSAﬁ DF allows a compact and intuitive expression of pre-
the Cocentric System Studio from Synopsys, and the Sigrgls P P P

Fig. 4. Application of SDF to vector operations.

Processing Worksystem from Cadence Design Systems. S &taple contrql flow and is easy for a cpmp!ler to analyze.
. nsider, for instance, the SDF graph in Fig. 2. The bal-
graphs consist of networks of actors connected by arcs that ; .
: ance equations can be solved to give the smallest nonzero
carry data. However, these actors are constrained to produc[e " i
) . : Inteéger repetitions for each actor (collected in vector form) as
and consume a fixed integer number of tokens on each inputor T
output path when they fire [19]. The term “synchronous” refers = [1 10 100 10 1], which indicates that for every
to this constraint and arises from the observation that the raféi§'g of actor 1, there will be ten firings of actor 2, 100 of 3,
of production and consumption of tokens on all arcs are relaté&f of 4, and one of 5. Hence, this represents nested iteration.
by rational multiples. Unlike the *synchronous” Ianguages_More interesting control flow can be specified using SDF.
Tokens form ordered sequences, where only the orderingti@ship. From such a multirate SDF graph, we can construct
important. a precedence graph that explicitly shows each invocation of the
Consider the simple graph in Fig. 1. The symbols adjacent@6tor in the complete schedule and the precedence relations be-
the inputs and outputs of the actors represent the number offgeen different invocations of the actor. For the example of
kens consumed or produced (also called rates). Most SDF prbj# 3. the complete schedule requires three invocationd of

erties follow from thebalance equationsvhich for the graph in @nd two of B. Hence, the precedence graph, shown to the right
Fig. 1 are in Fig. 3, contains thredl nodes and twd nodes, and the arcs

in the graph reflect the order in which tokens are consumed in
7101 = 1215, 1209 = 1r313. the SDF graph; for instance, the second firingigfroduces to-

o » kens that are consumed by both the first and second firings of
The symbols'; represent the number of firings (repetitions) ofz From the precedence graph, we can construct the sequential
an E%tor in a cyclic schedule and are collected in vector for&heduleﬂl,Ag,Bl, As, Bo), among many possibilities. This
asr = [r1 r2 rz]. Given a graph, the compiler solvesschedule is not a simple nested loop, although schedules with
the balance equations for these valugsAs shown in [19], simple nested loop structure can be constructed systematically
for a system of these balance equations, either there is no [g- Notice that unlike the “synchronous” languages Lustre and
lution at all, in which case the SDF graph is deemed to defe8ignal, we do not need the notion of clocks to establish a rela-
tive due to inconsistent rates, or there are an infinite numbertainship between the stream into actor A and the stream out of
nonzero solutions. However, the infinite number of nonzero saetor B.
lutions are all integer multiples of the smallest solution, k£ = The application of this model to multirate signal processing
0,1,..., and this smallest solution exists and is unique [19]. is described in [7]. An application to vector operations is shown
The numbet is called théblocking factor In this paper, we will in Fig. 4, where two fast Fourier transforms (FFTs) are mul-
assume that the solution to the balance equations is always tlpbed. Both function and data parallelism are evident in the
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precedence graph that can be automatically constructed from (04,1:04,2) Up 1:1p 2)

this description. That precedence graph would show that the @
FFTs can proceed in parallel and that all 128 invocations of the
multiplication can be invoked in parallel. Furthermore, the FFT Fig. 5. Simple MDSDF graph.

might be internally specified as a dataflow graph, permitting ex-

ploitation of parallelism within each FFT as well. The Ptolemy (40,48) (8,8) (8, 8)
system [8] can use this model to implement overlap-and-add or ‘ ’- >

overlap-and-save convolution, for example. @)

» dimension 2

Il. MULTIDIMENSIONAL DATAFLOW

The multidimensional SDF model is a straightforward exten-
sion of 1-D SDF. Fig. 5 shows a trivially simple 2-D SDF graph.
The number of tokens produced and consumed are now given as
M-tuples, for some natural numbgf. Instead of one balance (b)
fequation for each arc, there are ndu The balance equations i 6. (a) Image processing application in MDSDF. (b) Index space.

or Fig. 5 are

dimension 1

74,1041 =7811B1, 742042 =75 215 .

These equations should be solved for the smallest integers

241 1,
rx.i, which then give the number of repetitions of acforin

dimension. We can also associatdbocking factor vectowith

this solution, where the vector hag dimensions, and each di-  Dataflow graph
mension represents the blocking factor for the solution to the
balance equations of that dimension. Fig. 7. Data exchange in an MDSDF graph.

A. Application to Image Processing

128 128,1 1,10 ]
As a simple application of MDSDF, consider a portion of ’- - >

an image coding system that takes ax448 pixel image and

divides it into 8x 8 blocks on which it computes a DCT. At Fig. 8. Averaging successive FFT's using MDSDF.

the top level of the hierarchy, the dataflow graph is shown in

Fig. 6(a). The solution to the balance equations is given byA DSP application of this more flexible data exchange is

ra1=742=1, rpcT1 =5, "pcr,2 = 6. shown in Fig. 8. Here, ten successive FFTs are averaged. Av-
A segment of the index space for the stream on the arc ca@faging in each frequency bin is independent and, hence, may

necting actor A to the DCT is shown in Fig. 6(b). The segmeptoceed in parallel. The ten successive FFTs are also indepen-

corresponds to one firing of actor A. The space is divided inttent; therefore, if all input samples are available, they too may

regions of tokens that are consumed on each of the five veroceed in parallel.

tical firings of each of the six horizontal firings. The precedence A more complicated example of how the flexible data-ex-

graph constructed automatically from this would show that tfediange mechanism in an MDSDF graph can be useful in prac-

30firings of the DCT are independent of one another and, hentieg is shown in Fig. 9(a), which shows howsdayer percep-

could proceed in parallel. Distribution of data to these indepetion (with a nodes in the first layef; nodes in the second layer,

dent firings can be automated. etc.) can be specified in a very compact way using ermydes.
_ However, as the precedence graph in Fig. 9(b) shows, none of
B. Flexible Data Exchange the parallelism in the network is lost; it can be easily exploited

Application of MDSDF to multidimensional signal pro-Pyagood scheduler. Note that the net of Fig. 9(a) is used only for
cessing is obvious. There are, however, many less obvidinputation once the weights have been trained. Specifying the
applications. Consider the graph in Fig. 3. Note that the fir§@ining mechanism as well would require feedback arcs with
firing of A produces two samples consumed by the first firin§he appropriate delays and some control constructs; this is be-
of B. Suppose instead that we wish for the firing .4f to yond the scope of this paper.
produce the first sample for each 8% and B,. This can be
obtained using MDSDF as shown in Fig. 7. Here, each firifg: Delays
of A produces data consumed by each firing of B, resulting in A delay in MDSDF is associated with a tuple, as shown in
a pattern of data exchange quite different from that in Fig. Big. 10. It can be interpreted as specifying boundary conditions
The precedence graph in Fig. 7 shows this. The index spawmethe index space. Thus, for 2D-SDF, as shown in the figure,
of the tokens transferred along the arc is also shown, with thhespecifies the number of initial rows and columns. It can also
left-most column indicating the tokens produced by the firte interpreted as specifying the direction in the index space of a
firing of A and the top row indicating the tokens consumed bgiependence between two single assignment variables, much as
the first firing of B. is done in reduced dependence graphs [18].
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Fig. 9. (a) Multilayer perceptron expressed as an MDSDF graph. (b) Precedence graph.

d,1

(dy, dy) dC ' D Q) (U Q0 (K,L).

Y. Fig. 12. Rule for augmenting the dimensionality of a delay.

Fig. 10. Delay in MD-SDF is multidimensional.

.(M,N) (K,1). .(M,N) K .

Fig. 11. Rule for augmenting the dimensionality of a producer or consumer.

Original Matrix
Original Matrix

-

D. Mixing Dimensionality

We can mix dimensionality. We use the following rule to
avoid any ambiguity.
* The dimensionality of the index space for an arc is the Fig. 13. Matrix multiplication represented schematically.
maximum of the dimensionality of the producer and con-
sumer. If the producer or the consumer specifies fewer di-
mensions than those of the arc, the specified dimens_io@(m,m (N NMN) (110,
are assumed to be the lower ones (lower number, earlier i "
the M-tuple), with the remaining dimensions assumed t TFarameter: (3,12)
be 1. Hence, the two graphs in Fig. 11 are equivalent.
« If the dimensionality specified for a delay is lower than
the dimensionality of an arc, then the specified dela

Dimensions

Element-wise product Repeats

Downsample Transpose

values correspond to the lower dimensions. The unspe Repeat Parameter: (1,3.2)

ified delay values are zero. Hence, the graphs in Fig. 12
are equivalent.

Fig. 14. Matrix multiplication in MDSDF.

E. Matrix Multiplication Repeat: In specified dimension(s), this consumes one and

As another example, consider a fine-grain specification of producesV, repeating values.

matrix multiplication. Suppose we are to multiply &nx M . i , )
matrix by anM x N matrix. In a three-dimensional (3-D) index SamPple:  In specified dimension(s), this consuriveand
space, this can be accomplished as shown in Fig. 13. The orig- produces 1, discarding samples.

inal matrices are embedded in that index space, as shown b}'ranspose: This consumesbﬁdlme_nsmnal .blOCk 9f sam-
the shaded areas. The remainder of the index space is filled ples and outputs them with the dimensions rear-
with repetitions of the matrices. These repetitions are analogous ranged.. ) o

to assignments often needed in a single-assignment Specifgéhadqmon, the following actor is also useful, although it is not
tion to carry a variable forward in the index space. An intepSed in the above example.

ligent compiler need not actually copy the matrices to fill an Upsample: Inspecified dimension(s), this consumes one and
area in memory. The data in the two cubes is then multiplied producesV, inserting zero values.

element-wise, and the resulting products are summed alongTiese are identified in Fig. 15. Note that all of these actors
mension 2. The resulting sums give thex N matrix product. simply control the way tokens are exchanged and need not in-
The MDSDF graph implementing this is shown in Fig. 14. Theolve any run-time operations. Of course, a compiler then needs
key actors used for this are the following. to understand the semantics of these operators.

own-
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Upsample Downsample Repeat Transpose

(LM,1) : (L,M,N) (L,M,N) C(L,MJ) (LM,1) C (L.M,N) (L.M.N)O (MN,L)

Parameter: (2,3,1)

Fig. 15. Some key MDSDF actors that affect the flow of control.

F. Run-Time Implications (1,0) (0,1) (1,1)

O
Several of the actors we have used perform no computation ”
but instead control the way tokens are passed from one actor to @

another. In principle, a smart compiler can avoid run-time oper-

ations altogether, unless data movement is required to support Fig. 16. Three macro actors with state represented as a self-loop.
parallel execution. We set the following objectives for a code

generator using this language. ) (dy,gp) b) ]

d
Upsample: Zero-valued samples should not be produced, L
stored, or processed. (apag) (ayag) +
Repeat: Repeated samples should not be produced or A
stored.
Last-N:  Acircular buffer should be maintained and made ~ Fig- 17 (a) Actor with a self loop. (b) Data space on the arc.
directly available to downstream actors.
Down- Lemma 1: Suppose that an acter has a self-loop as shown

sample:  Discarded samples should not be computddFig. 17(a). Actor deadlocks i, > d; anda; > dz both
(similar to dead-code elimination in traditionalhold.

compilers). Proof: We use the notatior; ; to mean the ¢, j)th in-
Transpose: There should be no run-time operation at all: jiy§tcation of actord in a complete periodic schedule. If the in-
compile-time bookkeeping. equalities both hold, ther, o cannot fire since it requires a

It is too soon to tell how completely these objectives can tggctangle of data larger than that provided by the initial rows and
met columns intersected. The forward direction follows by looking

at Fig. 17(b). IfA deadlocks becausgy ¢ cannot fire, then the
inequalities must hold. Ifl o) does fire, then it means that ei-
G. State thera, < d; oray < dp. If a; < dy, then clearlyay 5 can

For large-grain dataflow languages, it is desirable to pernite for anyj since the initial rows provide the data for all these
actors to maintain state information. From the perspective ioocations. Thend|; ; can all fire since there arg +d; rows
their dataflow model, an actor with state information simplgf data now, an@a; < a; + d;. Continuing this argument, we
has a self-loop with a delay. Consider the three actors with setin see that cas fire as many times as it wants. The reasoning
loops shown in Fig. 16. Assume, as is common, that dimeis-thata, < d is symmetric; in this casej|; o) can all fire, and
sion 1 indexes the row in the index space and dimension 2 then, A} ;; can all fire, and so on. Therefore, actddeadlocks
column, as shown in Fig. 17(b). Then, each firing of actor Af A o) is not firable, and4y o is not firable iff the condition
requires state information from the previous row of the inder the lemma holds. Q.E.D.
space for the state variable. Hence, each firing of A depends orCorollary 1: In n dimensions, an actad with a self-loop
the previous firing in the vertical direction, but there is no deiaving ¢4, ...,d,) delays and producing and consuming hy-
pendence in the horizontal direction. The first row in the stafercubesd;, ..., a,) deadlocks iffa; > d;Vi.
index space must be provided by the delay initial value specifi- Let us now consider the precedence constraints imposed by
cation. Actor B, by contrast, requires state information from thtbe self loop on the various invocations .af Suppose that
previous column in the index space. Hence, there is horizontiéles (-, ;) times. Then, the total array of data consumed is
but not vertical, dependence among firings. Actor C has bodim array of sizes( a1, 72a2). The same size array is written but
vertical and horizontal dependence, implying that both an irshifted to the right and down of the origin byi( d2). In gen-
tial row and an initial column must be specified. Note that thisral, the rectangle of data read by a node is up and to the left
does imply that there is no parallelism since computations aloofjthe rectangle of data written on this arc since we have as-
a diagonal wavefront can still proceed in parallel. Moreover, thisimed that the initial data is not being overwritten. Hence, an
property is easy to detect automatically in a compiler. Indeed, allocationAy; ;) can only depend on invocations;: ;i1, where
modern parallel scheduling methods based on projections ofiar 4, j* < 4. This motivates the following lemma.
index space [18] can be applied to programs defined using thid.emma 2: Suppose that actot has a self loop as in the pre-
model. vious lemma, and suppose thatdoes not deadlock. Then, the

We can also show that these multidimensional delays do iebped schedulér;, ) A is valid, and the order of nesting the
cause any complications with deadlock or preservation of detérops does not matter. That is, the two programs that follow give
minacy. the same result.
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Proof: We have to show that the ordering of tHg, ,; in

the loop is a valid linearization of the partial order given by the t1
precedence constraints of the self loop. Suppose that in the first
loop
forx=0:r1—1 V = |:1 —1] b)
fory=0:79—-1 12 to

fire A[m 4]
? a)
end fory, forx
fory=0:m—1
forx=0:7ry—1
fire A[%y} )

end forx, fory

the ordering is not a valid linearization. This means that there are

indices ¢y, j1) and €2, j2) such thatdy;, ;,; precedesiy;, ;;in  Fig. 18. Sampling on a nonrectangular lattice. (a) Sampling mérixb)

the partial order, buﬂ[ihm is executed bEforﬂ[iz,jz] in the Samples on the lattice. (9) Renumbered samples of the lattice. (d) Fundamental

loop. Then, by the order of the loop indices, it must be thfa/Ielepiped for a matrix’.

iy < ig, but then,Ay;, ;,; cannot preceddy;, ; ; in the partial

order since this violates the right and down precedence orderinge matrixV" is called thesampling matriXmust be real and

The other loop is also valid by a symmetric arguméptEE.D.. nonsingular). The sample locations are vectdrsthat are
The above result shows that the nesting order, which is Bmear combinations of the columns of the sampling matfix

implementation detail not specified by the model itself, has rilg. 18(a) and (b) shows an example. The set of all sample

bearing on the correctness of the computation; this is importguintst = Vi, 2 € N is called thdattice generated by” and is

for preserving determinacy. denotedF’PD(V'). The matrixV" is thebasisthat generates the
lattice LAT'(V'). Suppose that is a point onLAT’(V). Then,
[ll. M ODELING ARBITRARY SAMPLING LATTICES there exists an integer vectbsuch thati = V K. The points:

The multidimensional dataflow model presented in the abo@e€ called theenumbered pointef LAT'(V). Fig. 18(c) shows
section has been shown to be useful in a number of contexXfi "énumbered samples for the sampleg.a’(V') shown in
including expressing multidimensional signal processing prb'd: 18(0) for the sampling matrix shown in Fig. 18(a).

Y ; ; dhe set of points/'z, wherez = [z1, 2], with0 <
grams and specifying flexible data-exchange mechanisms an X ' Ly 2] =
scalable descriptions of computational modules. Perhaps fiie2 < 1. is called théundamental parallelepipedf V" and
most compelling of these uses is the first one: for specifyirlg 9€notedLAT(V), as shown in Fig. 18(d) for the sampling

multidimensional, multirate signal processing systems. This/J&atrix from Fig. 18(a). From geometry, it is well known that

because such systems, when specified in MDSDF, have the sdifevolume off'PD(V) is given by|de(V))|. Since only one

intuitive semantics that 1-D systems have when expresseo“?lqumbered integer sample point falls insid¢7’(V), namely,

SDF. However, the MDSDF model described so far is limitedi€ rigin. the sampling density is given by the inverse of the
to modeling multidimensional systems sampled on the staflume ofZ’PD(V). _ _ .
dard rectangular lattice. Since many multidimensional signajsP€finition 1: Denote the set of integer points within
of practical interest are sampled on nonrectangular lattices [25, D(V) as the sef\i(l{). That is,N(V) is the set of integer
[32], for example, 2:1 interlaced video signals [13], and ma ctors of th? formV, & € [0, 1)™.

multidimensional multirate systems use nonrectangular multi-The following well-known lemma (see [23] for a proof) char-

rate operators like hexagonal decimators (see [1], [6], and [2#f(erizes the number of integer points that fall instd@D (V')
for example), itis of interest to have an extension of the MDSD¥ the size of the se¥/(V). _

model that allows signals on arbitrary sampling lattices to be -6Mma 3: Let V" be an integer matrix. The number of ele-
represented and that allows the use of nonrectangular downs&HNtS NV (V) is given by|N (V)| = |det(V)].

plers and upsamplers. The extended model we present here pr ) Multldlmenspnal Degmators:The two basic mpltlrate
serves compile-time schedulability. perators for multidimensional systems are the decimator and

expander. A decimator is a single-input-single-output (SISO)
A. Notation and Basics function that transmits only one sample for everysamples
i(gf the input; n is called thedecimation ratio For an MD
signal z(#) on LAT(V1), the M-fold decimated version is
lgiven by y(h) = x(n),n € LAT(ViM), where M is an
m X m nonsingular integer matrix called thlecimation matrix
Fig. 19 shows two examples of decimation. The example on
i [tl} B [all am} |:n1:| _va the left is for a diagonal matrix/; this is calledrectangular
Tt | o decimationbecausel’PD(M) is a rectangle rather than a

The notation is taken from [33]. Consider the sequence
samples generated byn, ns) = z,(a11n1 + a1ons, asing +
azns), Wherez, (t1,t2) is a continuous time signal. Notice tha
the sample locations retained are given by the equation

21  A22 2
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Fig. 19. (a) Rectangular decimation. (b) Hexagonal decimation.

@ Samples kept

O Samples added

O €0 o
o0 0 0

1

Fig. 20. (a) Rectangular expansion. (b) Nonrectangular expansion.

v

@ Samples kept
O Samples added

Fig. 21. Renumbered samples from the expanders output.

parallelepiped. In general, a rectangular decimator is one fbAT(L) (see Fig. 21). Some of the points have been labeled
which the decimation matrix is diagonal. The example on thwith letters to show where they would map to on the output
right is for a nondiagonad/ and is loosely termetiexagonal signal.
decimation Note thatLAT(V;) 2 LAT(V;M). _ _
The decimation ratio for a decimator with decimation matri®- Seémantics of the Generalized Model
M is given by|N(M)| = |det(M)|. The decimation ratio for ~ Consider the system depicted in Fig. 22, where a source actor
the example onthe leftin Fig. 19 is 6, and it is 4 for the exampfgoduces an array of % 6 samples each time it fires [(6,6) in
on the right. MDSDF parlance]. This actor is connected to the decimator with
2) Multidimensional Expandersin the multidimensional a nondiagonal decimation matrix. The circled samples indicate
case, the “expanded” outpy(#) of an input signaks(rn) is the samples that fall on the decimators output lattice; these are

given by retained by the decimator. In order to represent these samples
on the decimator’s output, we will think of the buffers on the

y(n) = <a:(n) n e LAT_(VI) ) Vn € LAT(V,;L™Y) arcs as containing the renumbered equivalent of the samples on

0 otherwise a lattice. For a decimator, if we renumber the samples at the

) ) i output according td.AT (V1 M), then the samples get written
where V is the |npu£1Iatt|ce to the expander. Note thaf, 4 parallelogram-shaped array rather than a rectangular array.
LAT(Vy) € LAT(ViL™"). The expansion ratio, which is de-1q see what this parallelogram is, we introduce the concept of a
fined as the number of points added to the outputlattice for eachyynort matrix” that describes precisely the region of the rect-
pointin the input lattice, is given bigle{ L)|. Fig. 20 shows tWo gnqyjar Jattice where samples have been produced. Fig. 22 il-
examples of expansion. In the example on the left, ther OUtRyLirates this for a decimation matrix, where the retained sam-
lattice is also rectangular and is generated by @i#g 0.5)* ples have been renumbered according.t'(M) and plotted
- The example on the right shows nonrectangular expansigp, ihe right. The labels on the samples show the mapping. The

where the lattice is generated by renumbered samples can be viewed as the set of integer points
05 0.95 lying inside the parallelogram that is shown in the figure. In
L~t=1]"° ol other words, thesupportof the renumbered samples can be de-
0.5 —0.25 3 15

scribed ad"PD(Q), where = 3 15l
An equivalent way to view Fig. 20 is to plot the renumbered \ye will call @ the support matrixfor the samples on the
samples. Notice that the samples from the input will now lie %Butput arc. In the same way, we can describe the support of the

We use the notation didg: , ..., a.,) to denote a diagonal x n matrix Sampl?S on the input arc to the decimatod@3 (), where
with thea; on the diagonal. P = diag(6,6). It turns out that) = M~1P.
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Fig. 22. Output samples from the decimator renumbered to illustrate concept of support matrix.

Definition 2: Let X be a set of integer points ii®"”. We Ve, We Vi wf
say thatX satisfies thecontainability conditionif there exists @) T’@—f’

m X m an rational-valued matri}’ such thatV(W) = X. In

other words, that there is a fundamental parallelepiped whose ®) Ve, We Vi W
set of integer points equals. e ’( ) f >

Definition 3: Given a sampling matri¥’s, a set of samples
¢ is called aproduction set orVs if each sample if lies on the Fig. 23. (a) Generalized decimator and (b) expander with arbitrary input
lattice LAT(Vs) andthe sef = {V'n : 4 € ¢}, whichisthe lattices and support matrices.
set of integer points consisting of the pointgaenumbered by
LAT(Vs), satisfies the containability condition. W.z = Mj,we have thal/j € N(W.). In addition, the corre-

We will assume that any source actor in the system producgonding point to this on the input latticelisi j, implying that
data according to thsource data production methpadhere a the point is retained by the decimator. Henidé; = M ~1W..
sourceS outputs a production set dr, which is the sampling The derivation for the expander is identical, only with different
matrix on the output ofs. expressions. Q.E.D.

Given a decimator with decimation matrid, as shown in ~ Corollary 2: In an acyclic network of actors, where the only
Fig. 23(a), we make the following definitions and statementsctors that are allowed to change the sampling lattice are the
Denoting the input arc to the decimatoraand the output arc decimator and expander in the manner given by Theorem 1, and
as f, V. andV; are the bases for the input and output latticayhere all source actors produce data according to the source
respectivelyW, andW are the support matrices for the inputiata production method of Section IlI-B, the set of samples on
and output arcs, respectively, in the sense that samples, n@very arc, renumbered according to the sampling lattice on that
bered according to the respective lattices, are the integer poiaits, satisfies the containability condition.
of fundamental parallelepipeds of the respective support ma- Proof: The proof is immediate from the theorem.
trices. Similarly, we can also define these quantities for the ex-In the following, we develop the semantics of a model that
panderL depicted in Fig. 23(b). With this notation, we can statean express these nonrectangular systems by going through a
the following. detailed example. In general, our model for the production and

Theorem 1: The relationships between the input and outpgonsumption of tokens will be the following: An expander pro-
lattices, and the input and output support matrices for the dediicesF"PD(L) samples on each firing wheteis the upsam-
mator and expander depicted in Fig. 23, are pling matrix. The decimator consumes a “rectangle” of samples,

where the “rectangle” has to be suitably defined by looking at
the actor that produces the tokens that the decimator consumes.
Decimator  Vy=V.M, W;=M"'W.. Definition 4: An integer(a, b) rectangleis defined to be the
Expander Vi =V.L™', W;=LW.. set of integer points ifd, a) x [0, b), wherea andb are arbitrary
real numbers.

Proof: The relationships between the input and output lat- Definition 5: Let X be a set of points ift?, and letz and
tices follow from the definition of the expander and decimatoy be two positive integers such they = | X|. X is said to be
Consider a point. on the decimator’s input lattice. There exist®rganized as generalizedz, y) rectangleof points, or just a
an integer vectok such that, = V.k. If M ~'k is an integer generalized#, y) rectangle, by associatingractangularizing
vector, then this point will be kept by the decimator since it willunction with X that maps the points of to an integer#, v)
fall on the output lattice, i.ep = V.Mk, wherek/ = M—'k. rectangle.

This pointn is renumbered aé’ = MV in = M~k Example 1: Consider the system where a decimator follows
by the output lattice. Sinck was the renumbered point corre-an expander [see Fig. 24(a)]

sponding to: on the input lattice and, hence, M(W. ), every We start by specifying the lattice and support matrix for the
pointk in N(W.) that is kept by the decimator is mapped t@rc SA Let Vs = diagl,1) andWs,4 = diag3,3). There-
M~k by the output lattice. Nowk € N(W.) = 3z € fore,the source produces (3,3) in MDSDF parlance since the lat-
[0,1)%s.t. K = W.z. Therefore, M~k € N(M~'W.) be- tice onSAis the normal rectangular lattice, and the support ma-
causeM —tk = MW,z Conversely, letj be any point in trix represents an FPD that is a3 rectangle. For the system
N(M~W,). Then,3z € [0,1)%s.t. j = M~'W,z. Since above, we can compute the lattice and support matrices for all
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a) A B TABLE |

@ @ G ORDERING THE SAMPLES PRODUCED BY THE EXPANDER
° SA AB Original sam-

ple ©0 [ |02 [L2) | Q3 | LD [¢L2) [ ¢L3) [ O3 | 04

Renumbered
sample

©o |10 |20 [GY) | @0 |G (&) (&) | GD | @D

L=

functions that map thewn points in FPD(L) to the set
{(0,0),...,(0,m —1),...,(n — 1,0),...,(n — 1L,m — 1)};
any such function would suffice). The scanning order for the
expander across invocations is determined by the numbering of
the input sample on the output lattice. For example, the sample
at (1,0) that the source produces maps to location (2,3) on the
lattice at the expanders outpui 1 O]T). Hence, consuming
2 g | 2 samples in thg1 0] direction on arc SA results in %52
samples (i.eF’PD(L) samples but ordered according to the
Fig. 24. Example to illustrate balance equations and the need for sot@ble) being produced along the vecf@ 3] on the output.
additional constraints. (a) System. (b) Ordering of data intoa25rectangle Similarly, the sample (0,1) produced by the source corresponds
inside FPD(L). to (—2,2) on the output lattice. A global ordering on the samples
) ) _ {is imposed by the following renumbering. The sample at (2,3)
other arcs given these. We will need to specify the scannifigs on, the lattice generated tiyand is generated by the vector
prder_for each arc as well that which tells the node the ordey O]T. Hence, (1,0) is the renumbered point corresponding
in which samples should be consumed. Assume for the mg-(2 3) but because there are more points in the output than
ment that the expander will consume th'e samples on arc SAsWhply the points onLAT(L), clearly, (1,0) cannot be the
some natural order, for example, scanning by rows. We need & umbered point. In fact, since we organiZEé®D(L) as a
specify what the expander produces on each firing. The natyggheralized (5,2) rectangle and renumbered the points inside
way to specify this is that the expander produtd3D(L) sam-  the FPD as in the table, the actual renumbered point corre-
ples on each firing; these samples are organized as a generalmding to (2,3) is given bl « 5,0« 2) = (5,0). Similarly,
(L1, L») rectangle. This allows us to say that the expander prgre |attice point (0,5) is generated by (1,1), meaning that it
duces {,, L;) samples per firing; this is understood to be thghould be renumbered 5+ 5, 1+2) = (5,2). With this global
setF"PD(L) of points organized as a generalizdd (L2) rec-  ordering, it becomes clear what the semantics for the decimator
tangle. Note that in the rectangular MDSDF case, we could d¢hould be. Again, choose a factorization |die{ A/)|, and
fine upsamplers that did their upsampling on only a subset of tdgnsume a “rectangle” of those samples, where the “rectangle”
input dimensions (see Section II-E). This is possible since thededuced from the global ordering imposed previously. For
rectangular lattice is separable; for nonrectangular lattices, itdgample, if we choose 2 2 as the factorization, then the (0,0)
not possible to think of upsampling (or downsampling) occufrvocation of the decimator consumes the (original) samples at
ring along only some dimensions. We have to see upsamplif®0), (-1,1), (0,1), and£1,2). The (0,2)th invocation of the
and downsampling as lattice transforming operations and deakimator would consume the (original) samples at (1,3), (0,4),
with the appropriate matrices. (2,3), and (1,4). The decimator would have to determine which
Suppose we choose the factorizatior 8 for |[det L)|. Con- of these samples falls on its lattice; this can be done easily.
sider Fig. 24(b), where the samplegit’ D (L) are shown. One Note that the global ordering of the data is not a restriction in
way to map the samples into an integer (5, 2) rectangle is a3y way since this ordering is determined by the scheduler and
shown by the groupings. Notice that the horizontal direction faan be determined on the basis of implementation efficiency
FPD(L) is the direction of the vectdr2 3]", and the ver- if required. The designer does not have to worry about this
tical direction is the direction of the vectpr-2 2]". We need behind-the-scenes determination of ordering.
to number the samples ifPD(L); the numbering is needed We have already mentioned the manner in which the source
in order to establish some common reference point for referripgoduces data. We add that the subsequent firings of the source
to these samples since the downstream actor may consume @fg/always along the directions established by the vectors in the
some subset of these samples. One way to number the sampl8dport matrix on the output arc of the source.
to number them as sample points in & 8 rectangle, as shown Now, we can write a set of “balance” equations using the
in Table 1. “rectangles” that we have defined. Denote the repetitions of a
Hence, FPD(L) is a genera|ized5€2) rectang|e if we nodeX in the “horizontal” direction bY’X71 and the “vertical”
associate the function given in Table | with it as the rectaflirection as-x . These directions are dependent on the geome-
gularizing function. Given a factoring of the determinant offies that have been defined on the various arcs. Thus, for ex-
L, the function given previously can be computed easily, f@mple, the directions are different on the input arc to the ex-
example, by ordering the samples according to their EuclideBander from the directions on the output arc. We have
distance from the two vectors that correspond to the horizontal
and vertical directions (we should be convinced that given Srsp =lran Sran=2rp1 TB1 =TT
a factorizationn x m for |det L)|, clearly, there are many Yrso=lras 2ras=2rgs 7TB2=7T2

b)

_— N W A
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Fig. 25. Total amount of data produced by the source in one iteration of the periodic schedule determined by the balance equations in (1).

where we have assumed that the sink a@fa@onsumes (1,1) Recall that the samples that the decimator produces are the
for simplicity. We have also made the assumption that the deateger points inF’ PD(Wgr). Hence, we want to know if

imator produces exactly (1,1) every time it fires. This assump-

tion is usually invalid, but the calculations done in the following IN(Wpp)| = |N(WaB)| 3)

are still valid, as will be discussed later. Since these equations | M|

fall under the same class as SDF balance equations described in . . . .
Section I-A, the properties about the existence of the small 3t satisfied by our S_OIUt'On to the balance equatlons.
unique solution applies here as well. These equations can e Lemma 3, the size of the sei(4) for an in-

solved to yield the following smallest, unique solution: teger matrix A is given Dby |de(A)[. Since Wip is
an integer matrix for any value ofsi, rs., we have

|N(WAB)| = |det(WAB)| = 907’5717’572. The right—hand side
rs1=2 Ta1=6 rp1=15 71 =15 of (3) becomeg90rs,175,2)/4 = (45r5,175,2)/2. Hence, our
1 first requirement is thats 17so = 2k k& = 0,1,2.... The
balance equations gave ug; = 2,75, = 1; this satisfies the
requirement. With these values, we get

Ts,2 =1 TA2 = 3 TB2 = 3 T2 = 3.

Fig. 25 shows the data space on arc AB with this solution 21 -3
to the balance equations. As we can see, the assumption that 5 o
the decimator produces (1,1) on each invocation is not valid;
sometimes, it produces no samples at all and sometimes two 2 2

samples orone.sample. Hencg, we ha.1ve to seeifthe total NUMBER o 1is matrix is not integer-valued, Lemma 3 cannot be in-
of samples r_etalned by the_ d_eC|mator IS equ_al to_the tot_al num%ked to calculate the number of integer point& iR D(Wgr).
of samples it consumes divided by the decimation ratio. £ honinteger matrices, there does not seem to be a polyno-
In order to compute the number of samples output by the defial-time method of computingV (W )|, although a method
imator, we have to compute the support matrices for the variogt is much better than the brute force approach is given in [23].
arcs assuming that the source is invoked (2,1) times (so tQfing that method, it can be determined that there are 47 points
we have the total number of samples being exchanged in QAgide # PD(W 51). Hence, (3) is not satisfied. One way to sat-
schedule period). We can do this symbolically usig and jsfy (3) is to forceW 7 to be an integer matrix. This implies

Wer=1|3 2

75,2 and substitute the values later. We get thatrs: = 4k, k = 0,1,2...andrgo = 2k, k =0,1,2....
The smallest values that makEgr integer valued ares; =
3 0l lr 0 3 0 4, rs 2 = 2. Fromthis, the repetitions of the other nodes are also
Wsa = s — | 7"st multiplied by 2. Note that the solution to the balance equations
0 3 0 7s2 0 3152

by themselves are not “wrong”; it is just that for nonrectangular

Wap =LWs, = [67’5,1 —67’5,2} .and systems, (3) gives a new constraint that must also be satisfied.
Irsy  brsy We address concerns about efficiency that the increase in rep-

1 [217;@71 —6752 } etitions entails in Section 11I-B1. We can formalize the ideas

. _1
Wpr =M—"Wap = 4 @ developed in the previous example in the following.
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Lemma 4: The support matrices in the network can each be It can be easily shown that the constraint of the type in (3) is
written as functions of the repetitions variables of one particulatways satisfied by the solution to the balance equations when
source actor in the network. all of the lattices and matrices are diagonal [23].

Proof: The proofisimmediate from the fact that all of the The fact that the decimator produces a varying number of
repetitions variables are related to each other via the balarggnples per invocation might suggest that it falls nicely into
equations. the class of cyclostatic actors. However, there are a couple of

Lemma 5: In a multidimensional system, thgh column of  differences. In the CSDF model of [5], the number of cyclo-
the support matrix on any arc can be expressed as a matrix #atic phases are assumed to be known beforehand and is only
has entries of the form; ;s ;, wherers ; is the repetitions vari- 3 function of the parameters of the actor, like the decimation
able in thejth dimension of some particular source actoin  factor. In our model for the decimator, the number of phases is
the network, and;; are rationals. not just a function of the decimation matrix; it is also a function

Proof: Without loss of generality, assume that there aigf the sampling lattice on the input to the decimator (which,
two dimensions. Let the support matrix on the output arc @i turn, depends on the actor that is feeding the arc) and the

source$ for one firing be given by factorization choice that is made by the scheduler. Second, in
CSDF, SDF actors are represented as cyclostatic by decom-

We = [p q} ' posing their input/output behavior over one invocation. For ex-

TS ample, a CSDF decimator behaves exactly like the SDF deci-

mator, except that the CSDF decimator does not neéd alhta
Forrgs 1, rs .2 firings in the “horizontal” and “vertical” direc- inputs to be present before it fires; instead, it has a four-phase
tions (these are the directions of the columnB4&f), the support firing pattern. In each phase, it will consume one token but will

matrix becomes produce one token only in the first phase and produce 0 tokens
in the other phases. In our case, the cyclostatic behavior of the
We= P 9| ]|7s1 0 | _|prs1 qrse decimator is arising across invocations rather than within an in-
s = = . . . . . . .
TS 0 TS2 TTS,1 STS2 vocation. It is as if the CSDF decimator with decimation factor

4 were to consume {4,4,4,4,4,4} and produce {2,0,1,1,0,2} in-
(in multiple dimensions, the right multiplicand would be a distead of consuming {1,1,1,1} and producing {1,0,0,0}.
agonal matrix withrs ; in the jth row). One way to avoid dealing with constraints of the type in (3)

Now, consider an arbitrary are.(v) in the graph. Since the would be to choose a factorization|dit{ A/)| that ensured that
graph is connected, there is at least one undirectedpétbm the decimator produced one sample on each invocation. For ex-
sourceS to nodew. Since the only actors that change the sanample, if we were to choose the factorizatiosn 4 for the pre-
pling lattice (and, thus, the support matrix) are the decimateious example, the solution to the balance equations would au-
and expander, all of the transformations that occur to the supmatically satisfy (3). As we show later, we can find factoriza-
port matrix Ws along PP are left multiplications by some ra- tions where the decimator produces one sample on every invo-
tional-valued matrix. Hence, the support matrix on a@’.) cation in certain situations, but generalizing this result appears
can be expressed &, = AWj, where A is some rational to be a difficult problem since there does not seem to be an an-
valued matrix. The claim of the lemma follows from this. alytical way of writing down the renumbering transformation

Q.E.D. that was shown in Table I.

Theorem 2:In an acyclic network of actors, where the only 1) Implications of the Previous Example for Streants:
actors that are allowed to change the sampling lattice are ®BF, there is only one dimension, and the stream is in that
decimator and expander in the manner given by Theorem 1, aticection. Hence, whenever the number of repetitions of a
where all source actors produce data according to the souncele is greater than unity, the data processed by that node then
data production method of Section 11I-B, whenever the balancerresponds to data along the stream. In MDSDF, only one of
equations for the network have a solution, there exists a blockithg directions is the stream. Hence, if the number of repetitions
factor vectorJ such that increasing the repetitions of each nods a node, especially a source node, is greater than unity for the
in each dimension by the corresponding factoriwill result nonstream directions, the physical meaning of invocations in
in the support matrices being integer valued for all arcs in thieose directions becomes unclear. For example, consider a 3-D
network. MDSDF model for representing a progressively scanned video

Proof: By Lemma 5, aterm in an entry in thi¢h column system. Of these three dimensions, two of them correspond to
of the support matrix on any arc is always a product of a rationdle height and width of the image, and the third dimension is
number and repetitions variabte ; of sourceS. We force this time. Hence, a source actor that produces the video signal might
term to be integer valued by dictating that each repetition’s vagroduce something like (512,512,1), meaning 1 5112
ablers ; be the lcm of the values needed to force each entimages per invocation. If the balance equations dictated that
in the jth column to be an integer. Such a value can be cortiis source should fire (2,2,3) times, for example, then it is not
puted for each support matrix in the network. The lcm of alllear what the two repetitions each in the height and width
these values and the balance equations solution for the soutitections signify since they certainly do not result in data
would then give a repetition’s vector for the source that maké®m the next iteration being processed, where an iteration
all of the support matrices in the network integer valued armrresponds to the processing of an image at the next sampling
solves the balance equations. Q.E.D. instant. Only the repetitions of three along the time dimension
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Fig. 26. Total amount of data produced by the source in one iteration of the periodic schedule determined by the balance equations in (4). Thptdamples ke
the decimator are the lightly shaded samples.

makes physical sense. Hence, there is potentially room for greatorporate such constraints into the balance equation’s compu-
inefficiency if the user of the system has not made sure thation is to specify the repetition’s vector instead of the number
the rates in the graph match up appropriately so that we do pobduced or consumed. That is, for the source, we specify that
actually end up generating images of size 18224 when s, = 1 leave the number it produces in the vertical direction
the actual image size is 532512. In rectangular MDSDF, unspecified (this is the strategy used in programming the Philips
it might be reasonable to assume that the user is capableV&P, for example). The balance equations will give us a set of
setting the MDSDF parameters such that they do not resultdnceptable solutions involving the number produced vertically;
absurd repetitions being generated in the nonstream directiorescan then pick the smallest such number that is greater than
since this can usually be done by inspection. However, for equal to three. Denoting the number produced vertically by
nonrectangular systems, we would like to have more formgJ, our balance equations become

techniques for keeping the repetition’s matrix in check since
it is much less obvious how to do this by inspection. The
number of variables are also greater for nonrectangular systems ysl=1rao 2rap=4rpas 7TB2="Tr2- (5)
sincg different factorization; for the decimation or egpansieﬂqe solution to this is given by

matrices give different solutions for the balance equations.

3rsy1=lray Sra1=1lrp1 71 =111

To explore the different factoring choices, suppose we use rspi=1 ra1=3 rp1=15 rpr1 =15
1 x 4 for the decimator instead ofx22. The solution to the ys =2k ra2=2k rpa2=k T.0=3
balance equations become k=19
=1,2,...
rsi =1 ra1=3 71 =15 rr1=15 and we see thadt = 2 satisfies our constraint. Recalculating the
7s2=2 Ta2=06 7TB2=3 7rr2=23. (4) other quantities
. 21
From (2),Wgr is given by W - 1[21rg; —S8rga T -2
g -3 BT = AB = Z 37’571 —247’572 o § _6
Wer = | %
3 . . .
2 9 and we can determine tha¥(Wpr)| = 30 as required (i.e.,
4 3 x 4 x 10/4 = 30 ). Hence, we get away with having to pro-

and it can be determined theW (Wgr)| = 45, as required. duce only one extra row rather than three, assuming that the
Therefore, in this case, we do not need to increase the blocksamurce can only produce three meaningful rows of data (and any
factor to makeéW gy an integer matrix, and this is because theumber of columns).
decimator is producing one token on every firing, as shown in2) Eliminating Cyclostatic BehaviorThe fact that the dec-
Fig. 26. imator does not behave in a cyclostatic manner in Fig. 26
However, if the stream in the above direction were in the horaises the question of whether factorizations that result in non-
izontal direction (from the point of view of the source), themyclostatic behavior in the decimator can always be found.
the solution given by the balance (4) may not be satisfactoijhe following example and lemma give an answer to this
for reasons already mentioned. For example, the source maygbestion for the special case of a decimator whose input is
forced to produce only zeros for invocation (0,1). One way ® rectangular lattice.
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(6,6) (MI.M2) (L1)

a)

Fig. 27. Example to illustrate that two factorizations always exist that result in noncyclostatic behavior with the decimator. (a) Sy3fdm=(b) M2 = 2.
)Ml =1, M2 =4.(d)M1 =4, M2 =1.

Fig. 28. Delays on nonrectangular lattices.

Example 2: Consider the system in Fig. 27(a), where a 2-Ehe balance equation solution. Second, it is @ufficientthat
decimator is connected to a source actor that produces an athaysupport matrix on the decimators output be integer valued
of (6,6) samples on each firing. The black dots represent tfor the additional constraints to be satisfied. Indeed, we have
samples produced by the source, and the circled black dots show 6y 0
the samples that the decimator should retain. SidegM )| = Wsnm = [ 0 67’52} » Whao = [
4, there are three possible ways to choasg M,. For two of ’
the factorizations, the decimator behaves statically, that isWihere Wiso is the support matrix on the decimators output.
produces one sample on each firing [see Fig. 27(b) and (c). HOwRr the case wher@/1 = 4, M2 = 1, we havers; =
ever, in Fig. 27(d), we see that on some invocations, no saf-7s,2 = 1, making W0 noninteger valued. However, we
ples are produced [that is, (0,0) samples are produced], wiie have thatN(Wy0)| = [N(Wsar)|/|de(M)], despite the
in some invocations, two samples are produced. This raises #@ thatW,o is noninteger valued and the decimator is cyclo-
question of whether there is always a factorization that ensuféatiC.
that the decimator produces (1,1) for all invocations. The fol- 3) Delays in the Generalized ModeDelays can be inter-
lowing lemma ensures that for any matrix, there are always tpketed as translations of the buffer of produced values along the

factorizations of the determinant such that the decimator pr¢gctors of the support matrix (in the renumbered data space) or
duces (1,1) for all invocations. along the vectors in the basis for the sampling lattice (in the

. _la b lattice data space). Fig. 28 illustrates a delay of (1,2) on a non-
Lemma 6 [23]: If M = c d rectangular lattice.

2 x 2 matrix, then there are at most two factorizations (and at _

least one) ofde(M)|, A, B, = |de(M)|, andA,B, = |[(M)| C. Summary of Generalized Model

such that ifM; = Ay, My = By or M1 — Az, M> = By in In summary, our generalized model for expressing nonrect-
Fig. 27, then the decimator produces (1,1) for all invocationgngular systems has the following semantics.

37’571 1.57’572
37’571 —1.57’572

is any nonsingular, integer

Moreover « Sources produce data in accordance with the source data
|det(M))| production method of Section IlI-B. The support matrix
A1 =geda,b), Br = m and lattice-generating matrix on the source’s output arcs
’ are specified by the source. The source produces a gener-
and alized (51, S3) rectangle of data on each firing.
|de( M) » An expander with expansion matrIxconsumes (1,1) and
2= gede,d)’ By =gedc, d). produces the set of samplesiiiP D(L) that is ordered as
a generalizedl(; , L») rectangle of data, whete,, L, are
Remark: Note thatged(a, 0) = a; hence, ifM is diagonal, positive integers such thdt; , L, = |det(L)|.
the two factorizations are the same, and there is only one uniquee A decimator with decimation matri/ consumes a rec-
factorization. This implies that for rectangular decimation, there  tangle (1, M>) of data where this rectangle is interpreted
is only one way to set the MDSDF parameters and get noncy- according to the way it has been ordered (by the use of
clostatic behavior. some rectangularizing function) by the actor feeding the
Example 2 illustrates two other points. First, it is oslyffi- decimator. It produces (1,1) on average. Unfortunately,
cientthat the decimator produce 1 sample on each invocationfor there does not seem to be any way of making the deci-
the additional constraints on decimator outputs to be satisfied by mators output any more concrete.
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: They propose to exploit data parallelism from the 1-D stream

Ph’ Ph model of the multidimensional system and to use dynamic

2 (run-time) scheduling, in contrast to our approach in this paper

< > of using a multidimensional stream model with static sched-

Y4, . uling.
? © e © e d The Philips Video Signal Processor (VSP) is a commercially
:—é;&«‘—;;—'d}yg available processor designed for video processing applications
i time [34]. A single VSP chip contains 12 arithmetic/logic units, four

memory elements, six on-chip buffers, and ports for six off-chip
Fig. 29. Picture sizes and lattices for the two aspect ratios 4/3 and 16/9buffers. These are all interconnected through a full cross-point
switch. Philips provides a programming environment for devel-
oping applications on the VSP. Programs are specified as signal
flow graphs. Streams are 1-D, as in [36]. Multirate operations

A B C
° @ @ @ ° are supported by associating a clock period with every opera-
tion. Because all of the streams are unidimensional, data-paral-

lelism has to be exploited by inserting actors like multiplexors
[ J [ J ® o © ® o @ . . .
o o o g % g o ° and demultiplexors into the signal flow graphs.
° SO § § g ° There has been interesting work done at Thomson-CSF in
® hall f Bl ® hd developing the array-oriented language (AOL) [12]. AOL is a

ecification formalism that tries to formalize the notion of array
cess patterns. The observation is that in many multidimen-
sional signal processing algorithms, a chief problem is in spec-
ifying how multidimensional arrays are accessed. AOL allows
[Bg user to graphically specify the data tokens that need to be
accessed on each firing by some block and how this pattern of

S
Fig. 30. System for doing multistage sampling structure conversion from 45%
aspect ratio to 16/9 aspect ratio for a 2:1 interlaced TV signal.

» On any arc, the global ordering of the samples on th
arc is established by the actor feeding the arc. The ac
consuming the samples follows this ordering.

A set of balance equations are written down using the Vaagcisses changis with firings. f Kah d Plotkin 116 d
ious factorizations. Additional constraints for arcs that feed aT e concrete data structures of Kahn and Plotkin [16], an

decimator are also written down. These are solved to yield tiaer of Berry and Curien [3], is an interesting model of com-

repetitions matrix for the network. A scheduler can then coRutation that may include MDSDF as a subset. Concrete data
struct a static schedule by firing firable nodes in the graph ungiructures model most forms of real-world data structures such
each node has been fired the requisite number of times, as gi@érlists, arrays, trees, etc. Essentially, Berry and Curien in [3]

by the repetitions matrix. develop semantics for dataflow networks where the arcs hold
concrete data structures, and nodes implement Kahn-Plotkin se-

IV. MULTISTAGE SAMPLING STRUCTURE quential functions. As future work, a combination of the sched-
CONVERSION EXAMPLE uling techniques developed in this paper, the semantics work of

. . . _ . [3], and the graphical syntax of [12] might prove to be a pow-
An.apphcauon of con5|derap|e Interest in current t,elev's'ogrful model of computation for multidimensional programming.
practice is the format conversion from 4/3 aspect ratio to 16/91 o 1eis a body of work that extends scheduling and retiming

aspect ratiofor_2:1interlaced TV signals. Itis well I_<nownin 1'Qechniques for 1-D, single-rate dataflow graphs, for example
S|g_n_al processing theory that.sa.mple r-at-e conversion can be dﬂ?ﬁ, to single-rate multidimensional dataflow graphs [26] (re-
efficiently In many stages. S|m|IarIy, It is more eff|c_|ent_ to dotiming) [27], [35] (scheduling). Architectural synthesis from
both sa_m_pllng r_ate and sampling structure conversion in Stagﬁﬁltirate, MDDFGs for rectangularly sampled systems is pro-
for _mult|d|men5|ona! sys.tems. The two aspect ratios and the F‘ﬁBsed in [31]. These works contrast with ours in that they do not
lattices are shown n Fig. 29. One way 'to do t.he CONVETSIOR hsider modeling arbitrary sampling lattices, nor do they con-
b_etween the two lattices as shown prewousl_y IS as _Shownéf?:ler multidimensional dataflow as a high-level coordination
Fig. 30 [21]. .We can egsﬂy calculate the various lattices ?%guage that can be used in high-level graphical programming
support matrices for this system, solve the balance equ""t'c’@ﬁ\vironments for specifying multidimensional systems. Instead,

and develop a schedule [23]. they focus on graphs that model multidimensional nested loops
and optimize the execution of such loops via retiming and effi-
cient multiprocessor scheduling.

In [36], Watlington and Bove discuss a stream-based com-
puting paradigm for programming video processing applica-
tions. Rather than dealing with multidimensional dataspaces
directly, as is done in this paper, the authors sketch some ideaé graphical programming model called multidimensional
of how multidimensional arrays can be collapsed into 1-Bynchronous dataflow (MDSDF), based on dataflow that sup-
streams using simple horizontal/vertical scanning technique®rts multidimensional streams, has been presented. We have

V. RELATED WORK

VI. CONCLUSION
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shown that the use of multidimensional streams is not limited11] J. Davisetal, “Heterogeneous concurrent modeling and design in Java,”
to specifying multidimensional signal processing systems
but can also be used to specify more general data exchan g
mechanisms, although it is not clear at this point whether these
principles will be easy to use in a programming environment[13]
Certainly, the matrix multiplication program in Fig. 14 is not
very readable. An algorithm with less regular structure will[14;
only be more obtuse. However, the analytical properties of

programs expressed this way are compelling. Parallelizin(j;15
compilers and hardware synthesis tools should be able to do

extremely well with these programs without relying on runtime[1e]
overhead for task allocation and scheduling. At the very least,
the method looks promising to supplement large-grain dataflo
languages, much like the GLU “coordination language” makes
the multidimensional streams of Lucid available in large-grain18]
environment [15]. It may lead to special purpose language
but could also ultimately form a basis for a language that
like Lucid, supports multidimensional streams but is easier to
analyze, partition, and schedule at compile time.
However, this coordination language appears to be most
useful for specifying multidimensional, multirate signal 21
processing systems, including systems that make use of non-
rectangular sampling lattices and nonrectangular decimato
and interpolators. The extension to nonrectangular Iatticeis
has been nontrivial and involves the inclusion of geometric
constraints in the balance equations. We have illustrated tH&3l
usefulness of our model by presenting a practical application
(video format conversion) that can be programmed using oup4)
model.
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