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Abstract

This paper presents an approach to the implementation of electronic
computation systems whose behavior is tightly integrated with the physical
world. We call such systems hybrid embedded systems. Such systems are
challenging from a design perspective because their behavior is governed by
both continuous-state dynamics from the physical world and discrete-state
dynamics from the computation. There are several difficulties that appear
in such systems. For instance, understanding of the passage of time dur-
ing computation is critical to understanding how the computation system
affects the state of the physical world. Hybrid embedded systems are also
inherently concurrent; the computation system operates concurrently with
the dynamics of the physical world, in addition to any concurrency that may
be designed into the system. In addition, hybrid embedded systems must
generally operate within the constraints of traditional embedded systems.
They are inevitably constrained computationally, often have a complex com-
putational architecture, and must perform predictably. This paper presents
an approach to the design of embedded systems utilizing component-based
system models capable of representing concurrency, the passage of time, and
both continuous and discrete behaviors. These models allow for automatic
generation of system implementations from high-level abstractions as well
as the consideration of low-level architectural details where necessary. We
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show how this technique can be ued to approach difficulties in the design of
a complex digital control system.

1 Introduction

Hybrid system formalisms are often used to simply to represent and describe the
behavior of a real world physical system that cannot be easily described as a dif-
ferential system. This includes many of the commonly cited hybrid systems ex-
amples, such as the two water tanks example, or the bouncing ball example. Less
commonly, hybrid system formalisms are used to describe the interaction between
discrete computation systems and the physical world. This interaction often arises
in the form of embedded systems, such as digital control systems, [10, 4] high-
performance data acquisition systems, [11] and heterogeneous electronic systems
containing analog and digital components. [9] In these cases, the interaction be-
tween the discrete and analog portions of a system are tightly coupled and crucial
to the proper behavior of the system. We would like to model the behavior of such
systems abstractly as hybrid systems in order to quickly design the function of
discrete computation. In addition, a hybrid system formalism can help a designer
to understand and perhaps verify the overall behavior of the resulting system. We
call such a model a hybrid embedded system.

Ptolemy II is a software modeling tool that is particularly effective for mod-
eling hybrid embedded systems. [2] This effectiveness arises primarily from
an emphasis on hierarchical heterogenity. [3] Hierarchical heterogeneity allows
discrete-state and continuous-state models to be constructed from primitive com-
ponents according to high-level patterns of component interaction, called mod-
els of computation.[8] Additionally, these models can themselves be viewed as
components with an opaque interface. Hence, large models can be constructed
from smaller models. Since control flow and data flow between components in
a model is restricted by the component interface, detailed system models can be
constructed without overwhelming a designer. Depending on the model of com-
putation, models can represent systems with either continuous or discrete state,
making them useful for representing hybrid embedded systems. Additionally,
concurrent models of computation can represent computational structures which
are difficult to represent and reason about using current hybrid systems techniques,
such as Hybrid I/O automata.

We call this style of component-based modeling actor-oriented design. One
advantage of actor-oriented modeling is abstraction: systems can be represented
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at high levels of abstraction, facilitating rapid creating of executable simulation
models. However, more detailed models can also be constructed containing details
necessary for implementation synthesis. If we are modeling a software system,
then we might say that the model is a program. Implementation synthesis, or
automatic code generation, is not fundamentally different from the compilation
process that is familiar to software engineers. The fundamental difference is that
actor-oriented modeling emphasizes the interaction between different parts of a
system, rather than the behavior of individual portions. Timing and concurrency
can be represented directly as part of an actor-oriented model, rather than being
considered as secondary aspects in an untimed, sequential language.

Our approach to solving this problem involves several aspects. We avoid error-
prone implementation through automatic code generation that starts from abstract
models. Furthermore, we require designers to model, at a relatively detailed level,
implementation-related aspects of a system that are often abstracted away in hy-
brid system models. Since low-level modeling can be time consuming, we al-
low models to interoperate at different levels of detail, to allow refinement from
abstract models to more detailed models. Lastly, we concentrate on providing
modeling abstractions that are appropriate for hybrid embedded systems, with se-
mantics that represent software delays and timing requirements.

This paper shows how actor-oriented design techniques, as embodied in [2]
can be used to approach the design and implementation of a hybrid embedded
system. The design techniques will be illustrated using the Caltech Multi-vehicle
Wireless Testbed [1] as an extended example. By using different models of com-
putation, models will represent not only the continuous dynamics of these vehi-
cles but also the concurrent interaction of a distributed control system. We will
present models for system simulation, models for automatic code generation, and
also show how a designer can make use of intermediate refinements for hardware-
in-the-loop simulation.

2 Caltech Multi-Vehicle Wireless Testbed

Murray et al. at Caltech have developed a platform for experimenting with co-
ordinated control of autonomous vehicles, called the MVWT. [1] The platform
consists of a number of ground vehicles operating in a controlled environment.
Propulsion for each vehicle is provided by a pair of ducted fans mounted on top of
the vehicle. By applying the same force to each fan, the vehicle will move forward
in a straight line, while applying a different force to each fan causes the vehicle to
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turn. An embedded computer controls the fans through off-the-shelf motor con-
trollers connected to an RS-232 interface. The vehicles slide on three industrial
casters, allowing them to slide sideways while turning. The operating environ-
ment of the vehicles includes a video camera-based localization system (the Lab
Positioning System), which broadcasts location and orientation information for
each vehicle over 802.11b wireless ethernet using UDP datagrams.

In many ways the Caltech system is an appealing environment for experiment-
ing with embedded digital control. Primarily, the continuous dynamics of the sys-
tem are qualitatively different from the dynamics of a ’steered vehicle’ such as a
car, which cannot (generally) slide sideways when turning. The vehicle dynamics
are more similar to a two dimensional approximation of winged aircraft dynam-
ics. Additionally, since the vehicles are small and highly mobile, it is difficult
to interact directly with executing control code. Control commands, such as way
points, are entered from a separate base station computer and transmitted to the
control algorithm running on a vehicle. Perhaps most importantly, the MVWT is
both safe and cheap to operate, offering a distinct advantage over flying vehicles.
[5]

From a control-oriented viewpoint, the continuous-time dynamics of a Caltech
vehicle can be modeled by the equations (from [1]):

mẍ = −ηẋ+ (Fs + Fp) cos θ

mÿ = −ηẏ + (Fs + Fp) sin θ

Jθ̈ = −ψθ̇ + (Fs − Fp)r

where friction is assumed to be proportional to velocity. Fs and Fp are inputs to the
system corresponding to the forces applied to the starboard and port fans respec-
tively. The system state σ = [x, ẋ, y, ẏ, θ, θ̇]T , is available to a control algorithm
through the localization system. The Caltech group has implemented LQR-based
state-feedback digital control of the above dynamics capable of tracking trajecto-
ries.

In the physical system, there are several hardware limitations that serve to
complicate the design of the digital control system. For instance, in the physical
system, Fs and Fp are limited to a maximum of approximately 5 Newtons, and
cannot operate in reverse. Additionally, the fans are driven by discrete-input mo-
tor controllers, resulting in quantization of the forces that can actually be applied
to the vehicle. Further constraints are caused by the fact that the control software
and localization system cannot operate continuously. The localization system is
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Figure 1: A model of the continuous dynamics of a single vehicle.

only capable of capturing 60 frames of video per second, limiting the availability
of location estimates. Lastly, the system incorporates concurrent, distributed com-
putation for computing the control law. Furthermore, this distributed computation
operates over a communication channel that has the potential to lose data.

3 Basic Control Model

A translation of the dynamics of a single vehicle into a Ptolemy II model is
shown in Figure 1. This model is constructed in the style of Simulink, a com-
mercial tool produced by The Mathworks. The semantics of component interac-
tion are designed to support numerical integration algorithms, implemented by the
Integrator component. The signals communicated between components are
interpreted as functions of time that are solutions to a set of Ordinary Differential
Equations. We call these signals continuous-time signals.

In this model, the inputs are not taken as continuous functions, but are instead
assumed to be discrete-event signals. Discrete-event signals, unlike continuous-
time signals, are assumed to take values only at a countable number of points
in time. At all other points in time, a discrete-event signal has no value and is
said to be absent. The Zero-Order Hold components convert from discrete-
event signals into continuous-time signals suitable for integration. Similarly, the
PeriodicSampler component produces a discrete-event signal, which hap-
pens to consist of events evenly spaced in time, from the continuous-time signal.
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Figure 2: Computation of the thrust and torque, given an array of three unsigned
bytes from the controller.

In this model, the PeriodicSampler models the fact that only sample values
of the continuous-time dynamics are available to the vehicle controller.

The thrust and torque inputs are computed by the model in figure 2. The
input to this model is a discrete-event signal, where the value of each event is
an array of three unsigned bytes, corresponding to a control signal received by
the vehicle from the control computer over RS-232. The first byte is a fixed start
byte, and is ignored. The next two bytes correspond to an applied force for the
port and starboard fans. This model is a stateless model, and computes a simple
function of the three input bytes. A similar model (not shown) takes the output of
the PeriodicSampler and constructs another unsigned byte array encoding
the six state variables (in 64-bit IEEE floating point format) and the current time.
This array corresponds exactly in structure to the array of bytes constructed by
Caltech’s Lab Positioning System.

The interaction between the vehicle model above, and the controller is shown
in Figure 3. This model includes a detailed model of the data format between
the plant and the controller. The localization system broadcasts a UDP datagram
containing the encoded state of the vehicle, approximately 60 times a second.
This communication is modeled by the discrete-event signal connection between
the output of the vehicle model and the input of the controller model. In response
to each network packet, the control algorithm performs come computation and
eventually sends a three byte serial sequence to change the speed of the fans. The
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Figure 3: The toplevel simulation model, showing the interaction between the
model of vehicle dynamics and the model of the controller.

serial communication is modeled by a separate event sent out from the controller.
Unfortunately, from the point of view of accurate simulation, we have no idea
how long this computation will actually take in the final system. In this model,
the controller is idealized and generates its output event in zero time. The model
includes an explicit model of the computation and communication delay, given
by the TimedDelay component. Here the delay is assumed to be constant, but
it is trivial to substitute a stochastic delay, perhaps allowing for the possibility of
dropped packets.

The model of the controller itself is shown in Figure 4. This controller is based
on an LQR controller design by Murray’s group for tracking circular trajectories.
The trajectories are generated in polar form according to parameters specified in
the model. Note that input to the Circular Trajectory Controller is
a structured record datatype containing six fields, one for each state variable of
the physical system. The state is converted to another record containing the state
in polar form and the control law is computed in polar space. A simulation plot is
shown in Figure 5.

4 Implementation

The model in previous section is a model that is constructed primarily to allow
simulation. Some aspects of the intended system have been modeled explicitly,
such as the format of information received from the localization system. On the
other hand, some aspects of the system have been abstracted, such at the commu-
nication between the localization system and the controller. The model represents
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Figure 4: Model of the vehicle controller. Most of the components decode local-
ization information from an array of bytes into a record of values, and encode the
control output back into an array of bytes. The interesting part of the controller is
implemented by the Circular Trajectory Controller, and is shown
expanded below.
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Figure 5: A simulation plot of the position of a vehicle, tracking a counter-
clockwise circular trajectory around the point (3,3).

this communication as an instantaneous event, while the actual communication
layer incurs some random (possibly infinite) delay. The model of the vehicle is,
itself an abstract representation of the vehicle and the localization system. These
models cannot be viewed as a program, i.e. a source for synthesis, without addi-
tional information, such as a communication protocol or a 3D CAD model of the
physical vehicle.

The controller on the other hand, is a concrete model. Given appropriate inputs
and outputs, the controller is in a form which directly corresponds to a software
architecture for implementing the controller algorithm. This architecture can be
automatically generated in a relatively straightforward mapping from the original.
However, in order to perform the synthesis procedure, it is necessary to separate
the concrete, synthesizeable portion of the simulation model from the abstract por-
tion. This process is known as system partitioning. The result of partitioning the
above system is shown in Figure 6. Note that the communication channels have
been replaced with Datagram, and SerialComm components encapsulating
the UDP and RS-232 communication interfaces.

Note that Figure 6 includes the entire partitioned model, including the abstract
portion corresponding to the vehicle dynamics. While this portion is not useful for
implementation synthesis, it can be used for distributed simulation. By executing
the model of the vehicle on one computer and a model of the controller on another
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Figure 6: A partitioned version of the simulation model, where event communi-
cation has been replaced with communication interfaces. The VehicleModel
and Controller models are as before.

computer, more accurate simulation of the system behavior can be performed. In
particular, such a simulation includes actual properties of the communication pro-
tocol, rather than the approximate model included earlier. Other combinations
are also possible, resulting in various forms of hardware-in-the-loop simulation.
For instance, the controller model can be executed in the actual system, taking
the place of an embedded controller. This structure allows us to test that commu-
nication protocols and vehicle dynamics have been modeled in sufficient detail.
Alternatively, the vehicle dynamics model can be executed with code generated
from the controller model, to test that the implementation was generated correctly.

5 Improving the System Model

The model presented above includes many details that are abstracted by the differ-
ential equation dynamics. However, from an embedded software perspective, the
model is still very minimal. It does not model how the system is initialized, for
instance, or how the system recovers from errors. This information must either
be specified as part of code generation, perhaps by specifying a target platform
that provides initialization and reset capabilities, or it must be specified through
a more detailed system model. In order to show how these might be represented
in a more detailed model, we concentrate on the interaction between the control
algorithm and the base station computer.

The first interaction that we attack is the ability to trigger mode switches from
the base station. This is modeled by augmenting the model of the controller
to include a multi-modal controller, as shown in Figure 7. In each mode, the
modal controller behaves as the original controller, which follows circular trajec-
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Figure 7: A model of a modal controller. The base station computer can send an
event over the network, causing this controller to make a state transition, updating
the parameters of the trajectory being followed.
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Figure 8: A model of the interaction between the base station computer (on the
left) and the vehicle on the right. The base station can remotely update the con-
troller being executed.

tory. However, when the modal controller switches modes, the parameters of the
trajectory can be modified, allowing the vehicle to follow two different circular
trajectories. The mode switch is triggered by an event, received from the base sta-
tion over the wireless network. However, the new trajectory is not started until the
position of the vehicle is close enough to the new trajectory to allow a safe transi-
tion. This is represented by having an intermediate state between the reception of
the trigger event, and resetting the trajectory parameters of the controller.

The second interaction that we deal with is the ability of the base station to
dynamically update and modify the control algorithm remotely. This is modeled
using a MobileModel, as shown in Figure 8. This component does not have
behavior of its own, but simply encapsulates other components received on its
second input port. In this case, the mobile model receives a description of the
component over a CORBA-based publish and subscribe network, represented by
PushConsumer and PushSupplier. Essentially, the controller publishes a
event service which the base station computer subscribes to, allowing it to push a
new component description to the controller. Currently the component description
is an XML fragment, but we are working allowing serialized Java components
with code to be transmitted over the network. Additionally it seem straightforward
to combine controller updates with modal models to ensure that switching to an
updated controller occurs safely.
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6 Related Work

The work presented here integrates several areas of research. Physical simulation
tools such as Simulink and Modelica [13] allow designers to represent physical
dynamics. The Simulink Real-time workshop allows code to be generated from
a discrete-state controller model, but primarily targets single processor, RTOS-
based systems. Some effort has been made to create better programming abstrac-
tions for real-time systems, such as the Giotto language, [6] and graphical rep-
resentations of Giotto [7]. One advantage of Giotto is that it can be compiled to
run in a distributed computing environment. Hardware-in-the-loop simulation is
commonly used in industry, in order to test hardware prior to system deployment.
However these systems can be difficult to develop and maintain, hence a need for
hardware-in-the-loop frameworks that can be reused from one project to the next.
[12]

7 Conclusion

This paper presents a technique for designing and implementing hybrid embed-
ded systems, based on the composition of components. We approach the difficulty
that the design of a control system is incompletely dealt with through analytical
techniques, and by existing simulation frameworks. Our approach is based on
system simulation and refinement into a system model that can be compiled into
embedded software. Non-ideal aspects of a system can be modeled and integrated
with ideal models for system simulation. Hardware-in-the-loop simulation can
reduce dependence on idealized models and improve our understanding of the re-
sulting system before synthesizing an implementation. We have shown how these
ideas can be incorporated into a generic framework for component composition
and code generation.
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