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Multidimensional Synchronous Dataflow
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Abstract—Signal flow graphs with dataflow semantics have been
used in signal processing system simulation, algorithm develop-
ment, and real-time system design. Dataflow semantics implicitly
expose function parallelism by imposing only a partial ordering
constraint on the execution of functions. One particular form of
dataflow called synchronous dataflow (SDF) has been quite pop-
ular in programming environments for digital signal processing
(DSP) since it has strong formal properties and is ideally suited
for expressing multirate DSP algorithms. However, SDF and other
dataflow models use first-in first-out (FIFO) queues on the com-
munication channels and are thus ideally suited only for one-di-
mensional (1-D) signal processing algorithms. While multidimen-
sional systems can also be expressed by collapsing arrays into 1-D
streams, such modeling is often awkward and can obscure poten-
tial data parallelism that might be present.

SDF can be generalized to multiple dimensions; this model is
called multidimensional synchronous dataflow (MDSDF). This
paper presents MDSDF and shows how MDSDF can be efficiently
used to model a variety of multidimensional DSP systems, as well
as other types of systems that are not modeled elegantly in SDF.
However, MDSDF generalizes the FIFO queues used in SDF to
arrays and, thus, is capable only of expressing systems sampled
on rectangular lattices. This paper also presents a generalization
of MDSDF that is capable of handling arbitrary sampling lattices
and lattice-changing operations such as nonrectangular decima-
tion and interpolation. An example of a practical system is given
to show the usefulness of this model. The key challenge in general-
izing the MDSDF model is preserving static schedulability, which
eliminates the overhead associated with dynamic scheduling, and
preserving a model where data parallelism, as well as functional
parallelism, is fully explicit.

I. INTRODUCTION

OVER the past few years, there has been increasing interest
in dataflow models of computation for digital signal pro-

cessing (DSP) because of the proliferation of block diagram
programming environments for specifying and rapidly proto-
typing DSP systems. Dataflow is a very natural abstraction for
a block-diagram language, and many subsets of dataflow have
attractive mathematical properties that make them useful as the
basis for these block-diagram programming environments. Vi-
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sual languages have always been attractive in the engineering
community, especially in computer-aided design, because engi-
neers most often conceptualize their systems in terms of hier-
archical block diagrams or flowcharts. The 1980s witnessed the
acceptance in industry of logic-synthesis tools, in which circuits
are usually described graphically by block diagrams, and one
expects the trend to continue in the evolving field of high-level
synthesis and rapid prototyping.

Synchronous dataflow and its variants have been quite pop-
ular in design environments for DSP. Reasons for its popularity
include its strong formal properties like deadlock detection, de-
terminacy, static schedulability, and, finally, its ability to model
multirate DSP applications (like filterbanks) well, in addition to
nonmultirate DSP applications (like IIR filters). Static schedu-
lability is important because to get competitive real-time im-
plementations of signal processing applications, dynamic se-
quencing, which adds overhead, should be avoided whenever
possible. The overhead issue becomes even more crucial for
image and video signal processing where the throughput re-
quirements are even more stringent.

The SDF model suffers from the limitation that its streams
are one-dimensional (1-D). For multidimensional signal pro-
cessing algorithms, it is necessary to have a model where this
restriction is not there so that effective use can be made of
the inherent data-parallelism that exists in such systems. As is
the case for 1-D systems, the specification model for multidi-
mensional systems should expose, to the compiler or hardware
synthesis tool, as much static information as possible so that
run-time decisionmaking is avoided as much as possible and so
that effective use can be made of both functional and data par-
allelism. Although a multidimensional stream can be embedded
within a 1-D stream, it may be awkward to do so [10]. In par-
ticular, compile-time information about the flow of control may
not be immediately evident. Most multidimensional signal pro-
cessing systems also have a predictable flow of control, like
1-D systems, and for this reason, an extension of SDF, called
multidimensional synchronous dataflow, was proposed in [20].
However, the MDSDF model developed in [20] is restricted
to modeling systems that use rectangular sampling structures.
Since there are many practical systems that use nonrectangular
sampling and nonrectangular decimation and interpolation, it
is of interest to have models capable of expressing these sys-
tems. Moreover, the model should be statically schedulable if
possible, as already mentioned, and should expose all of the
data and functional parallelism that might be present so that a
good scheduler can make use of it. While there has been some
progress in developing block-diagram environments for multidi-
mensional signal processing, like the Khoros system [17], none,
as far as we know, allow modeling of arbitrary sampling lattices
at a fine-grained level, as shown in this paper.
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Fig. 1. Simple synchronous dataflow graph.

The paper is organized as follows. In Section I-A, we review
the SDF model and describe the MDSDF model in Section II.
In Section II-A–G, we describe the types of systems that may
be described using MDSDF graphs. In Section III, we develop
a generalization of the MDSDF model to allow arbitrary sam-
pling lattices and arbitrary decimation and interpolation. We
give an example of a practical video aspect ratio conversion
system in Section IV that can be modeled in the generalized
form of MDSDF. In Section V, we discuss related work of other
researchers and conclude the paper in Section VI.

A. Synchronous Dataflow

For several years, we have been developing software en-
vironments for signal processing that are based on a special
case of dataflow that we call synchronous dataflow (SDF)
[19]. The Ptolemy [8], [11] program uses this model. It has
also been used in Aachen, Germany, [29] in the COSSAP
system and at Carnegie Mellon University, Pittsburgh, PA,
[28] for programming the Warp. Industrial tools making use
of dataflow models for signal processing include System
Canvas and DSP Canvas from Angeles Design Systems [24],
the Cocentric System Studio from Synopsys, and the Signal
Processing Worksystem from Cadence Design Systems. SDF
graphs consist of networks of actors connected by arcs that
carry data. However, these actors are constrained to produce
and consume a fixed integer number of tokens on each input or
output path when they fire [19]. The term “synchronous” refers
to this constraint and arises from the observation that the rates
of production and consumption of tokens on all arcs are related
by rational multiples. Unlike the “synchronous” languages
Lustre [9] and Signal [2], however, there is no notion of clocks.
Tokens form ordered sequences, where only the ordering is
important.

Consider the simple graph in Fig. 1. The symbols adjacent to
the inputs and outputs of the actors represent the number of to-
kens consumed or produced (also called rates). Most SDF prop-
erties follow from thebalance equations, which for the graph in
Fig. 1 are

The symbols represent the number of firings (repetitions) of
an actor in a cyclic schedule and are collected in vector form

as . Given a graph, the compiler solves
the balance equations for these values. As shown in [19],
for a system of these balance equations, either there is no so-
lution at all, in which case the SDF graph is deemed to defec-
tive due to inconsistent rates, or there are an infinite number of
nonzero solutions. However, the infinite number of nonzero so-
lutions are all integer multiples of the smallest solution

, and this smallest solution exists and is unique [19].
The number is called theblocking factor. In this paper, we will
assume that the solution to the balance equations is always this

Fig. 2. Nested iteration described using SDF.

Fig. 3. SDF graph and its corresponding precedence graph.

Fig. 4. Application of SDF to vector operations.

smallest, nonzero one (i.e, the blocking factor is 1). Given this
solution, a precedence graph can be automatically constructed,
specifying the partial ordering constrains between firings [19].
From this precedence graph, good compile-time multiprocessor
schedules can be automatically constructed [30].

SDF allows a compact and intuitive expression of pre-
dictable control flow and is easy for a compiler to analyze.
Consider, for instance, the SDF graph in Fig. 2. The bal-
ance equations can be solved to give the smallest nonzero
integer repetitions for each actor (collected in vector form) as

, which indicates that for every
firing of actor 1, there will be ten firings of actor 2, 100 of 3,
ten of 4, and one of 5. Hence, this represents nested iteration.

More interesting control flow can be specified using SDF.
Fig. 3 shows two actors with a 2/3 producer/consumer rela-
tionship. From such a multirate SDF graph, we can construct
a precedence graph that explicitly shows each invocation of the
actor in the complete schedule and the precedence relations be-
tween different invocations of the actor. For the example of
Fig. 3, the complete schedule requires three invocations of
and two of . Hence, the precedence graph, shown to the right
in Fig. 3, contains three nodes and two nodes, and the arcs
in the graph reflect the order in which tokens are consumed in
the SDF graph; for instance, the second firing ofproduces to-
kens that are consumed by both the first and second firings of

. From the precedence graph, we can construct the sequential
schedule ( ), among many possibilities. This
schedule is not a simple nested loop, although schedules with
simple nested loop structure can be constructed systematically
[4]. Notice that unlike the “synchronous” languages Lustre and
Signal, we do not need the notion of clocks to establish a rela-
tionship between the stream into actor A and the stream out of
actor B.

The application of this model to multirate signal processing
is described in [7]. An application to vector operations is shown
in Fig. 4, where two fast Fourier transforms (FFTs) are mul-
tiplied. Both function and data parallelism are evident in the
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precedence graph that can be automatically constructed from
this description. That precedence graph would show that the
FFTs can proceed in parallel and that all 128 invocations of the
multiplication can be invoked in parallel. Furthermore, the FFT
might be internally specified as a dataflow graph, permitting ex-
ploitation of parallelism within each FFT as well. The Ptolemy
system [8] can use this model to implement overlap-and-add or
overlap-and-save convolution, for example.

II. M ULTIDIMENSIONAL DATAFLOW

The multidimensional SDF model is a straightforward exten-
sion of 1-D SDF. Fig. 5 shows a trivially simple 2-D SDF graph.
The number of tokens produced and consumed are now given as

-tuples, for some natural number. Instead of one balance
equation for each arc, there are now. The balance equations
for Fig. 5 are

These equations should be solved for the smallest integers
, which then give the number of repetitions of actorin

dimension . We can also associate ablocking factor vectorwith
this solution, where the vector has dimensions, and each di-
mension represents the blocking factor for the solution to the
balance equations of that dimension.

A. Application to Image Processing

As a simple application of MDSDF, consider a portion of
an image coding system that takes a 4048 pixel image and
divides it into 8 8 blocks on which it computes a DCT. At
the top level of the hierarchy, the dataflow graph is shown in
Fig. 6(a). The solution to the balance equations is given by

A segment of the index space for the stream on the arc con-
necting actor A to the DCT is shown in Fig. 6(b). The segment
corresponds to one firing of actor A. The space is divided into
regions of tokens that are consumed on each of the five ver-
tical firings of each of the six horizontal firings. The precedence
graph constructed automatically from this would show that the
30 firings of the DCT are independent of one another and, hence,
could proceed in parallel. Distribution of data to these indepen-
dent firings can be automated.

B. Flexible Data Exchange

Application of MDSDF to multidimensional signal pro-
cessing is obvious. There are, however, many less obvious
applications. Consider the graph in Fig. 3. Note that the first
firing of A produces two samples consumed by the first firing
of B. Suppose instead that we wish for the firing of to
produce the first sample for each of and . This can be
obtained using MDSDF as shown in Fig. 7. Here, each firing
of A produces data consumed by each firing of B, resulting in
a pattern of data exchange quite different from that in Fig. 3.
The precedence graph in Fig. 7 shows this. The index space
of the tokens transferred along the arc is also shown, with the
left-most column indicating the tokens produced by the first
firing of A and the top row indicating the tokens consumed by
the first firing of B.

Fig. 5. Simple MDSDF graph.

(a)

(b)

Fig. 6. (a) Image processing application in MDSDF. (b) Index space.

Fig. 7. Data exchange in an MDSDF graph.

Fig. 8. Averaging successive FFT’s using MDSDF.

A DSP application of this more flexible data exchange is
shown in Fig. 8. Here, ten successive FFTs are averaged. Av-
eraging in each frequency bin is independent and, hence, may
proceed in parallel. The ten successive FFTs are also indepen-
dent; therefore, if all input samples are available, they too may
proceed in parallel.

A more complicated example of how the flexible data-ex-
change mechanism in an MDSDF graph can be useful in prac-
tice is shown in Fig. 9(a), which shows how a-layer percep-
tron (with nodes in the first layer, nodes in the second layer,
etc.) can be specified in a very compact way using onlynodes.
However, as the precedence graph in Fig. 9(b) shows, none of
the parallelism in the network is lost; it can be easily exploited
by a good scheduler. Note that the net of Fig. 9(a) is used only for
computation once the weights have been trained. Specifying the
training mechanism as well would require feedback arcs with
the appropriate delays and some control constructs; this is be-
yond the scope of this paper.

C. Delays

A delay in MDSDF is associated with a tuple, as shown in
Fig. 10. It can be interpreted as specifying boundary conditions
on the index space. Thus, for 2D-SDF, as shown in the figure,
it specifies the number of initial rows and columns. It can also
be interpreted as specifying the direction in the index space of a
dependence between two single assignment variables, much as
is done in reduced dependence graphs [18].
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Fig. 9. (a) Multilayer perceptron expressed as an MDSDF graph. (b) Precedence graph.

Fig. 10. Delay in MD-SDF is multidimensional.

Fig. 11. Rule for augmenting the dimensionality of a producer or consumer.

D. Mixing Dimensionality

We can mix dimensionality. We use the following rule to
avoid any ambiguity.

• The dimensionality of the index space for an arc is the
maximum of the dimensionality of the producer and con-
sumer. If the producer or the consumer specifies fewer di-
mensions than those of the arc, the specified dimensions
are assumed to be the lower ones (lower number, earlier in
the -tuple), with the remaining dimensions assumed to
be 1. Hence, the two graphs in Fig. 11 are equivalent.

• If the dimensionality specified for a delay is lower than
the dimensionality of an arc, then the specified delay
values correspond to the lower dimensions. The unspec-
ified delay values are zero. Hence, the graphs in Fig. 12
are equivalent.

E. Matrix Multiplication

As another example, consider a fine-grain specification of
matrix multiplication. Suppose we are to multiply an
matrix by an matrix. In a three-dimensional (3–D) index
space, this can be accomplished as shown in Fig. 13. The orig-
inal matrices are embedded in that index space, as shown by
the shaded areas. The remainder of the index space is filled
with repetitions of the matrices. These repetitions are analogous
to assignments often needed in a single-assignment specifica-
tion to carry a variable forward in the index space. An intel-
ligent compiler need not actually copy the matrices to fill an
area in memory. The data in the two cubes is then multiplied
element-wise, and the resulting products are summed along di-
mension 2. The resulting sums give the matrix product.
The MDSDF graph implementing this is shown in Fig. 14. The
key actors used for this are the following.

Fig. 12. Rule for augmenting the dimensionality of a delay.

Fig. 13. Matrix multiplication represented schematically.

Fig. 14. Matrix multiplication in MDSDF.

Repeat: In specified dimension(s), this consumes one and
produces , repeating values.

Down-
sample: In specified dimension(s), this consumesand

produces 1, discarding samples.
Transpose: This consumes an-dimensional block of sam-

ples and outputs them with the dimensions rear-
ranged.

In addition, the following actor is also useful, although it is not
used in the above example.

Upsample: In specified dimension(s), this consumes one and
produces , inserting zero values.

These are identified in Fig. 15. Note that all of these actors
simply control the way tokens are exchanged and need not in-
volve any run-time operations. Of course, a compiler then needs
to understand the semantics of these operators.
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Fig. 15. Some key MDSDF actors that affect the flow of control.

F. Run-Time Implications

Several of the actors we have used perform no computation
but instead control the way tokens are passed from one actor to
another. In principle, a smart compiler can avoid run-time oper-
ations altogether, unless data movement is required to support
parallel execution. We set the following objectives for a code
generator using this language.

Upsample: Zero-valued samples should not be produced,
stored, or processed.

Repeat: Repeated samples should not be produced or
stored.

Last-N: A circular buffer should be maintained and made
directly available to downstream actors.

Down-
sample: Discarded samples should not be computed

(similar to dead-code elimination in traditional
compilers).

Transpose: There should be no run-time operation at all: just
compile-time bookkeeping.

It is too soon to tell how completely these objectives can be
met.

G. State

For large-grain dataflow languages, it is desirable to permit
actors to maintain state information. From the perspective of
their dataflow model, an actor with state information simply
has a self-loop with a delay. Consider the three actors with self
loops shown in Fig. 16. Assume, as is common, that dimen-
sion 1 indexes the row in the index space and dimension 2 the
column, as shown in Fig. 17(b). Then, each firing of actor A
requires state information from the previous row of the index
space for the state variable. Hence, each firing of A depends on
the previous firing in the vertical direction, but there is no de-
pendence in the horizontal direction. The first row in the state
index space must be provided by the delay initial value specifi-
cation. Actor B, by contrast, requires state information from the
previous column in the index space. Hence, there is horizontal,
but not vertical, dependence among firings. Actor C has both
vertical and horizontal dependence, implying that both an ini-
tial row and an initial column must be specified. Note that this
does imply that there is no parallelism since computations along
a diagonal wavefront can still proceed in parallel. Moreover, this
property is easy to detect automatically in a compiler. Indeed, all
modern parallel scheduling methods based on projections of an
index space [18] can be applied to programs defined using this
model.

We can also show that these multidimensional delays do not
cause any complications with deadlock or preservation of deter-
minacy.

Fig. 16. Three macro actors with state represented as a self-loop.

Fig. 17. (a) Actor with a self loop. (b) Data space on the arc.

Lemma 1: Suppose that an actorhas a self-loop as shown
in Fig. 17(a). Actor deadlocks iff and both
hold.

Proof: We use the notation to mean the ( )th in-
vocation of actor in a complete periodic schedule. If the in-
equalities both hold, then cannot fire since it requires a
rectangle of data larger than that provided by the initial rows and
columns intersected. The forward direction follows by looking
at Fig. 17(b). If deadlocks because cannot fire, then the
inequalities must hold. If does fire, then it means that ei-
ther or . If , then clearly, can
fire for any since the initial rows provide the data for all these
invocations. Then, can all fire since there are rows
of data now, and . Continuing this argument, we
can see that can fire as many times as it wants. The reasoning
is that is symmetric; in this case, can all fire, and
then, can all fire, and so on. Therefore, actordeadlocks
iff is not firable, and is not firable iff the condition
in the lemma holds.

Corollary 1: In dimensions, an actor with a self-loop
having ( ) delays and producing and consuming hy-
percubes ( ) deadlocks iff .

Let us now consider the precedence constraints imposed by
the self loop on the various invocations of. Suppose that
fires ( ) times. Then, the total array of data consumed is
an array of size ( ). The same size array is written but
shifted to the right and down of the origin by ( ). In gen-
eral, the rectangle of data read by a node is up and to the left
of the rectangle of data written on this arc since we have as-
sumed that the initial data is not being overwritten. Hence, an
invocation can only depend on invocations , where

. This motivates the following lemma.
Lemma 2: Suppose that actor has a self loop as in the pre-

vious lemma, and suppose thatdoes not deadlock. Then, the
looped schedule is valid, and the order of nesting the
loops does not matter. That is, the two programs that follow give
the same result.
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Proof: We have to show that the ordering of the in
the loop is a valid linearization of the partial order given by the
precedence constraints of the self loop. Suppose that in the first
loop

the ordering is not a valid linearization. This means that there are
indices ( ) and ( ) such that precedes in
the partial order, but is executed before in the
loop. Then, by the order of the loop indices, it must be that

, but then, cannot precede in the partial
order since this violates the right and down precedence ordering.
The other loop is also valid by a symmetric argument. .

The above result shows that the nesting order, which is an
implementation detail not specified by the model itself, has no
bearing on the correctness of the computation; this is important
for preserving determinacy.

III. M ODELING ARBITRARY SAMPLING LATTICES

The multidimensional dataflow model presented in the above
section has been shown to be useful in a number of contexts,
including expressing multidimensional signal processing pro-
grams and specifying flexible data-exchange mechanisms and
scalable descriptions of computational modules. Perhaps the
most compelling of these uses is the first one: for specifying
multidimensional, multirate signal processing systems. This is
because such systems, when specified in MDSDF, have the same
intuitive semantics that 1-D systems have when expressed in
SDF. However, the MDSDF model described so far is limited
to modeling multidimensional systems sampled on the stan-
dard rectangular lattice. Since many multidimensional signals
of practical interest are sampled on nonrectangular lattices [22],
[32], for example, 2:1 interlaced video signals [13], and many
multidimensional multirate systems use nonrectangular multi-
rate operators like hexagonal decimators (see [1], [6], and [21],
for example), it is of interest to have an extension of the MDSDF
model that allows signals on arbitrary sampling lattices to be
represented and that allows the use of nonrectangular downsam-
plers and upsamplers. The extended model we present here pre-
serves compile-time schedulability.

A. Notation and Basics

The notation is taken from [33]. Consider the sequence of
samples generated by

, where is a continuous time signal. Notice that
the sample locations retained are given by the equation

Fig. 18. Sampling on a nonrectangular lattice. (a) Sampling matrixV . (b)
Samples on the lattice. (c) Renumbered samples of the lattice. (d) Fundamental
parallelepiped for a matrixV .

The matrix is called thesampling matrix(must be real and
nonsingular). The sample locations are vectorsthat are
linear combinations of the columns of the sampling matrix.
Fig. 18(a) and (b) shows an example. The set of all sample
points is called thelatticegenerated by and is
denoted . The matrix is thebasisthat generates the
lattice . Suppose that is a point on . Then,
there exists an integer vectorsuch that . The points
are called therenumbered pointsof . Fig. 18(c) shows
the renumbered samples for the samples on shown in
Fig. 18(b) for the sampling matrix shown in Fig. 18(a).

The set of points , where , with
, is called thefundamental parallelepipedof and

is denoted , as shown in Fig. 18(d) for the sampling
matrix from Fig. 18(a). From geometry, it is well known that
the volume of is given by det . Since only one
renumbered integer sample point falls inside , namely,
the origin, the sampling density is given by the inverse of the
volume of .

Definition 1: Denote the set of integer points within
as the set . That is, is the set of integer

vectors of the form .
The following well-known lemma (see [23] for a proof) char-

acterizes the number of integer points that fall inside
or the size of the set .

Lemma 3: Let be an integer matrix. The number of ele-
ments in is given by det .

1) Multidimensional Decimators:The two basic multirate
operators for multidimensional systems are the decimator and
expander. A decimator is a single-input-single-output (SISO)
function that transmits only one sample for everysamples
in the input; is called thedecimation ratio. For an MD
signal on , the -fold decimated version is
given by , where is an

nonsingular integer matrix called thedecimation matrix.
Fig. 19 shows two examples of decimation. The example on
the left is for a diagonal matrix ; this is calledrectangular
decimationbecause is a rectangle rather than a
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Fig. 19. (a) Rectangular decimation. (b) Hexagonal decimation.

Fig. 20. (a) Rectangular expansion. (b) Nonrectangular expansion.

Fig. 21. Renumbered samples from the expanders output.

parallelepiped. In general, a rectangular decimator is one for
which the decimation matrix is diagonal. The example on the
right is for a nondiagonal and is loosely termedhexagonal
decimation. Note that .

The decimation ratio for a decimator with decimation matrix
is given by . The decimation ratio for

the example on the left in Fig. 19 is 6, and it is 4 for the example
on the right.

2) Multidimensional Expanders:In the multidimensional
case, the “expanded” output of an input signal is
given by

otherwise

where is the input lattice to the expander. Note that
. The expansion ratio, which is de-

fined as the number of points added to the output lattice for each
point in the input lattice, is given bydet . Fig. 20 shows two
examples of expansion. In the example on the left, the output
lattice is also rectangular and is generated by diag 1

. The example on the right shows nonrectangular expansion,
where the lattice is generated by

An equivalent way to view Fig. 20 is to plot the renumbered
samples. Notice that the samples from the input will now lie on

1We use the notation diag(a ; . . . ; a ) to denote a diagonaln � n matrix
with thea on the diagonal.

(see Fig. 21). Some of the points have been labeled
with letters to show where they would map to on the output
signal.

B. Semantics of the Generalized Model

Consider the system depicted in Fig. 22, where a source actor
produces an array of 6 6 samples each time it fires [(6,6) in
MDSDF parlance]. This actor is connected to the decimator with
a nondiagonal decimation matrix. The circled samples indicate
the samples that fall on the decimators output lattice; these are
retained by the decimator. In order to represent these samples
on the decimator’s output, we will think of the buffers on the
arcs as containing the renumbered equivalent of the samples on
a lattice. For a decimator, if we renumber the samples at the
output according to , then the samples get written
to a parallelogram-shaped array rather than a rectangular array.
To see what this parallelogram is, we introduce the concept of a
“support matrix” that describes precisely the region of the rect-
angular lattice where samples have been produced. Fig. 22 il-
lustrates this for a decimation matrix, where the retained sam-
ples have been renumbered according to and plotted
on the right. The labels on the samples show the mapping. The
renumbered samples can be viewed as the set of integer points
lying inside the parallelogram that is shown in the figure. In
other words, thesupportof the renumbered samples can be de-

scribed as , where .

We will call the support matrixfor the samples on the
output arc. In the same way, we can describe the support of the
samples on the input arc to the decimator as , where

diag . It turns out that .
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Fig. 22. Output samples from the decimator renumbered to illustrate concept of support matrix.

Definition 2: Let be a set of integer points in . We
say that satisfies thecontainability conditionif there exists

an rational-valued matrix such that . In
other words, that there is a fundamental parallelepiped whose
set of integer points equals.

Definition 3: Given a sampling matrix , a set of samples
is called aproduction set on if each sample in lies on the

lattice and the set , which is the
set of integer points consisting of the points ofrenumbered by

, satisfies the containability condition.
We will assume that any source actor in the system produces

data according to thesource data production method, where a
source outputs a production set on , which is the sampling
matrix on the output of .

Given a decimator with decimation matrix , as shown in
Fig. 23(a), we make the following definitions and statements.
Denoting the input arc to the decimator asand the output arc
as , and are the bases for the input and output lattice,
respectively. and are the support matrices for the input
and output arcs, respectively, in the sense that samples, num-
bered according to the respective lattices, are the integer points
of fundamental parallelepipeds of the respective support ma-
trices. Similarly, we can also define these quantities for the ex-
pander depicted in Fig. 23(b). With this notation, we can state
the following.

Theorem 1: The relationships between the input and output
lattices, and the input and output support matrices for the deci-
mator and expander depicted in Fig. 23, are

Proof: The relationships between the input and output lat-
tices follow from the definition of the expander and decimator.
Consider a point on the decimator’s input lattice. There exists
an integer vector such that . If is an integer
vector, then this point will be kept by the decimator since it will
fall on the output lattice, i.e, , where .
This point is renumbered as
by the output lattice. Since was the renumbered point corre-
sponding to on the input lattice and, hence, in , every
point in that is kept by the decimator is mapped to

by the output lattice. Now,
. Therefore, be-

cause . Conversely, let be any point in
. Then, . Since

Fig. 23. (a) Generalized decimator and (b) expander with arbitrary input
lattices and support matrices.

, we have that . In addition, the corre-
sponding point to this on the input lattice is , implying that
the point is retained by the decimator. Hence, .
The derivation for the expander is identical, only with different
expressions.

Corollary 2: In an acyclic network of actors, where the only
actors that are allowed to change the sampling lattice are the
decimator and expander in the manner given by Theorem 1, and
where all source actors produce data according to the source
data production method of Section III-B, the set of samples on
every arc, renumbered according to the sampling lattice on that
arc, satisfies the containability condition.

Proof: The proof is immediate from the theorem.
In the following, we develop the semantics of a model that

can express these nonrectangular systems by going through a
detailed example. In general, our model for the production and
consumption of tokens will be the following: An expander pro-
duces samples on each firing whereis the upsam-
pling matrix. The decimator consumes a “rectangle” of samples,
where the “rectangle” has to be suitably defined by looking at
the actor that produces the tokens that the decimator consumes.

Definition 4: An integer( ) rectangleis defined to be the
set of integer points in , where and are arbitrary
real numbers.

Definition 5: Let be a set of points in , and let and
be two positive integers such that . is said to be

organized as ageneralized( ) rectangleof points, or just a
generalized ( ) rectangle, by associating arectangularizing
function with that maps the points of to an integer ( )
rectangle.

Example 1: Consider the system where a decimator follows
an expander [see Fig. 24(a)]

We start by specifying the lattice and support matrix for the
arc SA. Let diag and diag . There-
fore, the source produces (3,3) in MDSDF parlance since the lat-
tice onSAis the normal rectangular lattice, and the support ma-
trix represents an FPD that is a 33 rectangle. For the system
above, we can compute the lattice and support matrices for all
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Fig. 24. Example to illustrate balance equations and the need for some
additional constraints. (a) System. (b) Ordering of data into a 5� 2 rectangle
inside FPD(L).

other arcs given these. We will need to specify the scanning
order for each arc as well that which tells the node the order
in which samples should be consumed. Assume for the mo-
ment that the expander will consume the samples on arc SA in
some natural order, for example, scanning by rows. We need to
specify what the expander produces on each firing. The natural
way to specify this is that the expander produces sam-
ples on each firing; these samples are organized as a generalized
( ) rectangle. This allows us to say that the expander pro-
duces ( ) samples per firing; this is understood to be the
set of points organized as a generalized ( ) rec-
tangle. Note that in the rectangular MDSDF case, we could de-
fine upsamplers that did their upsampling on only a subset of the
input dimensions (see Section II-E). This is possible since the
rectangular lattice is separable; for nonrectangular lattices, it is
not possible to think of upsampling (or downsampling) occur-
ring along only some dimensions. We have to see upsampling
and downsampling as lattice transforming operations and deal
with the appropriate matrices.

Suppose we choose the factorization 52 for det . Con-
sider Fig. 24(b), where the samples in are shown. One
way to map the samples into an integer (5, 2) rectangle is as
shown by the groupings. Notice that the horizontal direction for

is the direction of the vector , and the ver-
tical direction is the direction of the vector . We need
to number the samples in ; the numbering is needed
in order to establish some common reference point for referring
to these samples since the downstream actor may consume only
some subset of these samples. One way to number the samples is
to number them as sample points in a 52 rectangle, as shown
in Table I.

Hence, is a generalized ( ) rectangle if we
associate the function given in Table I with it as the rectan-
gularizing function. Given a factoring of the determinant of

, the function given previously can be computed easily, for
example, by ordering the samples according to their Euclidean
distance from the two vectors that correspond to the horizontal
and vertical directions (we should be convinced that given
a factorization for det , clearly, there are many

TABLE I
ORDERING THESAMPLES PRODUCED BY THEEXPANDER

functions that map the points in to the set
{ };
any such function would suffice). The scanning order for the
expander across invocations is determined by the numbering of
the input sample on the output lattice. For example, the sample
at (1,0) that the source produces maps to location (2,3) on the
lattice at the expanders output ( ). Hence, consuming
samples in the direction on arc SA results in 5 2
samples (i.e, samples but ordered according to the
table) being produced along the vector on the output.
Similarly, the sample (0,1) produced by the source corresponds
to ( 2,2) on the output lattice. A global ordering on the samples
is imposed by the following renumbering. The sample at (2,3)
lies on the lattice generated byand is generated by the vector

. Hence, (1,0) is the renumbered point corresponding
to (2,3), but because there are more points in the output than
simply the points on , clearly, (1,0) cannot be the
renumbered point. In fact, since we organized as a
generalized (5,2) rectangle and renumbered the points inside
the FPD as in the table, the actual renumbered point corre-
sponding to (2,3) is given by . Similarly,
the lattice point (0,5) is generated by (1,1), meaning that it
should be renumbered as . With this global
ordering, it becomes clear what the semantics for the decimator
should be. Again, choose a factorization ofdet , and
consume a “rectangle” of those samples, where the “rectangle”
is deduced from the global ordering imposed previously. For
example, if we choose 2 2 as the factorization, then the (0,0)
invocation of the decimator consumes the (original) samples at
(0,0), ( 1,1), (0,1), and ( 1,2). The (0,2)th invocation of the
decimator would consume the (original) samples at (1,3), (0,4),
(2,3), and (1,4). The decimator would have to determine which
of these samples falls on its lattice; this can be done easily.
Note that the global ordering of the data is not a restriction in
any way since this ordering is determined by the scheduler and
can be determined on the basis of implementation efficiency
if required. The designer does not have to worry about this
behind-the-scenes determination of ordering.

We have already mentioned the manner in which the source
produces data. We add that the subsequent firings of the source
are always along the directions established by the vectors in the
support matrix on the output arc of the source.

Now, we can write a set of “balance” equations using the
“rectangles” that we have defined. Denote the repetitions of a
node in the “horizontal” direction by and the “vertical”
direction as . These directions are dependent on the geome-
tries that have been defined on the various arcs. Thus, for ex-
ample, the directions are different on the input arc to the ex-
pander from the directions on the output arc. We have
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Fig. 25. Total amount of data produced by the source in one iteration of the periodic schedule determined by the balance equations in (1).

where we have assumed that the sink actorconsumes (1,1)
for simplicity. We have also made the assumption that the dec-
imator produces exactly (1,1) every time it fires. This assump-
tion is usually invalid, but the calculations done in the following
are still valid, as will be discussed later. Since these equations
fall under the same class as SDF balance equations described in
Section I-A, the properties about the existence of the smallest
unique solution applies here as well. These equations can be
solved to yield the following smallest, unique solution:

(1)

Fig. 25 shows the data space on arc AB with this solution
to the balance equations. As we can see, the assumption that
the decimator produces (1,1) on each invocation is not valid;
sometimes, it produces no samples at all and sometimes two
samples or one sample. Hence, we have to see if the total number
of samples retained by the decimator is equal to the total number
of samples it consumes divided by the decimation ratio.

In order to compute the number of samples output by the dec-
imator, we have to compute the support matrices for the various
arcs assuming that the source is invoked (2,1) times (so that
we have the total number of samples being exchanged in one
schedule period). We can do this symbolically using and

and substitute the values later. We get

and

(2)

Recall that the samples that the decimator produces are the
integer points in . Hence, we want to know if

(3)

is satisfied by our solution to the balance equations.
By Lemma 3, the size of the set for an in-
teger matrix is given by det . Since is
an integer matrix for any value of , , we have

. The right-hand side
of (3) becomes . Hence, our
first requirement is that . The
balance equations gave us ; this satisfies the
requirement. With these values, we get

Since this matrix is not integer-valued, Lemma 3 cannot be in-
voked to calculate the number of integer points in .
For noninteger matrices, there does not seem to be a polyno-
mial-time method of computing , although a method
that is much better than the brute force approach is given in [23].
Using that method, it can be determined that there are 47 points
inside . Hence, (3) is not satisfied. One way to sat-
isfy (3) is to force to be an integer matrix. This implies
that and .
The smallest values that make integer valued are

. From this, the repetitions of the other nodes are also
multiplied by 2. Note that the solution to the balance equations
by themselves are not “wrong”; it is just that for nonrectangular
systems, (3) gives a new constraint that must also be satisfied.
We address concerns about efficiency that the increase in rep-
etitions entails in Section III-B1. We can formalize the ideas
developed in the previous example in the following.
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Lemma 4: The support matrices in the network can each be
written as functions of the repetitions variables of one particular
source actor in the network.

Proof: The proof is immediate from the fact that all of the
repetitions variables are related to each other via the balance
equations.

Lemma 5: In a multidimensional system, theth column of
the support matrix on any arc can be expressed as a matrix that
has entries of the form , where is the repetitions vari-
able in the th dimension of some particular source actorin
the network, and are rationals.

Proof: Without loss of generality, assume that there are
two dimensions. Let the support matrix on the output arc of
source for one firing be given by

For firings in the “horizontal” and “vertical” direc-
tions (these are the directions of the columns of), the support
matrix becomes

(in multiple dimensions, the right multiplicand would be a di-
agonal matrix with in the th row).

Now, consider an arbitrary arc ( ) in the graph. Since the
graph is connected, there is at least one undirected pathfrom
source to node . Since the only actors that change the sam-
pling lattice (and, thus, the support matrix) are the decimator
and expander, all of the transformations that occur to the sup-
port matrix along are left multiplications by some ra-
tional-valued matrix. Hence, the support matrix on arc( )
can be expressed as , where is some rational
valued matrix. The claim of the lemma follows from this.

Theorem 2: In an acyclic network of actors, where the only
actors that are allowed to change the sampling lattice are the
decimator and expander in the manner given by Theorem 1, and
where all source actors produce data according to the source
data production method of Section III-B, whenever the balance
equations for the network have a solution, there exists a blocking
factor vector such that increasing the repetitions of each node
in each dimension by the corresponding factor inwill result
in the support matrices being integer valued for all arcs in the
network.

Proof: By Lemma 5, a term in an entry in theth column
of the support matrix on any arc is always a product of a rational
number and repetitions variable of source . We force this
term to be integer valued by dictating that each repetition’s vari-
able be the lcm of the values needed to force each entry
in the th column to be an integer. Such a value can be com-
puted for each support matrix in the network. The lcm of all
these values and the balance equations solution for the source
would then give a repetition’s vector for the source that makes
all of the support matrices in the network integer valued and
solves the balance equations.

It can be easily shown that the constraint of the type in (3) is
always satisfied by the solution to the balance equations when
all of the lattices and matrices are diagonal [23].

The fact that the decimator produces a varying number of
samples per invocation might suggest that it falls nicely into
the class of cyclostatic actors. However, there are a couple of
differences. In the CSDF model of [5], the number of cyclo-
static phases are assumed to be known beforehand and is only
a function of the parameters of the actor, like the decimation
factor. In our model for the decimator, the number of phases is
not just a function of the decimation matrix; it is also a function
of the sampling lattice on the input to the decimator (which,
in turn, depends on the actor that is feeding the arc) and the
factorization choice that is made by the scheduler. Second, in
CSDF, SDF actors are represented as cyclostatic by decom-
posing their input/output behavior over one invocation. For ex-
ample, a CSDF decimator behaves exactly like the SDF deci-
mator, except that the CSDF decimator does not need alldata
inputs to be present before it fires; instead, it has a four-phase
firing pattern. In each phase, it will consume one token but will
produce one token only in the first phase and produce 0 tokens
in the other phases. In our case, the cyclostatic behavior of the
decimator is arising across invocations rather than within an in-
vocation. It is as if the CSDF decimator with decimation factor
4 were to consume {4,4,4,4,4,4} and produce {2,0,1,1,0,2} in-
stead of consuming {1,1,1,1} and producing {1,0,0,0}.

One way to avoid dealing with constraints of the type in (3)
would be to choose a factorization ofdet that ensured that
the decimator produced one sample on each invocation. For ex-
ample, if we were to choose the factorization 14 for the pre-
vious example, the solution to the balance equations would au-
tomatically satisfy (3). As we show later, we can find factoriza-
tions where the decimator produces one sample on every invo-
cation in certain situations, but generalizing this result appears
to be a difficult problem since there does not seem to be an an-
alytical way of writing down the renumbering transformation
that was shown in Table I.

1) Implications of the Previous Example for Streams:In
SDF, there is only one dimension, and the stream is in that
direction. Hence, whenever the number of repetitions of a
node is greater than unity, the data processed by that node then
corresponds to data along the stream. In MDSDF, only one of
the directions is the stream. Hence, if the number of repetitions
of a node, especially a source node, is greater than unity for the
nonstream directions, the physical meaning of invocations in
those directions becomes unclear. For example, consider a 3-D
MDSDF model for representing a progressively scanned video
system. Of these three dimensions, two of them correspond to
the height and width of the image, and the third dimension is
time. Hence, a source actor that produces the video signal might
produce something like (512,512,1), meaning 1 512512
images per invocation. If the balance equations dictated that
this source should fire (2,2,3) times, for example, then it is not
clear what the two repetitions each in the height and width
directions signify since they certainly do not result in data
from the next iteration being processed, where an iteration
corresponds to the processing of an image at the next sampling
instant. Only the repetitions of three along the time dimension
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Fig. 26. Total amount of data produced by the source in one iteration of the periodic schedule determined by the balance equations in (4). The samples kept by
the decimator are the lightly shaded samples.

makes physical sense. Hence, there is potentially room for great
inefficiency if the user of the system has not made sure that
the rates in the graph match up appropriately so that we do not
actually end up generating images of size 10241024 when
the actual image size is 512512. In rectangular MDSDF,
it might be reasonable to assume that the user is capable of
setting the MDSDF parameters such that they do not result in
absurd repetitions being generated in the nonstream directions
since this can usually be done by inspection. However, for
nonrectangular systems, we would like to have more formal
techniques for keeping the repetition’s matrix in check since
it is much less obvious how to do this by inspection. The
number of variables are also greater for nonrectangular systems
since different factorizations for the decimation or expansion
matrices give different solutions for the balance equations.

To explore the different factoring choices, suppose we use
1 4 for the decimator instead of 22. The solution to the
balance equations become

(4)

From (2), is given by

and it can be determined that , as required.
Therefore, in this case, we do not need to increase the blocking
factor to make an integer matrix, and this is because the
decimator is producing one token on every firing, as shown in
Fig. 26.

However, if the stream in the above direction were in the hor-
izontal direction (from the point of view of the source), then
the solution given by the balance (4) may not be satisfactory,
for reasons already mentioned. For example, the source may be
forced to produce only zeros for invocation (0,1). One way to

incorporate such constraints into the balance equation’s compu-
tation is to specify the repetition’s vector instead of the number
produced or consumed. That is, for the source, we specify that

leave the number it produces in the vertical direction
unspecified (this is the strategy used in programming the Philips
VSP, for example). The balance equations will give us a set of
acceptable solutions involving the number produced vertically;
we can then pick the smallest such number that is greater than
or equal to three. Denoting the number produced vertically by

, our balance equations become

(5)

The solution to this is given by

and we see that satisfies our constraint. Recalculating the
other quantities

and we can determine that as required (i.e.,
). Hence, we get away with having to pro-

duce only one extra row rather than three, assuming that the
source can only produce three meaningful rows of data (and any
number of columns).

2) Eliminating Cyclostatic Behavior:The fact that the dec-
imator does not behave in a cyclostatic manner in Fig. 26
raises the question of whether factorizations that result in non-
cyclostatic behavior in the decimator can always be found.
The following example and lemma give an answer to this
question for the special case of a decimator whose input is
a rectangular lattice.
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Fig. 27. Example to illustrate that two factorizations always exist that result in noncyclostatic behavior with the decimator. (a) System. (b)M1 = 2,M2 = 2.
(c)M1 = 1,M2 = 4. (d)M1 = 4,M2 = 1.

Fig. 28. Delays on nonrectangular lattices.

Example 2: Consider the system in Fig. 27(a), where a 2-D
decimator is connected to a source actor that produces an array
of (6,6) samples on each firing. The black dots represent the
samples produced by the source, and the circled black dots show
the samples that the decimator should retain. Since
, there are three possible ways to choose . For two of

the factorizations, the decimator behaves statically, that is, it
produces one sample on each firing [see Fig. 27(b) and (c). How-
ever, in Fig. 27(d), we see that on some invocations, no sam-
ples are produced [that is, (0,0) samples are produced], while
in some invocations, two samples are produced. This raises the
question of whether there is always a factorization that ensures
that the decimator produces (1,1) for all invocations. The fol-
lowing lemma ensures that for any matrix, there are always two
factorizations of the determinant such that the decimator pro-
duces (1,1) for all invocations.

Lemma 6 [23]: If is any nonsingular, integer

2 2 matrix, then there are at most two factorizations (and at
least one) ofdet det , and
such that if or in
Fig. 27, then the decimator produces (1,1) for all invocations.
Moreover

gcd
det
gcd

and

det
gcd

gcd

Remark: Note that ; hence, if is diagonal,
the two factorizations are the same, and there is only one unique
factorization. This implies that for rectangular decimation, there
is only one way to set the MDSDF parameters and get noncy-
clostatic behavior.

Example 2 illustrates two other points. First, it is onlysuffi-
cientthat the decimator produce 1 sample on each invocation for
the additional constraints on decimator outputs to be satisfied by

the balance equation solution. Second, it is onlysufficientthat
the support matrix on the decimators output be integer valued
for the additional constraints to be satisfied. Indeed, we have

where is the support matrix on the decimators output.
For the case where , we have

, making noninteger valued. However, we
do have that det , despite the
fact that is noninteger valued and the decimator is cyclo-
static.

3) Delays in the Generalized Model:Delays can be inter-
preted as translations of the buffer of produced values along the
vectors of the support matrix (in the renumbered data space) or
along the vectors in the basis for the sampling lattice (in the
lattice data space). Fig. 28 illustrates a delay of (1,2) on a non-
rectangular lattice.

C. Summary of Generalized Model

In summary, our generalized model for expressing nonrect-
angular systems has the following semantics.

• Sources produce data in accordance with the source data
production method of Section III-B. The support matrix
and lattice-generating matrix on the source’s output arcs
are specified by the source. The source produces a gener-
alized ( ) rectangle of data on each firing.

• An expander with expansion matrixconsumes (1,1) and
produces the set of samples in that is ordered as
a generalized ( ) rectangle of data, where are
positive integers such that det .

• A decimator with decimation matrix consumes a rec-
tangle ( ) of data where this rectangle is interpreted
according to the way it has been ordered (by the use of
some rectangularizing function) by the actor feeding the
decimator. It produces (1,1) on average. Unfortunately,
there does not seem to be any way of making the deci-
mators output any more concrete.
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Fig. 29. Picture sizes and lattices for the two aspect ratios 4/3 and 16/9.

Fig. 30. System for doing multistage sampling structure conversion from 4/3
aspect ratio to 16/9 aspect ratio for a 2:1 interlaced TV signal.

• On any arc, the global ordering of the samples on that
arc is established by the actor feeding the arc. The actor
consuming the samples follows this ordering.

A set of balance equations are written down using the var-
ious factorizations. Additional constraints for arcs that feed a
decimator are also written down. These are solved to yield the
repetitions matrix for the network. A scheduler can then con-
struct a static schedule by firing firable nodes in the graph until
each node has been fired the requisite number of times, as given
by the repetitions matrix.

IV. M ULTISTAGE SAMPLING STRUCTURE

CONVERSIONEXAMPLE

An application of considerable interest in current television
practice is the format conversion from 4/3 aspect ratio to 16/9
aspect ratio for 2:1 interlaced TV signals. It is well known in 1-D
signal processing theory that sample rate conversion can be done
efficiently in many stages. Similarly, it is more efficient to do
both sampling rate and sampling structure conversion in stages
for multidimensional systems. The two aspect ratios and the two
lattices are shown in Fig. 29. One way to do the conversion
between the two lattices as shown previously is as shown in
Fig. 30 [21]. We can easily calculate the various lattices and
support matrices for this system, solve the balance equations,
and develop a schedule [23].

V. RELATED WORK

In [36], Watlington and Bove discuss a stream-based com-
puting paradigm for programming video processing applica-
tions. Rather than dealing with multidimensional dataspaces
directly, as is done in this paper, the authors sketch some ideas
of how multidimensional arrays can be collapsed into 1-D
streams using simple horizontal/vertical scanning techniques.

They propose to exploit data parallelism from the 1-D stream
model of the multidimensional system and to use dynamic
(run-time) scheduling, in contrast to our approach in this paper
of using a multidimensional stream model with static sched-
uling.

The Philips Video Signal Processor (VSP) is a commercially
available processor designed for video processing applications
[34]. A single VSP chip contains 12 arithmetic/logic units, four
memory elements, six on-chip buffers, and ports for six off-chip
buffers. These are all interconnected through a full cross-point
switch. Philips provides a programming environment for devel-
oping applications on the VSP. Programs are specified as signal
flow graphs. Streams are 1-D, as in [36]. Multirate operations
are supported by associating a clock period with every opera-
tion. Because all of the streams are unidimensional, data-paral-
lelism has to be exploited by inserting actors like multiplexors
and demultiplexors into the signal flow graphs.

There has been interesting work done at Thomson-CSF in
developing the array-oriented language (AOL) [12]. AOL is a
specification formalism that tries to formalize the notion of array
access patterns. The observation is that in many multidimen-
sional signal processing algorithms, a chief problem is in spec-
ifying how multidimensional arrays are accessed. AOL allows
the user to graphically specify the data tokens that need to be
accessed on each firing by some block and how this pattern of
accesses changes with firings.

The concrete data structures of Kahn and Plotkin [16], and
later of Berry and Curien [3], is an interesting model of com-
putation that may include MDSDF as a subset. Concrete data
structures model most forms of real-world data structures such
as lists, arrays, trees, etc. Essentially, Berry and Curien in [3]
develop semantics for dataflow networks where the arcs hold
concrete data structures, and nodes implement Kahn-Plotkin se-
quential functions. As future work, a combination of the sched-
uling techniques developed in this paper, the semantics work of
[3], and the graphical syntax of [12] might prove to be a pow-
erful model of computation for multidimensional programming.

There is a body of work that extends scheduling and retiming
techniques for 1-D, single-rate dataflow graphs, for example
[25], to single-rate multidimensional dataflow graphs [26] (re-
timing) [27], [35] (scheduling). Architectural synthesis from
multirate, MDDFGs for rectangularly sampled systems is pro-
posed in [31]. These works contrast with ours in that they do not
consider modeling arbitrary sampling lattices, nor do they con-
sider multidimensional dataflow as a high-level coordination
language that can be used in high-level graphical programming
environments for specifying multidimensional systems. Instead,
they focus on graphs that model multidimensional nested loops
and optimize the execution of such loops via retiming and effi-
cient multiprocessor scheduling.

VI. CONCLUSION

A graphical programming model called multidimensional
synchronous dataflow (MDSDF), based on dataflow that sup-
ports multidimensional streams, has been presented. We have
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shown that the use of multidimensional streams is not limited
to specifying multidimensional signal processing systems
but can also be used to specify more general data exchange
mechanisms, although it is not clear at this point whether these
principles will be easy to use in a programming environment.
Certainly, the matrix multiplication program in Fig. 14 is not
very readable. An algorithm with less regular structure will
only be more obtuse. However, the analytical properties of
programs expressed this way are compelling. Parallelizing
compilers and hardware synthesis tools should be able to do
extremely well with these programs without relying on runtime
overhead for task allocation and scheduling. At the very least,
the method looks promising to supplement large-grain dataflow
languages, much like the GLU “coordination language” makes
the multidimensional streams of Lucid available in large-grain
environment [15]. It may lead to special purpose languages
but could also ultimately form a basis for a language that,
like Lucid, supports multidimensional streams but is easier to
analyze, partition, and schedule at compile time.

However, this coordination language appears to be most
useful for specifying multidimensional, multirate signal
processing systems, including systems that make use of non-
rectangular sampling lattices and nonrectangular decimators
and interpolators. The extension to nonrectangular lattices
has been nontrivial and involves the inclusion of geometric
constraints in the balance equations. We have illustrated the
usefulness of our model by presenting a practical application
(video format conversion) that can be programmed using our
model.

REFERENCES

[1] R. H. Bamberger, “The directional filterbank: A multirate filterbank for
the directional decomposition of images,” Ph.D. dissertation, Georgia
Inst. Technol., Atlanta, 1990.

[2] A. Benveniste, B. Le Goff, and P. Le Guernic, “Hybrid dynamical
systems theory and the language “SIGNAL”,” Institut National de
Recherche en Informatique at en Automatique (INRIA), Le Chesnay
Cedex, France, 838, 1988.

[3] G. Berry and P-L Curien, “Theory and practice of sequential algorithms:
the kernel of the programming language CDS,” inAlgebraic Methods
in Semantics. Cambridge, U.K.: Cambridge Univ. Press, 1988, pp.
35–88.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis
from Dataflow Graphs. Norwood, MA: Kluwer, 1996.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Static sched-
uling of multi-rate cyclo-static DSP applications,” inProc. IEEE Work-
shop VLSI Signal Process., San Diego, CA, Oct. 1994, pp. 137–146.

[6] F. Bosveld, R. L. Lagendijk, and J. Biemond, “Compatible Spatio-Tem-
poral Subband Encoding of HDTV,”Signal Process., vol. 28, no. 3, pp.
271–289, Sept. 1992.

[7] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate signal
processing in Ptolemy,” inProc. Int. Conf. Acoust., Speech, Signal
Process., Toronto, ON, Canada, Apr. 1991, pp. 1245–48.

[8] , “Ptolemy: A framework for simulating and prototyping heteroge-
neous systems,”Int. J. Comput. Simulation, vol. 4, pp. 155–182, Apr.
1994.

[9] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A declar-
ative language for programming synchronous systems,” inConf. Rec.
14th Annu. ACM Symp. Principles Programming Languages, Munich,
Germany, Jan 1987, pp. 178–88.

[10] M. C. Chen, “Developing a multidimensional synchronous dataflow do-
main in Ptolemy,” Dept. Elect. Eng. Comput. Sci., Univ. California,
Berkeley, CA, 1994.

[11] J. Daviset al., “Heterogeneous concurrent modeling and design in Java,”
Univ. California, Berkeley, Tech. Memo. UCB/ERL M01/12, EECS,
2001.

[12] A. Demeure, “Formalisme de Traitement du Signal: Array-OL,”
Thomson SINTRA ASM, Sophia Antipolis, Valbonne, France, 1994.

[13] E. Dubois, “The sampling and reconstruction of time-varying imagery
with applications in video systems,”Proc. IEEE, vol. 73, pp. 502–522,
Apr. 1985.

[14] R. Hopkins, “Progress on HDTV broadcasting standards in the United
States,”Signal Processing: Image Commun., vol. 5, pp. 355–78, Dec.
1993.

[15] R. Jagannathan and A. A. Faustini, “The GLU programming language,”
SRI Int., Comput. Sci. Lab., Menlo Park, CA, SRI-CSL-90–11, 1990.

[16] G. Kahn and G. D. Plotkin, “Concrete domains,”Theoretical Comput.
Sci., vol. 121, no. 1-2, pp. 187–277, Dec. 1993.

[17] K. Konstantinides and J. R. Rasure, “The Khoros software development
environment for image and signal processing,”IEEE Trans. Image Pro-
cessing, vol. 3, pp. 243–52, May 1994.

[18] S. Y. Kung,VLSI Array Processors. Englewood Cliffs, NJ: Prentice-
Hall, 1988.

[19] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,”IEEE Trans. Comput.,
vol. C-36, pp. 24–35, Jan 1987.

[20] E. A. Lee, “Multidimensional Streams Rooted in Dataflow,” inProc.
IFIP Working Conf. Architectures Compilation Techn. Fine Medium
Grained Parallelism, Orlando, FL, Jan. 1993.

[21] R. Manduchi, G. M. Cortelazzo, and G. A. Mian, “Multistage sampling
structure conversion of video signals,”IEEE Trans. Circuits Syst. Video
Technol., vol. 3, pp. 325–40, Oct. 1993.

[22] R. M. Mersereau and T. C. Speake, “The processing of periodically sam-
pled multidimensional signals,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, pp. 188–194, Feb. 1983.

[23] P. K. Murthy, “Scheduling Techniques for Synchronous and Multidi-
mensional Synchronous Dataflow,” Ph.D, Electron. Res. Lab., Univ.
California, Berkeley, CA, 1996.

[24] P. K. Murthy, E. Cohen, and S. Rowland, “System canvas–A new de-
sign environment for embedded dsp and telecommunication systems,”
in Proc. Ninth Int. Symp. Hardware/Software Codesign, Copenhagen,
Denmark, Apr. 2001, pp. 54–59.

[25] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling
of iterative data-flow programs via optimum unfolding,”IEEE Trans.
Comput., vol. 40, pp. 178–95, Feb. 1991.

[26] N. L. Passos and E. H. -M Sha, “Synchronous circuit optimization via
multidimensional retiming,”IEEE Trans. Circuits Syst. II, vol. 43, pp.
507–19, July 1996.

[27] , “Scheduling of uniform multidimensional systems under resource
constraints,”IEEE Trans. VLSI Syst., vol. 6, pp. 719–30, Dec. 1998.

[28] H. Printz, “Automatic mapping of large signal processing systems to
a parallel machine,” Ph.D. dissertation, Carnegie Mellon Univ., Pitts-
burgh, PA, 1991.

[29] S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for
signal processing systems,” inProc. Int. Conf. Applicat.-Specific Array
Process., Aug. 1992, pp. 679–93.

[30] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for inter-
connection-constrained heterogeneous processor architectures,”IEEE
Trans. Parallel Distrib. Syst., vol. 4, pp. 175–187, Feb. 1993.

[31] V. Sundararajan and K. Parhi, “Synthesis of folded, pipelined architec-
tures for multidimensional multirate systems,” inProc. ICASSP, May
1998, pp. 3089–3092.

[32] P. P. Vaidyanathan, “Fundamentals of multidimensional multirate digital
signal processing,”Sadhana, vol. 15, pp. 157–176, Nov. 1990.

[33] , Multirate Systems and Filter Banks. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[34] K. A. Visserset al., “Architecture and Programming of Two Generations
Video Signal Processors,”Microprocess. Microprogram., vol. 41, no.
5-6, pp. 373–90, Oct 1995.

[35] J. Q. Wang, E. H.-M. Sha, and N. L. Passos, “Minimization of memory
access overhead for multidimensional DSP applications via multilevel
partitioning and scheduling,”IEEE Trans. Circuits Syst. II, vol. 44, pp.
741–53, Sept. 1997.

[36] J. A. Watlington and V. M. Bove Jr, “Stream-based computing and future
television,” inProc. 137th SMPTE Techn. Conf., Apr. 1995.



MURTHY AND LEE: MULTIDIMENSIONAL SYNCHRONOUS DATAFLOW 2079

Praveen K. Murthy (M’97) received the B.S.E.E
degree from the Georgia institute of Technology,
Atlanta, in 1989 and the M.S. and Ph.D. degrees in
electrical engineering and computer science from
the University of California, Berkeley, in 1993 and
1996, respectively.

He is a Member of Research Staff of the Advanced
CAD Research Group at Fujitsu Labs of America
(FLA), Sunnyvale, CA. His research interests span
all areas of system-level design, verification, and
synthesis including simulation, techniques for

producing optimized software implementations, semantics of different models
of computation, and software tools for rapid prototyping. Prior to joining FLA,
he was with Angeles Design Systems and Cadence Design Systems. He has
also consulted for Berkeley Design Technologies, Inc., in the area of DSP
architectures and tools. He has co-authored numerous refereed papers and the
bookSoftware Synthesis from Dataflow Graphs(Boston, MA: Kluwer).

Edward A. Lee (F’94) received the B.S. degree
from Yale University, New Haven, CT, in 1979,
the S.M. degree from the Massachusetts Institute
of Technology, Cambridge, in 1981, and the Ph.D.
degree from the University of California at Berkeley
(UC Berkeley) in 1986.

He is a Professor with the Electrical Engineering
and Computer Science Department, UC Berkeley.
His research interests center on design, modeling,
and simulation of embedded, real-time computa-
tional systems. He is Director of the Ptolemy project

at UC Berkeley. He is co-author of four books and numerous papers. From 1979
to 1982, he was a Member of Technical Staff at Bell Telephone Laboratories,
Holmdel, NJ, in the Advanced Data Communications Laboratory. He is a
co-founder of BDTI, Inc., where he is currently a Senior Technical Advisor,
is co-founder of Agile Design, Inc., and has consulted for a number of other
companies.

Dr. Lee was a National Science Foundation Presidential Young Investigator
and won the 1997 Frederick Emmons Terman Award for Engineering Education.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


