
Timed Multitasking for Real-Time Embedded Software

Software in real-time embedded systems differs fundamentally from its desktop or Internet

counterparts. Embedded computing is not simply computation on small devices. In most control

applications, for example, embedded software engages the physical world. It reacts to physical

and user-interaction events, performs computation on limited and competing resources, and pro-

duces results that further impact the environment. Of necessity, it acquires some properties of the

physical world, most particularly, time.

Despite the fact that both value and time affect the physical outputs of embedded systems,

these two aspects are developed separately in typical embedded software design. The functional-

ity is determined at design time with assumptions such as zero or a fixed non-zero run-time delay.

The actual timing properties are determined at run time by a real-time operating system (RTOS).

Typically, an RTOS offers as control of these timing properties one number for each task, a prior-

ity. Thus, whether a piece of computation can be finished or brought to a quiescent state at a par-

ticular time is totally a dynamic phenomenon, and it depends largely on the hardware platform,

when the inputs arrive, what other software is running at that time, and the relative priorities. Typ-

ically, these factors are out of the control of embedded system designers, and break the timing

assumptions that the control algorithms may rely on. In most control applications, this run-time

uncertainty is undesirable or even disastrous.
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We believe that two steps can be taken to improve the design process for embedded software,

and to bridge the gap between the functionality development and timing assurance:

• rigorous software architectures that expose resource utilization and concurrent interactions

among software components, and

• specification, compilation, and execution mechanisms that preserve timing properties

throughout the software life cycle.

A component-based software architecture can help compilers to determine the logical depen-

dencies and shared resources among components. By bringing the notion of time and concurrent

interaction to the programming level, compilers and run-time systems can be developed to pre-

serve both timing and functional properties at run time. Recent innovations in real-time program-

ming models such as port-based objects (PBO) [1] and Giotto [2] are examples that take a time-

triggered approach to scheduling software components and to preserving their timing properties.

These purely time-triggered approaches, although explicitly controlling the timing of each com-

ponent, require tasks to be periodic and do not handle well irregularly spaced new information (or

events).

In this article, we introduce an event-triggered programming model −− timed multitasking

(TM), which also takes a time-centric approach to real-time programming but controls timing

properties through deadlines and events rather than time triggers. By doing so, each piece of

information is processed exactly once, and the tasks can be aperiodic. This model takes advantage

of an actor-oriented software architecture [3] and embraces timing properties at design time, so

that designers can specify when the computational results are produced to the physical world or to

other actors. The specification is then compiled into stylized real-time tasks, and a run-time sys-
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tem further ensures the function and timing determinism during execution. As long as there are

sufficient resources, the computation will always produce predictable values at a predictable time.

REAL-TIME PROGRAMMING: COMMON PRACTICE

Real-time systems typically need to perform multiple tasks at the same time. Each task is a

finite amount of computation that requires some resources and takes some time to perform. Tasks

may compete for resources, such as CPU, I/O access, or network bandwidth; thus a resource man-

ager is needed to allocate resources and schedule task activation. This resource management is a

major responsibility of real-time operating systems in common embedded systems. When two eli-

gible tasks are competing for resources, the operating system must choose to grant the resources

to one of them, and as a consequence, that task finishes sooner.

The process of choosing to which task to grant resources is called real-time scheduling. A

typical strategy is to assign priorities to tasks and to execute the highest priority task that is eligi-

ble. Intuitively, priorities represent the relative importance of tasks at run time. Priorities can be

statically assigned to tasks at design time, or they may be dynamically determined at run time. In

today’s embedded systems, given the run-time overhead of computing priorities, it is common to

fulfill timing constraints by statically assigning priorities among the tasks.

Another powerful concept for dealing with timing properties is the notion of preemption,

which is to pause a running task, say A, and execute another task, say B. By doing so, task B,

although it is activated later than task A, can finish before task A finishes. Obviously, task B must

have a higher priority to preempt task A.

Consider the example shown in Fig. 1, where a Controller and a Supervisor are implemented on

the same computer. Suppose that the controller is triggered by periodic samples, say, every 2 ms,

and for each sampling input, the controller produces an output with a delay. For now, let’s assume
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the delay is fixed, say, 1 ms, from activation to activation. The supervisor task is only triggered

once in a while (e.g., every second), and it takes a long time (>> 2 ms) to compute a new set of

parameters to update the control algorithm. Since both tasks are implemented on the same embed-

ded system, they share the computing resources. Assume it is unacceptable for the controller to

stop producing any output for a long time, if the supervisor task keeps running,. A preemptive

strategy is shown in Fig. 2, where the controller task preempts the long-run supervisor task. In this

figure, each box represents the execution of a task. The nonshadowed parts within the execution

of the supervisor task indicate that its execution is preempted by the controller task.

Figure 1. An embedded controller with two tasks.
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REAL-TIME SCHEDULING

How to assign priorities to multiple tasks is a key part of the real-time scheduling problem.

This has been an active research area for more than 20 years, starting with the seminal work by

Liu and Layland [4]. The goal of real-time scheduling is to devise a set of priority assignment

rules to make sure that all tasks are finished before their deadlines.

Real-time scheduling algorithms typically make some assumptions about tasks and resources.

For example, Liu and Layland's original work makes the following assumptions:

• a single and arbitrarily preemptable resource (CPU);

• independent tasks;

• fixed and known task execution times;

• periodic task triggers (for rate monotonic scheduling);

• runability constraints −− each task must be completed before receiving the next trigger.

Under these assumptions, Liu and Layland derived rate-monotonic (RM) and earliest-dead-

line-first (EDF) scheduling policies. These algorithms are shown to be optimal (in terms of CPU

utilization) for static and dynamic priority assignments, respectively. Further work in this area has

developed more sophisticated timing analysis theories and has relaxed many assumptions in the

original algorithms [5]-[9]. Most of these still rely on knowing all tasks’s worst case execution

time (WCET) and having arbitrary preemptability. When multiple resources are being managed,

optimal scheduling becomes NP-hard [10], so most methods deal with only one shared resource.

In reality, many of the assumptions in scheduling theories do not hold. Tasks may require

multiple resources to execute, and they can be strongly coupled. For instance, in our controller/

supervisor example, the supervisor updates the controller’s parameters by directly accessing

them. Suppose that the lower priority supervisor task is writing to a set of parameters in the con-
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troller, and at the same time, the higher priority controller task is activated. The controller task

cannot start immediately since its parameters may not be consistent. To ensure the integrity of the

parameters, the controller can only preempt the supervisor after the update operations are fin-

ished. We call this situation partial preemptability. Partial preemptability not only complicates

timing analysis in the sense that the response time of the controller is lengthened, it may also

cause more serious problems, such as priority inversion.

PRIORITY INVERSION

The intuition behind assigning priorities to tasks is to prioritize resource utilization and

obtain fast response for critical tasks. However, because of the partial preemptability of some

tasks, blindly following the priority assignment and triggering high-priority tasks may cause a

high-priority task to be blocked by low-priority tasks indefinitely.

Consider the following situation in our previous example, where there is one more task, say,

fault diagnosis, which is independent of the controller and the supervisor, running on the same

embedded computer. Suppose that the fault diagnosis task has an intermediate priority that is

higher than that of the supervisor but lower than that of the controller. Suppose in addition that at

some point, when the controller is blocked waiting for the supervisor to finish updating the con-

trol parameters, the fault diagnosis task is activated. Since the fault diagnosis task is independent

of the supervisor and has a higher priority, it can preempt the supervisor and start executing. Now

the controller, although having a higher priority than the fault diagnosis task, is in fact blocked by

the fault diagnosis task. This situation is illustrated in Fig. 3. Imagine that there are multiple inter-

mediate-priority tasks that act like the fault diagnosis task here. Then the controller task may be

postponed indefinitely.
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Priority inversion problems are usually solved by the priority inheritance and priority ceiling

protocols [11]. The basic idea of these protocols is to look into the content of each task, analyze

critical sections (e.g., shared data access), and for each critical section, find the highest priority

task that may access it. Call this highest priority value p. Then, if a lower priority task A enters

this section, the priority of task A becomes p, so that no task of priority lower than p can preempt

A. When the task leaves the critical section, its priority drops back to its normal value.

Priority inheritance and priority ceiling protocols successfully solve the priority inversion

problem. By adding more constraints, such as requiring that all tasks need to grab resources in the

same order, it also solves deadlock problems that may be caused by cross waiting on data access.

Thus, these protocols are widely implemented in real-time operating systems like VxWorks, QNX

[12], and Resource Kernel [13]. On the down side, the priority inheritance protocol may be hard

to implement, and it adds run-time overhead to monitor priorities and critical sections. So some

lightweight real-time kernels omit them and require software designers to take care of avoiding

priority inversion and deadlock problems themselves.

Figure 3. Illustration of priority inversion. A high-priority controller task is blocked by the mid-
priority fault diagnosis task, since the controller is blocked by the low-priority supervisor due to

data dependency.
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MORE PITFALLS

Using priorities as the only tuning parameter and applying priority-driven preemptive execu-

tion rules without considering the status of other tasks introduces many problems. Besides priority

inversion, other pitfalls exist when the assumptions of real-time scheduling theories do not hold:

• Preemptive execution, especially with static priority assignment, are fundamentally fragile.

The timing behavior of tasks may be very sensitive to task activation time and their actual

execution time. An early arrival of a high-priority task or an unexpectedly long execution

of a task can have domino effects and add delays to the response time of all subsequent

lower-priority tasks.

• The results of schedulability analysis may not be very useful. The typical answers from a

schedulability analysis are the worst-case response time between the triggering and the fin-

ishing of the tasks. These values are required to be less than the deadlines to pass the

schedulability test. However, schedulability analysis does not reveal how often the worst-

case response time is met, what distribution it has, and what happens if it is greater than the

deadline. In many control applications, the physical system is fundamentally robust, and

missing a deadline occasionally may not cause catastrophic results.

• The worst-case execution time may not be the best representation of the execution time of

a task. It could be much larger than the average execution time, and by using WCET for

schedulability analysis, the results could be very conservative. As a consequence, the

resources are not sufficiently used to be cost-effective.

• Pushing for fast response may not be optimal. Some hard-real-time algorithms may have

strict requirements on the output time. An optimal result may only be achieved by emitting

the output at a particular time. Early outputs may result in a suboptimal result, as well as
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late outputs. This is particularly the case for some multimedia applications and predictive

control algorithms.

One fundamental problem is that there is not enough discipline in real-time programming.

Common embedded software development inherits empirical programming models from desktop

software development and tries to patch timing properties by tuning priorities after fixing the

functionality. Characteristics such as resource requirements, synchronization, and critical sec-

tions, which directly affect timing properties, are not explicit parts of the program specification.

Thus there is not much space for compilers and run-time systems to help ensure timing properties

at run time. This in turn forces designers to work with worst-case execution time and worry about

the domino effects, and to rely on exhaustive testing to develop confidence in a design.

TIME-TRIGGERED ARCHITECTURES

Timed-triggered architectures (TTA) were originally designed as system architectures and

network protocols for safety-critical distributed embedded systems [14]. Various programming

models use the same ideas to address the fundamental issues of real-time programming by using

time as the only trigger of computation. They bring timing constraints explicitly to the program-

ming model level, so that compilers and run-time systems can schedule and optimize the software

to achieve timing determinism. We give two examples of time-triggered models in this section,

port-based objects and Giotto, which significantly influence our design of the timed multitasking

model.

PORT-BASED OBJECTS

In the port-based object (PBO) models [1], tasks, called port-based objects, are time trig-

gered, and the communication channels between them form a global data space. Once activated, a
9 of 30



PBO is free to read from and write to the global data space. Read and write operations are atomic,

and all computation within the PBOs is based on their internal variables. Although synchroniza-

tion, using for example monitors and locks, is still necessary to guard the access of the global data

space, it is managed outside of the objects, at the operating system level, instead of by the objects

themselves. It is thus much easier to maintain the atomicity of the communications and avoid pri-

ority inversion problems.

The execution time of a PBO task may vary from activation to activation, and the time when

the inputs are consumed and the outputs are produced may not be regular. The global data space

has a state semantics, meaning that the value of a variable is preserved as long as it is not over-

written, and a newly written value will overwrite the old value regardless of whether the old one

has been used by other tasks. An example of an execution trace of a controller is shown in Fig. 4,

where the controller is activated every 2 ms. Suppose that a successor task reads the controller’s

output at 1.5 ms and 3.5 ms in this timing diagram; then in the first period, it reads a fresh output

from the controller, but in the second period, since a new output is not yet produced, it will use the

controller output from the last cycle again.

Figure 4. In PBO models, actors are activated by time, and they read from and write to a global data
space outside the actors.
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GIOTTO

The Giotto model [2] further extends the time-triggered concepts so that both computation

and communication among tasks are triggered by time. Each execution of a task has a well-

defined start and stop time, declared at design time. Conceptually, communication only occurs

between task executions. A task obtains all inputs at the start time of its execution, and the outputs

are only available to the rest of the system at the stop time of the execution, regardless of when the

values of outputs are actually calculated.

For example, suppose we specify that a controller is activated every 2 ms. In Giotto, this

implies that the input data is consumed at the beginning of the 2 ms, the execution happens some-

where within one period, and the output is made available at the end of the period. A timing dia-

gram is shown in Fig. 5. Thus no matter how quickly or slowly the controller executes, as long as

it can finish in 2 ms, the outputs will be produced at the exact time instants.

Tasks in Giotto execute concurrently, at least conceptually. Consider, for instance, a Giotto

model as shown in Fig. 6, where a task A with period 2 ms, feeds data to task B with period 2 ms.

Conceptually, the tasks begin executing simultaneously and end simultaneously. Thus, task B will

Figure 5. In Giotto, regardless of the exact execution time of an actor, the inputs are consumed and the
outputs are produced at well-defined time instants.
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always see data provided by A in the previous cycle. Hence there is a precise 2-ms delay intro-

duced by actor A. This one sample delay per task may not be desirable for some applications, but

it yields a deterministic timing and functional behavior.

Notice that both PBO and Giotto models use the state semantics of communication, which

has significant advantage to avoids unnecessary synchronizations among senders and receivers

and allows tasks to be triggered at any time. However, state semantics may lose the notion of new

events, such that some data may be processed more than once, and some others may be com-

pletely ignored. The problem is left to the designers in the PBO model, whereas it is made explicit

by the one-sample delay in the Giotto model. Furthermore, pure time-triggered models require

precise time synchronizations across distributed platforms, which may be a significant cost for

complex systems.

TIMED MULTITASKING

This article describes an event-driven approach −− timed multitasking −− that tackles the

real-time programming problem. Unlike in the PBO and Giotto models, a task in TM (called an

actor) is executed when there are input events that fulfill certain conditions specified by the actor.

But like the Giotto model, it provides a predictable input/output timing so that the computational

delays can be used as deterministic parameters in algorithm designs. The basic idea behind the

TM model is simple: since the activation of a task depends either on other tasks or on interrupts,

by controlling the time at which outputs are produced and triggering tasks with new events, we

Figure 6. Two actors in the Giotto model. Actor B always sees data produced by A in the previous
cycle.

A B

Period: 2 ms Period: 2 ms
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can effectively control both the starting time and stopping of each task, thus obtain deterministic

timing properties.

ACTOR-ORIENTED PROGRAMMING

The TM model is built on top of a component-based approach, where components are called

Ptolemy actors1. This model helps the designer to isolate atomic computations and identify inter-

dependencies among software components. This notion of actors differs from Agha’s actor model

[16] in the sense that actors do not necessarily associate with their own thread of control.

In TM, an actor represents a sequence of reactions, where a reaction is a finite piece of com-

putation. The actor has state, which carries from one reaction to another. Actors have ports, which

are their communication interface. The concept of actors is broad enough to support many com-

munication mechanisms among actors. For example, a port may represent an interrupt, a first-in-

first-out (FIFO) queue, a rendezvous point, etc. Actors can only communicate with other actors

and the physical world through ports. Thus their internal state is not directly accessible by any-

thing outside the actor.

Unlike method calls in object-oriented models, interaction with the ports of an actor may not

directly transfer the flow of control to the actor. The control flow inside the actor could be inde-

pendent of its data communication. An actor may be directly associated with a thread of control,

in which case the actor is a process. Nevertheless, it is more common in real-time systems to have

a scheduler or an event dispatcher that activates actors by triggers. The hiding of states and the

decoupling of dataflow and control flow are two major distinctions between Ptolemy actors and

general software tasks or processes.

1. The name is due to its implementation in the Ptolemy project [15].
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Actor-oriented programming can be conveniently visualized using block diagrams, which are

familiar to most control engineers. For example, the embedded system in Fig. 1 can be repre-

sented by a very similar actor model, as shown in Fig. 7. There are two actors: a Supervisor and a

Controller. The supervisor has an input port, named data, and an output port, named param. The

controller actor has two input ports, input and paramIn, and one output port. These ports decouple

the threads of control among the supervisor, the controller, and the scheduler that manages their

execution. For example, consider the link from the param port of the supervisor and the paramIn

port of the controller. Suppose this link is implemented as a buffer, such that the output from the

supervisor is first buffered at the paramIn port, and then the controller decides when to read it (e.g.

the next time the controller is activated). Although mutual exclusion between reads and writes on

the port is still needed, the controller can always proceed using its internal state without waiting

for the supervisor to finish writing, and can update parameters at the beginning of the next invoca-

tion. The supervisor task can now be arbitrarily preempted by the controller without worrying

about priority inversion or about the consistency of parameter data.

The actor architecture can also make resource utilization explicit. A useful design pattern is

to use specific actors for delegated resources. For example, suppose that two actors A and B both

need to write to a same file, as shown in Fig. 8. Obviously, an implicit locking mechanism is

Figure 7. An actor model for the embedded controller in Fig. 1.
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needed if both of them implement the file writing inside their code. Alternatively, a third actor,

fileWriter, can be introduced to manage the file explicitly. By using this actor, the order of writing

in actors A and B becomes visible and is formally managed in the same way as any other events in

the system, and the actors no longer need to be partially preemptable.

TM PROGRAMMING CONCEPTS

The building blocks in the TM model are actors with further annotations. Actors in a TM

model not only declare their computing functionality, but also specify their execution require-

ments in terms of trigger conditions, execution times, and deadlines. As illustrated in Fig. 9, an

actor is activated when its trigger condition is satisfied. If there are enough resources at runtime,

Figure 8. Shared resources in the TM model can be managed by delegated actors
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Figure 9. An illustration of the execution of an actor in the TM model.
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then the actor will be granted at least the declared execution time before its deadline is reached.

The results of the execution are made available to other actors and the physical world only at the

deadline time. This is sometimes called faster-than-real-time computation [17] in the sense that

the results are computed well before it is required by the real-time constraints. Since the output

may immediately trigger other tasks, whose deadlines are also known, we effectively control both

starting time and stopping time of the actors, and provide deterministic timing behavior. In the

cases where an actor cannot finish by its deadline, our model includes an overrun handler, much

like the timing failure handlers in Chimera [18], to preserve the timing determinism of all other

actors and allow the actor who violates the deadline to come to a quiescent state.

Trigger Conditions

A trigger condition can be built using real time, physical events, communication packets,

and/or messages from other actors. The trigger conditions are required to be responsible [20],

meaning that, once triggered, the actor does not need any additional data to complete its (finite)

computation. The communication among the actors has an event semantics in which, unlike state

semantics, every piece of data will be produced and consumed exactly once. Event semantics can

be implemented by FIFO queues. Conceptually, the sender of a communication is never blocked

on writing. The responsible trigger condition guarantees that if an actor is activated, there are

enough data to complete a reaction, so actors will not be blocked on reading data.

Deadlines

The deadline of a reaction is expressed as a real-time value, indicating that the computational

results are produced if and only if the deadline is reached. Explicitly expressing deadlines has two

benefits:
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• By knowing the deadlines of all actors and their triggering dependencies, designers know

exactly what time delay their programs will introduce at runtime, so that they can be more

confident in choosing algorithm parameters;

• Explicit deadlines are also useful in resource-aware algorithms, such as anytime algorithms

[19], which can provide results with different fidelities, depending on the computational

time it has.

If a deadline is not specified, the results will be produced as soon as the computation has fin-

ished. This is useful to handle soft real-time actors or intermediate computational steps to provide

prompt triggering for downstream actors.

Execution Time

An actor also declares its execution time, which is the amount of time it needs to finish its

reaction, given that it is not preempted by any other actors. Unlike the deadline, which is given in

terms of real time no matter how many times the actor is preempted, the execution time is mea-

sured with respect to the actual time spent on the actor’s execution. This value is mainly used at

compile time to determine schedulability and resource utilization. The execution time can be the

worse-case execution time, so that the actor can always be finished. Alternatively, the declared

time can be a typical execution time, so that resources may be better used, and the actor can rely

on overrun handlers when deadlines are missed.

Overrun Handling

Overrun handlers are nonpreemptable pieces of code that are triggered by the run-time sys-

tem when the corresponding actors are about to miss deadlines. Since the TM model is event

driven and the execution time of reactions varies, it is generally impossible to guarantee that all

deadlines of all reactions can be met. By having overrun handlers, the TM model can preserve
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time determinism as much as possible when resources are not sufficient. How to handle overruns

is application dependent. For example, if the actor implements an anytime algorithm, then the

overrun handler may terminate the current iteration and bring internal variables to a quiescent

state. If the actor implements a transaction-based algorithm, then the overrun handler may commit

the transaction if it has finished, or may roll back the transaction if it has not finished. If the appli-

cation is safety critical, then the overrun handler may trigger a mode change into a more conserva-

tive mode of operation. In all cases, the actor should be ready for the next activation after running

the overrun handler.

SOFTWARE SYNTHESIS

Building real-time embedded software using actors and the timed-multitasking model allows

certain levels of analysis of timing properties and generation of run-time software and scheduling.

This formal step preserves the TM execution semantics and reduces the burden of writing error-

prone code for event queues and multi-task synchronizations. We consider a single-processor

platform at this time and discuss two aspects in the synthesis −− scheduling analysis and code

generation.

Scheduling Analysis

General event triggered real-time systems with multiple shared resources are not amenable to

compile-time schedulability analysis [10]. However, explicit actor partition and time determinism

make real-time scheduling theories applicable to many TM models. When trigger conditions are

predictable, such as periodic triggers, the execution time and the deadlines can be fed to schedul-

ing algorithms for schedulability analysis and priority assignment. Notice that the semantics of

TM does not require that a designer directly specify the priorities of actors. Typically, there are
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multiple priority assignment policies that can fulfill the timing requirements, and for any feasible

scheduling policy, the execution result for a given set of inputs is exactly the same in terms of

both time and value determinism. In this sense, the TM model is robust to scheduling policies.

Code Generation

Fully automated software synthesis is a very broad issue. In this article, we focus on generat-

ing the interfaces and interactions among actors into imperative languages like C, and leave the

definition of the actor functionality as an open issue. In fact, after providing the interface and

scheduling code, the actor code becomes single threaded and self-contained, which is much easier

to manage. The generated code is linked with a TM run-time system, which will be described in

the next section.

The first step of software synthesis is to distinguish two types of actors −− ones that respond

to external events and ones that are triggered entirely by events produced by peer actors. By parti-

tioning software components into actors, it is easy to make sure that these two types do not inter-

sect. At runtime, we call the first type interrupt service routines (ISRs) and the second type tasks.

For code generation, they have different interfaces.

An ISR typically converts inputs from the outside world into events that triggers other actors.

In a TM model, an ISR usually appears as a source actor, or simply a port that transfers events into

the model. These components do not have triggering rules. They are typically managed by low-

level device drivers and are triggered immediately when interrupts occur. An ISR does not have a

deadline, and an output is made immediately available as a trigger event to the downstream

actors. An ISR is synthesized as an independent thread, with an init() method that initializes

hardware resources and a start() method that registers itself to the run-time system. A produ-

ceOutput() method is also generated for the ISR to produce trigger events for other actors.
19 of 30



Tasks, on the other hand, have a much richer set of interfaces than ISRs. In additional to

init() and start() methods that initialize resources and states, there is a set of methods,

shown in Fig. 10, that defines of the split-phase reaction of a task, in this case, a Controller. Among

the methods, isReady() returns a boolean that indicates whether the task is ready to execute

when the method is called; getDeadline() assigns the deadline value if a deadline is specified;

exec() is the main body of the reaction; stopExec() is the overrun handler; and produce-

Output() produces events that may trigger other tasks. Obviously, this interface matches very

closely to the TM programming model. In the interface generation step, for each TM actor that is

not an ISR, a C file will be generated that contains the template of all methods listed. A TASK

data structure is also generated, which defines a scheduling entry representing a task. In additional

to the function pointers that point to the task methods, there are two variables: hasDeadline is a

variable indicating whether the reaction should meet a deadline; priority is an integer indicat-

ing the ordering among triggered tasks, assuming a static priority assignment.

typedef struct TASK {
bool (*isReady)();
void (*exec)();
void (*stopExec)();
void (*getDeadline)(struct timeval *tv);
void (*produceOutput)();
bool hasDeadline;
unsigned char priority;

} TASK_t;

// Interfaces for the Controller task.
void Controller_init() {...}
void Controller_start() {...}
bool Controller_isReady() {...}
void Controller_exec() {...}
void Controller_stopExec() {...}
void Controller_getDeadline(struct timeval *tv) {...}
void Controller_produceOutput() {...}

Figure 10. Definition of a TASK in generated C code
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The software synthesis process also generates the interaction relations among actors by sort-

ing through ports and connections. In a TM model, ports are contained by actors. Thus, it is obvi-

ous to the code generator which task to trigger when a new event is received by a port. There are

many ways to achieve event-triggered execution models. Here we assume an event dispatcher at

the scheduler level, and use ports as proxies for the event dispatcher. An event is a global variable,

containing the communicating data, a mutual-exclusion lock to guard the access of the variable if

necessary, and a flag indicating whether the event has been consumed. Fig. 11 is an example of

the code generated for the port paramIn of the actor Controller in Fig. 7, assuming the data type of

the port is a pair of floats, and assuming an underlying operating system that supports POSIX

threads. A data structure for the events is generated, together with a

set_Controller_paramIn() method that represents putting an event into the paramIn port.

typedef struct Controller_paramIn {
float v1;
float v2;
pthread_mutex_t Controller_param_mutex;
char is_new;

} Controller_paramIn_t

Controller_paramIn_t global_Controller_paramIn_var;

void set_Controller_paramIn(Controller_paramIn_t* event) {
TASK_t* newTask = (TASK_t*)malloc(sizeof(TASK_t));
pthread_mutex_lock(&(global_Controller_paramIn_var

.Controller_paramIn_mutex));
global_Controller_paramIn_var.v1 = event->v1;
global_Controller_paramIn_var.v1 = event->v1;
global_Controller_paramIn_var.is_new = 1;
pthread_mutex_unlock(&(global_Controller_paramIn_var

.Controller_paramIn_mutex));
newTask->isReady = Controller_isReady;
...
insertTriggeredTask(newTask);

}

Figure 11. Generated code that defines an event type, a port, and a triggering mechanism that
activates the controller task when new events are sent to the port.
21 of 30



The last line in the generated Supervisor_produceOutput() template will call the

set_Controller_paramIn() method with a new event. In this method, the data in the event

is transferred to the global variable representing the port, and a task trigger is created and queued

with a dispatcher. A run-time scheduler will use the dispatcher and trigger the task at a proper

time.

TM RUNTIME SYSTEMS

The execution model of TM programs is a stylized use of priority-based multitasking execu-

tion, as seen in most RTOSs. The run-time scheduler, implemented as a highest priority task, uses

a dispatcher to manage trigger events and to execute reactions. The scheduler is activated by an

insertTriggeredTask(TASK_t* task) call when a port triggers a task. The scheduler then

invokes the isReady() method of the corresponding task. If the task is ready, the scheduler will

send the task’s exec() to the underlying RTOS to schedule its execution. At the same time, it sets

up a timer to monitor the task’s deadline if necessary.

The run-time system for TM programs strictly obeys the deadlines for each actor if they are

specified. It keeps track of the deadlines for all actors as timer interrupts, and when the deadline is

reached, it asks the actor to stop execution and produce its outputs. If at the deadline time the

actor is still executing, the overrun handler will be activated.

An overrun reaction can be terminated either gracefully or abruptly. A graceful termination

may set a flag to ask the reaction to stop, and rely on the reaction code to check this flag at reason-

able frequencies. The actor can then invoke the overrun handler itself and return from the reac-

tion. An abrupt termination requires the scheduler to terminate the reaction regardless of what is

executing, and invoke the overrun handler to bring the actor to a safe state. Abrupt terminations
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may be more efficient in time, but both the scheduler and the overrun handlers may need assem-

bly level access of tasks’ internal state, which makes the run-time systems less portable.

EXAMPLE

In this section, we describe the design and hardware-in-the-loop simulation of a unmanned

aerial vehicle (UAV) controller using the TM model. The helicopter UAV is part of the Berkeley

Aerial Robot (BEAR) team, and the control algorithms have been proposed in [21]. The first gen-

eration of the flight control software is implemented as a set of hand-tuned tasks on top of an

RTOS. Due to the significant lose of modularity, the performance of the controller is very hard to

predict. In [22], Horowitz et.al. implemented a time-triggered controller in Giotto. It greatly

improves the modularity and time determinism of the embedded software. However, the asyn-

chrony between sensors and the controller and the timing requirements of the controller do not

exactly match the Giotto assumptions. Here we design the same control system in TM, which is

much more flexible, yet still preserves timing determinism.

FLIGHT CONTROL SYSTEM

The primary components in the flight control system are actuators, sensors, and a control

computer. The actuators consist of servo motors controlling the collective pitch, cyclic pitch,

throttle, and tail rotor. The primary sensors are:

• Inertial Navigation System (INS). The INS consists of accelerometers and rotational rate

sensors, and provides estimations of the helicopter’s position, velocity, orientation, and rate

of rotation. Although the information is provided at a rate of 100 Hz, the error in the esti-

mates could grow unbounded over time.
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• Global Positioning System (GPS). The GPS solves the INS drifting problem by providing a

more accurate position measurement, but more infrequently −− at roughly 5 Hz.

Both sensors push their measurement into the control computer. A Kalman filter, imple-

mented in embedded software, fuses the INS-GPS readings to provide frequent and accurate esti-

mates of the state of the helicopter.

The controller implements a modal state feedback algorithm, which partitions the helicopter

trajectory into operation modes and uses state feedback to stabilize and drive the helicopter. The

controller runs at 50 Hz, which is determined by the helicopter dynamics and the limitations of the

actuators. In essence, the controller runs on every second output of the sensor fusion component.

Giotto has two difficulties with the flight control system. First, the clock of the GPS and INS

are not synchronized with the control computer. If sensor fusion is implemented as a Giotto task

of frequency 100 Hz, then when the task is triggered according to the control computer clock, the

sensor inputs may not be fresh. Secondly, if the control task is modeled using Giotto as a 50 Hz

task, then the controller output will only be available to the actuator by the end of a 20 ms period,

even though the control algorithm can be finished in about 2 ms. The latter problem is solved in

[22] by designing the controller as a 200 Hz task, where in three out of every four cycles, the con-

troller does no computation. Even so, the control system introduces a total delay of 15 ms.

MODELING IN TM

TM is a suitable model for the UAV flight control system, since it is event-driven, so that no

explicit clock synchronization is required between the sensors and the control computer. In addi-

tion, the explicit notion of deadline allows the timing properties of the fusion task and the control-

ler to be expressed flexibly. There is no restriction that the output has to be produced just before

the start of the next period.
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The flight control system is modeled in the TM domain of Ptolemy II, and the helicopter

dynamics is modeled in the continuous-time (CT) domain. Fig. 12 shows the model. The helicop-

ter dynamics is implemented as a set of differential equations using the DifferentialSystem actor.

Two triggered samplers and irregular clocks are used to model the unsynchronized outputs from

INS and GPS. There are two tasks in the TM Controller −− Fusion and Controller. The Fusion actor is

triggered by the INS inputs. For GPS inputs, it consumes values but does not execute the Kalman

filter. Thus, the actor is executed at a 100-Hz rate, driven by the INS clock. The Controller is trig-

gered by every other output of the Fusion actor. The timing of the actors is shown in Fig. 13. Let k

be an integer that increases by one for every 10 ms. Then, the deadline of the Fusion actor is

ms in the cycle when the controller is not activated. Otherwise, the deadline is

Figure 12. Ptolemy II model for the flight control system.

10k 6+( )
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ms. The deadline of the Controller is always ms. Having these deterministic

deadlines, the controller introduces a fixed delay of 5 ms in every control cycle.

HARDWARE-IN-THE-LOOP SIMULATION

The controller is validated further in a hardware-in-the-loop (HITL) simulator implemented

in the BEAR project [22]. Interfaces and schedules of the embedded software components are

generated from the Ptolemy II model into C code running on Linux. The two input ports of the TM

Controller are generated as interrupt service routines. The Fusion and Controller actors are generated

into TM runtime tasks. The output port control_output is synthesized into a trivial task. Its

isReady() method always returns 1, and it does not have a deadline. The execution of this task

simply drives the actuators.

The HITL simulator executes the helicopter dynamics, and provides sensor and actuator

interfaces as UDP datagram sockets. The INS and GPS interrupt service routines are implemented

as UDP servers that are executed in separate threads. Received UDP packets are converted into

events that trigger the fusion task. Deadline monitors are implemented as separated threads that

Figure 13. Timing diagram for the flight control system.
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wake up at the deadline times and call stopExec() on corresponding tasks. A graceful task ter-

mination policy is implemented, where the fusion and the controller execution code checks flags

that can be set by corresponding stopExec(). If a deadline is missed, the results from the last

cycle are produced. The fusion task uses the spare time in the long cycle to catch up on missed

computation. Since the controller, implementing state feedbacks, is stateless, no extra computa-

tion is necessary for compensating for missed deadlines.

CONCLUSION

This article reviews the challenges of developing embedded software for real-time control

systems, and argues that timing properties should be introduced at the programming level to

bridge the gap between algorithm development and real-time priority tuning. We further describe

the timed multitasking model that uses an event-triggering mechanism and deadlines to provide

deterministic timing behavior for embedded software. The actor-oriented programming model

and a highly structured communication style allows interface and scheduling code to be generated

from the high-level specification. A helicopter control system is designed as an example.
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