
HYVISUAL: A HYBRID SYSTEM
VISUAL MODELER

Authors1: Christopher Hylands
Edward A. Lee
Jie Liu
Xiaojun Liu
Steve Neuendorffer
Haiyang Zheng

Version 2.2-beta2

UCB ERL Memorandum M03/1
January 28, 2003

This document describes work that is part of the Ptolemy project, which is supported by the Defense
Advanced Research Projects Agency (DARPA), the National Science Foundation, the MARCO/DARPA
Gigascale Silicon Research Center (GSRC), the State of California MICRO program, and the follow-
ing companies: Agilent Technologies, Cadence Design Systems, Hitachi, National Semiconductor, and
Philips.

1. With contributions from the entire Ptolemy II team, but most especially John Reekie and Yuhong Xiong.
2. This is the first version of HyVisual, but the version number is selected to match the version of Ptolemy II on

which it is based.

Copyright (c) 1998-2003 The Regents of the University of California.

 All rights reserved.

 Permission is hereby granted, without written agreement and without
 license or royalty fees, to use, copy, modify, and distribute the HyVisual
 software and its documentation for any purpose, provided that the above
 copyright notice and the following two paragraphs appear in all copies
 of the software.

 IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
 FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
 THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

 THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
 CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
 ENHANCEMENTS, OR MODIFICATIONS.
2 HyVisual

Contents
1. Introduction 5

1.1. Installation and Quick Start 5
1.1.1. Web Start 5
1.1.2. Standard Installers 6
1.1.3. CD 6

2. Continuous-Time Dynamical Systems 7
2.1. Executing a Pre-Built Model 7
2.2. Creating a New Model 9

2.2.1. A Simple Sine Wave Model 10
2.2.2. A Dynamical System Producing a Sine Wave 13
2.2.3. Making Connections 14
2.2.4. Parameters 16
2.2.5. Annotations 16
2.2.6. Impulse Response 17
2.2.7. Using Higher-Order Dynamics Blocks 19

2.3. Data Types 21
2.4. Hierarchy 23

2.4.1. Creating a Composite Actor 23
2.4.2. Adding Ports to a Composite Actor 23
2.4.3. Setting the Types of Ports 25

2.5. Discrete Signals and Mixed-Signal Models 26
2.6. Navigating Larger Models 26

3. Hybrid Systems 27
3.1. Examining a Pre-Built Model 28
3.2. Numerical Precision and Zeno Conditions 30
3.3. Constructing Modal Models 31

3.3.1. Creating Transitions 32
3.3.2. Creating Refinements 33

3.4. Execution Semantics 34
4. Using the Plotter 34
5. Expressions 36

5.1. Simple Arithmetic Expressions 37
5.1.1. Constants and Literals 37
5.1.2. Summary of Supported Types 37
5.1.3. Variables 37
5.1.4. Operators 38
5.1.5. Comments 38

5.2. Uses of Expressions 38
5.2.1. Parameters 38
5.2.2. Port Parameters 38
5.2.3. Expression Actor 39
5.2.4. State Machines 39
A Hybrid System Visual Modeler 3

5.3. Composite Data Types 40
5.3.1. Arrays 40
5.3.2. Matrices 40
5.3.3. Records 41

5.4. Functions and Methods 41
5.4.1. Functions 41
5.4.2. Methods 43

5.5. Fixed Point Numbers 45
4 HyVisual

Introduction
1. Introduction
The Hybrid System Visual Modeler (HyVisual) is a block-diagram editor and simulator for contin-

uous-time dynamical systems and hybrid systems. Hybrid systems mix continuous-time dynamics, dis-
crete events, and discrete mode changes. This visual modeler supports construction of hierarchical
hybrid systems. It uses a block-diagram representation of ordinary differential equations (ODEs) to
define continuous dynamics, and allows mixing of continuous-time signals with events that are dis-
crete in time. It uses a bubble-and-arc diagram representation of finite state machines to define discrete
behavior driven by mode transitions.

In this document, we describe how to graphically construct models and how to interpret the result-
ing models. HyVisual provides a sophisticated numerical solver that simulates the continuous-time
dynamics, and effective use of the system requires at least a rudimentary understanding of the proper-
ties of the solver. This document provides a tutorial that will enable the reader to construct elaborate
models and to have confidence in the results of a simulation of those models. We begin by explaining
how to describe continuous-time models of classical dynamical systems, and then progress to the con-
struction of mixed signal and hybrid systems.

The intended audience for this document is an engineer with at least a rudimentary understanding
of the theory of continuous-time dynamical systems (ordinary differential equations and Laplace trans-
form representations), who wishes to build models of such systems, and who wishes to learn about
hybrid systems and build models of hybrid systems.

HyVisual is built on top of Ptolemy II, a framework supporting the construction of such domain-
specific tools. See http://ptolemy.eecs.berkeley.edu for information about Ptolemy II.

1.1 Installation and Quick Start
HyVisual can be quickly downloaded and run using Web Start from the web site:

http://ptolemy.eecs.berkeley.edu/hyvisual

Once you have done this once, then you can select HyVisual from the Ptolemy II entry in the Start
menu (if you are using a Windows system). You should then see an initial welcome window that looks
something like the one in figure 1. Feel free to explore the links in this window.

To create a new model, invoke the New command in the File menu. But before doing this, it is
worth understanding how a model works.

HyVisual is also available as a standalone installer for Windows (.exe file), experimental installers
for other platforms, and as a CD. This document is included with the software in PDF format, so if you
would like to read the HyVisual Documentation online, then you may need to install the Adobe Acro-
bat Reader.

HyVisual-2.2beta is available in executable format only; the source files for a later version are
included with Ptolemy II 2.2, available from mid-2003. HyVisual requires Java 1.4 or later. Java
1.4.1_01 is preferred.

1.1.1 Web Start
Web Start is a tool from Sun Microsystems that makes software installation and updates particu-

larly simple. The Web Start installation works best with Windows, but has also been tried under
A Hybrid System Visual Modeler 5

Introduction
Solaris, Linux and Mac OS X. The Web Start installation behaves almost exactly like a standalone
installation; you can save models locally, and you need not be connected to the net after the initial
installation. The Web Start tool includes a Java Runtime Environment (JRE), and the HyVisual Web
Start installer checks that the proper version of the JRE is present.

1.1.2 Standard Installers
The Windows installer and the experimental installers for other platforms are shipped as a single

executable. One of the Windows installers includes a 1.4.1_01 Java Runtime Environment (JRE). Note
that this JRE will be installed as a private copy and will not be directly accessible by other programs.
Under Windows, the installer will create a Ptolemy, HyVisual 2.2-beta menu choice in the Start menu.

1.1.3 CD
The HyVisual CD includes installers for HyVisual, the Java Runtime Environment version

1.4.1_01 and Adobe Acrobat Reader 5.1.

FIGURE 1. Initial welcome window.
6 HyVisual

Continuous-Time Dynamical Systems
2. Continuous-Time Dynamical Systems
In this section, we explain how to read, construct and execute models of continuous-time systems.

We begin by examining a demonstration system that is accessible from the welcome window in figure
1, the Lorenz attractor.

2.1 Executing a Pre-Built Model
The Lorenz attractor model can be accessed by clicking on the link in the welcome window, which

results in the window shown in figure 2. It is a block diagram representation of a set of nonlinear ordi-
nary differential equations. The blocks with integration signs in their icons are integrators. At any
given time t, their output is given by

, (1)

where is the initial state of the integrator, is the start time of the model, and is the input sig-
nal. Note that since the output is the integral of the input, then at any given time, the input is the deriv-
ative of the output,

. (2)

Thus, the system describes either an integral equation or a differential equation, depending on which of

FIGURE 2. A block diagram representation of a set of nonlinear ordinary differential equations.

x t() x t0() x· τ() τd

t0

t

∫+=

x t0() t0 x·

x· t()
td

d x t()=
A Hybrid System Visual Modeler 7

Continuous-Time Dynamical Systems
these two forms you use.
Let the output of the top integrator in figure 2 be , the output of the middle integrator be , and

the output of the bottom integrator be . Then the equations described by figure 2 are

. (3)

For each equation, the expression on the right is implemented by an Expression actor, whose icon
shows the expression. Each expression refers to parameters (such as lambda for and sigma for)
and input ports of the actor (such as x1 for and x2 for). The names of the input ports are not
shown in the diagram, but if you linger over them with the mouse cursor, the name will pop up in a
tooltip. The expression in each Expression actor can be edited by double clicking on the actor, and the
parameter values can be edited by double clicking on the parameters, which are shown next to bullets
on the right.

The integrators each also have initial values, which you can examine and change by double click-
ing on the corresponding integrator icon. These define the initial values of , , and , respec-
tively. For this example, all three are set to 1.0.

The Continuous-Time (CT) Solver, shown at the upper right, manages a simulation of the model. It
contains a sophisticated ODE solver, and to use it effectively, you will need to understand some of its
parameters. The parameters are accessed by double clicking on solver box, which results in the dialog
shown in figure 3. The simplest of these parameters are the startTime and the stopTime, which are self-
explanatory. They define the region of the time line over which a simulation will execute.

To execute the model, you can click on the run button in the toolbar (with a red triangle icon), or
you can open the Run Window in the View menu. In the former case, the model executes, and the
results are plotted in their own window, as shown in figure 4. What is plotted is vs. for val-
ues of t in between startTime and stopTime. The Run Window obtained via the View menu is shown in
figure 5.

x1 x2
x3

x·1 t() σ x2 t() x1 t()�()=

x·2 t() λ x3 t()�()x1 t() x2 t()�=

x·3 t() x1 t()x2 t() bx3 t()�=

λ σ
x1 x2

x1 x2 x3

FIGURE 3. Dialog box showing solver parameters for the model in figure 2.

x1 t() x2 t()
8 HyVisual

Continuous-Time Dynamical Systems
Like the Lorenz model, a typical continuous-time model contains integrators in feedback loops, or
more elaborate blocks that realize linear and non-linear dynamical systems given abstract mathemati-
cal representations of them (such as Laplace transforms). In the next section, we will explore how to
build a model from scratch.

2.2 Creating a New Model
Create a new model by selecting File, New, and Graph Editor in the welcome window. You should

see something like the window shown in figure 6. On the upper left is a library of objects that can be

FIGURE 4. Result of running the Lorenz model using the run button in the toolbar.

FIGURE 5. Run Window, obtained via the View menu, for the Lorenz model shown in figure 2.
A Hybrid System Visual Modeler 9

Continuous-Time Dynamical Systems
dragged onto the page on the right. These are actors (functional blocks) and utilities (annotations, hier-
archical models, etc.). The page on the right is almost blank, containing only a solver. The lower left
corner contains a navigation area, which always shows the entire model (which currently consists only
of a solver). For large models, the navigation area makes it easy to see where you are and makes it easy
to get from one part of the model to another.

2.2.1 A Simple Sine Wave Model
We can begin by populating the model with functional blocks. Let�s begin with the simple objec-

tive of generating and plotting a sine wave. There are a number of ways to do this, and the alternatives
illustrate a number of interesting features about HyVisual. Open the actor library in the palette, and
drag in the ContinuousSinewave actor from the timed sources library and the TimedPlotter from the
timed sinks library. Connect the output of the ContinuousSinewave to the input of the TimedPlotter by
dragging from one port to the other. The result should look something like figure 7.

The model is ready to execute. To execute it, click on the run button in the toolbar, or invoke the
Run Window from the view menu. The result of the run should look like figure 8. You can zoom in on
the plot by clicking and dragging in the plot window. You can also customize the plot using the buttons
at the upper right.

If we zoom in on the plot, turn on stems, and set the marks to �dots,� then we can make the plot
look like figure 9. In this figure you can see that the sine wave is hardly smooth, and that rather few
samples are produced by the simulation. It is worth understanding why this is. Consider the solver
parameters shown in figure 3. Notice that the initStepSize parameter has value 0.1, which is coinciden-
tally the spacing between samples in figure 9. The spacing between samples is called the step size of
the solver. If you change initStepSize to 0.01 (by double clicking on the solver) and re-run the simula-
tion, then the same region of the plot looks like figure 10. The spacing between samples is now 0.01.

FIGURE 6. A blank model, obtained via File, New, and Graph Editor in the menus.

library of components

navigation area

model-building area
10 HyVisual

Continuous-Time Dynamical Systems
The model shown in figure 7 is atypical of continuous-time models of dynamical systems. It has
no blocks that control the step size. Such blocks include those from the dynamics and to discrete
library. For example, another way to get the sine wave to be sampled with a sampling interval of 0.01
is shown in figure 11. The PeriodicSampler block has a parameter samplePeriod that you can set to
0.01 (by double clicking on the block). This will result in the same plot as shown in figure 10, irrespec-
tive of the initStepSize parameter of the solver.

The models shown in figures 7 and 11 have no blocks from the dynamics library, and hence do not
immediately represent an ordinary differential equation. When blocks from the dynamics library are
used, then the solver uses sophisticated techniques to determine the spacing between samples. The ini-

FIGURE 7. A model populated with two actors.

FIGURE 8. Execution of the sine wave example in figure 7, where all parameter values have default.values.

click here to customize
the look of the plot
A Hybrid System Visual Modeler 11

Continuous-Time Dynamical Systems
tial step size is given by initStepSize, but the solver may adjust it to any value between minStepSize and
maxStepSize. In the case of the model in figure 7, there are no blocks with continuous dynamics, and
no other blocks that affect the step size and hence there is no basis for the solver to change the step
size. Thus, the step size remains at the value given by initStepSize for the duration of the simulation.

FIGURE 9. Zoomed version of the plot in figure 8, with �dots� and �stems� turned on.

FIGURE 10. The result of running the model in figure 7 with the initStepSize parameter of the solver being 0.01.

FIGURE 11. Another way to control the step size is to insert a sampler.
12 HyVisual

Continuous-Time Dynamical Systems
We will next modify the model to be more typical by describing an ODE whose solution is a sine
wave. Before we do that, however, you may want to explore certain features of the user interface:
� You can save your model using commands in the File menu. File names for Ptolemy II models

should end in �.xml� or �.moml� so that Vergil will properly process the file the next time you
open that file.

� You can obtain documentation for the solver, or any other block in the system, by right clicking on
it to get a context menu, and selecting �Get Documentation.�

� You can move blocks around by clicking on them and dragging. Connections are preserved.
� You can edit the parameters of any block (including the solver) by either double clicking on it, or

right clicking and selecting �Configure.�
� You can change the name of a block (or even hide it) by right clicking on the block and selecting

�Customize Name.�
� If your installation includes the source code, then you can examine the source code for any block

by right clicking and choosing �Look Inside.�

2.2.2 A Dynamical System Producing a Sine Wave
From the theory of continuous-time dynamical systems, we know that an LTI system with poles on

the imaginary axis will produce a sinusoidal output. That is, a system with transfer function of the form

(4)

has an impulse response

, (5)

where is the unit step function. If the input to this system is a continuous-time signal and the
output is , then the relationship between the input and output can be described by the differential
equation

, (6)

where is the second derivative of . Suppose that the input is zero for all time,

. (7)

Then the output satisfies

. (8)

This output can be generated by the model shown in figure 12. As shown in the annotations in the fig-
ure, is calculated by multiplying by , is calculated by integrating , and is calculated by
integrating . If we set the initial state of the left integrator to 1.0 and run the model for 5 time units,
we get the result shown in figure 13.

The model in figure 12 shows two additional key features of the user interface, the mechanism for
connecting an output to multiple inputs (relations) and the mechanism for defining and using parame-
ters. We discuss these two mechanisms next.

H s()
ω0

s jω0�() s jω0+()
--

ω0

s2 ω0
2+

-----------------= =

h t() ω0t()sin u t()=

u t() x
y

ω0x t() ω0
2y t() y·· t()+=

y·· y

t ℜ x t(),∈∀ 0=

y·· t() ω0� 2y t()=

y·· y ω0� y y· y·

y··
A Hybrid System Visual Modeler 13

Continuous-Time Dynamical Systems
2.2.3 Making Connections
The models in figures 7 and 11 have simple connections between blocks. These connections are

made by clicking on one port and dragging to the other. The connection is maintained if either block is
moved. We can now explore how to create and manipulate more complicated connections, such as the
ones in figure 12, where the output of the right Integrator goes to both the Scale and the TimedPlotter
blocks. Such connections are mediated by a relation, indicated by a black diamond, as shown in figure
12. A relation can be linked to one output port and any number of input ports.

If we simply attempt to make the connections by clicking and dragging from the Integrator output
port to the two input ports in sequence, then we get the exception shown in figure 14. Such exceptions
can be intimidating, but are the normal and common way of reporting errors in HyVisual. The key line
in this exception report is the last one, which says

Attempt to link more than one relation to a single port.

FIGURE 12. Model that generates a sine wave if the integrators have a non-zero initial condition.

y··

y·

y

parameter

relation

FIGURE 13. Result of running the model in figure 12 with the initialState of the left integrator set to 1.0.
14 HyVisual

Continuous-Time Dynamical Systems
The line below that gives the names of the objects involved, which are

in .integratorSineWave.Integrator.output and .integratorSineWave.relation4

In HyVisual models, all objects have a dotted name. The dots separate elements in the hierarchy. Thus,
�.integratorSineWave.Integrator.output� is an object named �output� contained by an object named
�Integrator�, which is contained by a model named �integratorSineWave.�

Why did this exception occur? The diagram shows two distinct flavors of ports, indicated in the
diagrams by a filled triangle or an unfilled triangle. The output port of the Integrator block is a single
port, indicated by a filled triangle, which means that it can only support a single connection. The input
port of the TimedPlotter block is a multiport, indicated by unfilled triangles. Multiports can support
multiple connections, where each connection is treated as a separate channel. A channel is a path from
an output port to an input port (via relations) that can transport a single stream of tokens.

So how do we get the output of the Integrator to the other two actors? We need an explicit relation
in the diagram. A relation is represented in the diagram by a black diamond, as shown in Figure 15. It
can be created by either control-clicking on the background or by clicking on the button in the toolbar
with the black diamond on it.

Making a connection to a relation can be tricky, since if you just click and drag on the relation, the
relation gets selected and moved. To make a connection, hold the control button while clicking and
dragging on the relation.

FIGURE 14. An exception that results from attempting to make a multi-way connection without a relation.

FIGURE 15. A relation can be used to broadcast an output from a single port.

Click here to create
a relation, or control-
click on the background.
A Hybrid System Visual Modeler 15

Continuous-Time Dynamical Systems
In the model shown in figure 15, the relation is used to broadcast the output from a single port to a
number of places. The single port still has only one connection to it, a connection to a relation. Rela-
tions can also be used to control the routing of wires in the diagram. For example, in figure 15, the
relation is placed to the left of all the blocks in order to get a pleasing layout. However, as of this writ-
ing, a connection can only have a single relation on it, so the degree to which routing can be controlled
is limited.

The TimedPlotter in figure 15 has a multiport input, as indicated by the unfilled triangle. This
means that multiple channels of input can be connected directly to it. Consider the modification shown
in figure 16, where both and are connected (via relations) to the input port of the TimedPlotter.
The resulting plot is shown at the right. The two signals are treated by the block as distinct input sig-
nals coming in on separate channels.

2.2.4 Parameters
Figure 16 shows a parameter named �w� with value �2.0*PI.� That parameter is then used in the

Scale block to specify that the scale factor is �−(w^2).� This usage illustrates a number of convenient
features.

To create a parameter that is visible in the diagram, drag one in from the utilities library, as shown
in figure 17. Right click on the parameter to change its name to �w�. (In order to be able to use this
parameter in expressions, the name cannot have any spaces in it.) Also, right click or double click on
the parameter to change its default value to �2.0*PI.� This is an example of the sort of expressions you
can use to define parameter values. The expression language is described below in section 5.

The parameter, once created, belongs to the model. If you right click on the grey background and
select Configure, then you can edit the parameter value, just as you could by double clicking on the
parameter. The resulting dialog also allows you to create parameters that are not visible in the model.
The parameter is also visible and editable in the Run Window obtained via the View menu.

A parameter of the model can be used in expressions anywhere in the model, including in parame-
ter values for blocks within the model. In figure 16, for instance, the factor parameter of the Scale actor
has the value �−(w^2),� which references the parameter w.

2.2.5 Annotations
There are several other useful enhancements you could make to this model. Try dragging an anno-

tation from the utilities library and creating a title on the diagram. Also, try setting the title of the plot

FIGURE 16. Multiple signals can be sent to a multiport, shown with the unfilled triangle on the TimedPlotter. In
this case, two signals are plotted.

y y·
16 HyVisual

Continuous-Time Dynamical Systems
by clicking on the second button from the right in the row of buttons at the top right of the plot. This
button has the tool tip �Set the plot format� and brings up the format control window.

2.2.6 Impulse Response
Consider equation (6), which we repeat here for reference:

. (9)

Figure 12 and subsequent models based on this equation assume that the input is zero for all time,
, thus realizing equation (8). We can elaborate on this model by re-introducing the input, and

allowing it to be non-zero. The result is shown in figure 18, where the input is provided by a block
labeled �Clock.� Notice that the input is multiplied by , and then is subtracted from it to
obtain . I.e., it calculates

. (10)

FIGURE 17. Adding a parameter to the channel model.

ω0x t() ω0
2y t() y·· t()+=

x t() 0=

ω0 ω0
2y t()

y·· t()

y·· t() ω0x t() ω0
2y t()�=
A Hybrid System Visual Modeler 17

Continuous-Time Dynamical Systems
In the model, both integrators now have initialState set to 0.0. The plot in the figure shows the result of
running the model with an impulse as the input, resulting in an impulse response that matches (5).

The key question, however, is how can we generate an impulse for the input? In theory, an
impulse, also known as a Dirac delta function, is a continuous-time function that satisfies

. (11)

From these relations, it is easy to see that the Dirac delta function must have infinite value at ,
because otherwise it could not integrate to one. Hence, it is problematic to generate an impulse in a
continuous-time simulator.

The model shown in figure 18 uses a Clock actor to generate an approximate impulse. The param-
eters of the Clock actor are shown in figure 19. First, notice that numberOfCycles is set to 1. This
means that only one pulse will be generated. The pulse is defined by the offsets and values parameters.
The offsets parameter is set to {0.0, 1.0E-5}, which is an array with two numbers. The values parame-
ter is set to {1.0E5, 0.0}. Together, these mean that the output goes to value at time 0.0, and

FIGURE 18. Variant of figure 12 that has an input, which is provided by the Clock actor.

δ

δ t() 0 t 0≠∀,=

δ t() td

∞�

∞

∫ 1=

t 0=

FIGURE 19. Parameters of the Clock actor that get it to output an approximate impulse.

1.0 105×
18 HyVisual

Continuous-Time Dynamical Systems
then to value 0.0 at time . Thus, the output is a very narrow, very high rectangular pulse,
with unit area.

If you create a Clock and set these parameter values, and try to run the model, you are likely to see
the exception shown in figure 20. The problem here is that the default minStepSize value for the solver,
as shown in figure 3, is too large, given the very narrow pulse we are trying to generate. In this case, it
is sufficient to change the minStepSize parameter to 1.0E-9. Generally, the minStepSize parameter
needs to be considerably smaller than the smallest phenomenon in time that is being observed. It is
worth noting that even with this small value for minStepSize, the solver does not actually use step sizes
anywhere near this very often. You can examine which points in the output plot are actually computed
by the solver by turning on stems in the output plot.

2.2.7 Using Higher-Order Dynamics Blocks
Recall from (4) that a transfer function given by the Laplace transform

(12)

describes the system shown in figure 18. In fact, we could have constructed the system more easily by
using the ContinuousTransferFunction actor in the dynamics library, as shown in figure 21. That actor
has as parameters two arrays, numerator and denominator, which are set to {w} and {1.0, 0.0, w^2},
respectively. A portion of the documentation for that actor is shown in figure 22 (you can obtain this
documentation by right clicking on the actor icon and selecting Get Documentation). As indicated on
that page, the numerator and denominator parameters give the coefficients of the numerator and
denominator polynomials in (12).

Recall that to run this model, you will need to set the minStepSize parameter of the solver to
or smaller.

1.0 10 5�×

FIGURE 20. Exception due to running the model with the minStepSize parameter set too high.

H s()
ω0

s2 ω0
2+

-----------------=

FIGURE 21. A model equivalent to that in figure 18, but using the ContinuousTransferFunction actor.

10 9�
A Hybrid System Visual Modeler 19

Continuous-Time Dynamical Systems
An interesting curiosity about this actor is how it works. It works by creating a hierarchical model
similar to the one that we built by hand. If, after running the model at least once, you right click on the
ContinuousTransferFunction icon and select Look Inside (or type Control-L over the icon), you will
see an inside model that looks like that shown in figure 23. This model is hard to interpret, since all the
icons are placed one on top of the other at the upper left. You can select Automatic Layout from the
Graph menu to get something a bit easier to read, shown in figure 24. It is still far from perfect, but
with a bit of additional placement effort, you can verify that this model is functionally equivalent to the
one we constructed manually in figure 18.

FIGURE 22. A portion of the documentation for the ContinuousTransferFunction actor.

FIGURE 23. Inside the ContinuousTransferFunction actor of figure 21.
20 HyVisual

Continuous-Time Dynamical Systems
2.3 Data Types
In the example of figure 7, the ContinuousSinewave actor produces values on its output port. The

values in this case are double. You can examine the data types of ports after executing a model by sim-
ply lingering on the port with the mouse. A tooltip will appear, as shown in figure 25. Most actors in
the actor library are polymorphic, meaning that they can operate on or produce data with multiple
types. The behavior may even be different for different types. Multiplying matrices, for example, is not
the same as multiplying integers, but both are accomplished by the MultiplyDivide actor in the math
library. HyVisual includes a sophisticated type system1 that allows this to be done efficiently and
safely. Actors represent type constraints that relate the types of the their ports and parameters, and the
type system resolves the constraints, unless a conflict arises.

To explore data types a bit further, try creating the model in Figure 26. The Const and CurrentTime
actors are listed under timed sources within sources, the AddSubtract actor is listed under math, and
the MonitorValue actor is listed under timed sinks within sinks. Set the value parameter of the constant
to be 1. Running the model for 10.0 time units should result in 9.0 being displayed in MonitorValue, as

1. Developed by Yuhong Xiong and realized in Ptolemy II.

FIGURE 24. The diagram of figure 23, after invoking Automatic Layout from the Graph menu.

FIGURE 25. Tooltip showing the name and data type of the output port of the ContinuousSinewave of figure 7.
A Hybrid System Visual Modeler 21

Continuous-Time Dynamical Systems
shown in the figure. The output of the CurrentTime actor is a double, the output of the Const actor is an
int, and the AddSubtract actor adds these two to get a double.

Now for the real test: change the value of the Const actor to a string, such as "a" (with the quota-
tion marks). In fact, the Const actor can have as its value anything that can be given using the expres-
sion language, explained below in section 5. When you execute the model, you should see an
exception window, as shown in Figure 27. Do not worry; exceptions are a normal part of constructing
(and debugging) models. In this case, the exception window is telling you that you have tried to sub-
tract a string value from an double value, which doesn�t make much sense at all (following Java, add-
ing strings is allowed). This is an example of a type error.

We can make a small change to the model to get something that does not trigger an exception. Dis-
connect the Const from the lower port of the AddSubtract actor and connect it instead to the upper port,
as shown in Figure 28. You can do this by selecting the connection and deleting it (using the delete
key), then adding a new connection, or by selecting it and dragging one of its endpoints to the new
location. Notice that the upper port is an unfilled triangle; this indicates that it is a multiport, meaning
that you can make more than one connection to it. Now when you run the model you should see strings
like �10.0a�, as shown in the figure. This is the result of converting the double from CurrentTime to a
string �10.0,� and then adding the strings together (which, following Java, means concatenating them).

As a rough guideline, HyVisual will perform automatic type conversions when there is no loss of
information. An integer can be converted to a string, but not vice versa. An integer can be converted to
a double, but not vice versa. An integer can be converted to a long, but not vice versa.

FIGURE 26. Another example, used to explore data types in HyVisual.

FIGURE 27. An example that triggers an exception when you attempt to execute it. Strings cannot be subtracted
from doubles.
22 HyVisual

Continuous-Time Dynamical Systems
2.4 Hierarchy
HyVisual supports (and encourages) hierarchical models. These are models that contain compo-

nents that are themselves models. Such components are called composite actors. Suppose we wish to
take the sine wave generated by the previous examples and send it through a model of a noisy channel.
We will create a composite actor modeling the channel, and then use that actor in a model.

2.4.1 Creating a Composite Actor
First open a new graph editor and drag in a Typed Composite Actor from the utilities library. This

actor is going to add noise to our measurements. First, using the context menu (obtained by right click-
ing over the composite actor), select �Customize Name�, and give the composite a better name, like
�Channel�, as shown in Figure 29. Then, using the context menu again, select �Look Inside� on the
actor. You should get a blank graph editor, as shown in Figure 30. The original graph editor is still
open. To see it, move the new graph editor window by dragging the title bar of the window. Notice that
the new window has no solver. It will be executed by the solver belonging to the parent model.

2.4.2 Adding Ports to a Composite Actor
First we have to add some ports to the composite actor. There are several ways to do this, but click-

ing on the port buttons in the toolbar is probably the easiest. You can explore the ports in the toolbar by
lingering with the mouse over each button in the toolbar. A tool tip pops up that explains the button.

FIGURE 28. Addition of a string to an integer.

FIGURE 29. Changing the name of an actor.
A Hybrid System Visual Modeler 23

Continuous-Time Dynamical Systems
The buttons are summarized in Figure 31. Create an input port and an output port and rename them
input and output right by clicking on the ports and selecting �Customize Name�. Note that, as shown in
Figure 32, you can also right click on the background of the composite actor and select Configure
Ports to change whether a port is an input, an output, or a multiport. The resulting dialog also allows

FIGURE 30. Looking inside a composite actor.

FIGURE 31. Summary of toolbar buttons for creating new ports.

New input port
New output port
New input/output port
New input multiport
New output multiport
New input/output multiport

FIGURE 32. Right clicking on the background brings up a dialog that can be used to configure ports.
24 HyVisual

Continuous-Time Dynamical Systems
you to set the type of the port, although much of the time you will not need to do this, since the type
inference mechanism in Ptolemy II will figure it out from the connections.

Then using these ports, create the diagram shown in Figure 331. The Gaussian actor creates values
from a Gaussian distributed random variable, and is found in the random library. Now if you close this
editor and return to the previous one, you should be able to easily create the model shown in figure 34,
similar to the model in figure 7, but with a channel. Notice that both our new Channel actor and the
ContinuousSinewave actor have a red outline. The ContinuousSinewave actor is also a composite actor
(try looking inside). If you execute this model, you should see something like the plot shown in figure
34.

2.4.3 Setting the Types of Ports
In the above example, we never needed to define the types of any ports. The types were inferred

from the connections. Indeed, this is usually the case in Ptolemy II, but occasionally, you will need to
set the types of the ports. Notice in Figure 32 that there is a position in the dialog box that configures
ports for specifying the type. Thus, to specify that a port has type boolean, you could enter boolean
into the dialog box. There are other commonly used types: complex, double, fixedpoint, general, int,
long, matrix, object, scalar, string, and unknown. To set the type to a double matrix, say:

[double]

This expression actually creates a 1 by 1 matrix containing a double (the value of which is irrelevant).
It thus serves as a prototype to specify a double matrix type. Similarly, we can specify an array of com-
plex numbers as

1. Hint: to create a connection starting on one of the external ports, hold down the control key
when dragging.

FIGURE 33. A simple channel model defined as a composite actor.

FIGURE 34. A model producing a noisy sine wave.
A Hybrid System Visual Modeler 25

Continuous-Time Dynamical Systems
{complex}

In the Ptolemy II expression language, square braces are used for matrices, and curly braces are used
for arrays. To specify a record containing a string named �name� and an integer named �address,� say:

{name=string, address=int}

2.5 Discrete Signals and Mixed-Signal Models
Continuous-time signals can be combined with discrete-event signals in the same model. A dis-

crete signal in HyVisual is one that consists of events that are placed on the time line and have a value.
If a discrete signal is examined at a time where there is no event, then the signal will have no value. For
some actors, this is an error. Continuous actors cannot read discrete signals. Most actors can handle
either signal, however, so usually it does not require much effort to mix the two types of signals. For
example, most of the math actors are equally content working on continuous signals as discrete sig-
nals.

Discrete signals are generated by the actors in the to discrete library. These include an actor to sim-
ply periodically generate discrete events, level-crossing detectors, samplers (like that shown in figure
11), and a threshold monitor. Discrete signals are converted to continuous signals by the actors in the to
continuous library. These include a zero-order hold and a first-order hold.

Usually, HyVisual will infer automatically whether a signal is discrete or continuous, but occasion-
ally, you will need to help it. Whether a signal is DISCRETE or CONTINUOUS is referred to as its sig-
nal type (do not confuse this with the data type of the signal, which indicates, for example, whether it�s
a double or an int).

Some actors declare the signal types of their ports. For example, an Integrator has a CONTINU-
OUS input and a CONTINUOUS output; a PeriodicSampler has a CONTINUOUS input and a DIS-
CRETE output; a TriggeredSampler has one CONTINUOUS input (the input), one DISCRETE input
(the trigger), and a DISCRETE output; and a ZeroOrderHold has a DISCRETE input and a CONTIN-
UOUS output.

Certain other actors declare that they operate only on sequences of data tokens (they declare this
by implementing the SequenceActor interface). Their inputs and outputs are treated as DISCRETE.
Unless otherwise specified, the types of the input ports and output ports of an actor are the same.

Sometimes, conflicts arise, and you will need to force a port to be either discrete or continuous. To
do this, add a parameter named �signalType� to the port. The signal type system will recognize this
parameter (by name) and resolve other types accordingly. To add this parameter, right click on the port,
select Configure, then click on Add. Give the parameter as a value either the string "CONTINUOUS"
or "DISCRETE", including the quotation marks.

Signal types can become an issue particularly at the boundaries of state or transition refinements,
which occur in Hybrid systems, as explained below.

2.6 Navigating Larger Models
Sometimes, a model gets large enough that it is not convenient to view it all at once. There are four

toolbar buttons, shown in Figure 2.27 that help. These buttons permit zooming in and out. The �Zoom
26 HyVisual

Hybrid Systems
reset� button restores the zoom factor to the �normal� one, and the �Zoom fit� calculates the zoom fac-
tor so that the entire model is visible in the editor window.

In addition, it is possible to pan over a model. Consider the window shown in figure 36. Here, we
have zoomed in on the Lorenz attractor model of figure 2 so that icons are larger than the default. The
pan window at the lower left shows the entire model, with a red box showing the visible portion of the
model. By clicking and dragging in the pan window, it is easy to navigate around the entire model.
Clicking on the �Zoom fit� button in the toolbar results in the editor area showing the entire model,
just as the pan window does.

3. Hybrid Systems

FIGURE 35. Summary of toolbar buttons for zooming and fitting.

Zoom in
Zoom reset
Zoom fit
Zoom out

FIGURE 36. The pan window at the lower left has a red box representing the visible are of the model in the main
editor window. This red box can be moved around to view different parts of the model.
A Hybrid System Visual Modeler 27

Hybrid Systems
Hybrid systems are models that combine continuous dynamics with discrete mode changes. They
are created in HyVisual by creating a modal model, found in the utilities library. We start by examining
a pre-built modal model, and conclude by illustrating how to construct one.

3.1 Examining a Pre-Built Model
The third example in figure 1 is a simple hybrid system model of a bouncing ball. The top-level

contents of this model is shown in figure 37. It contains only two actors, a Ball Model and a TimedPlot-
ter. The Ball Model is an instance of the modal model found in the utilities library, but renamed. If you
execute the model, you should see a plot like that in the figure. The continuous dynamics correspond to
the times when the ball is in the air, and the discrete events correspond to the times when the ball hits
the surface and bounces.

If you look inside the Ball Model, you will see something like figure 38. Figure 38 shows a state-
machine editor, which has a slightly different toolbar and a significantly different library at the left.
The circles in figure 38 are states, and the arcs between circles are transitions between states. A modal
model is one that has modes, which represent regimes of operation. Each mode in a modal model is
represented by a state in a finite-state machine.

The state machine in figure 38 has three states, named init, free, and stop. The init state is the ini-
tial state, which is set as shown in figure 39. The free state represents the mode of operation where the
ball is in free fall, and the stop state represents the mode where the ball has stopped bouncing.

At any time during the execution of the model, the modal model is in one of these three states.
When the model begins executing, it is in the init state. During the time a modal model is in a state, the
behavior of the modal model is specified by the refinement of the state. The refinement can be exam-
ined by looking inside the state. As shown in figure 40, the init state has no refinement.

Consider the transition from init to free. It is labeled as follows:

true
free.initialPosition = initialPosition; free.initialVelocity = 0.0

FIGURE 37. Top level of the bouncing
ball example.
28 HyVisual

Hybrid Systems
The first line is a guard, which is predicate that determines when the transition is enabled. In this case,
the transition is always enabled, since the predicate has value true. Thus, the first thing this model will
do is take this transition and change modes to free. The second line specifies a sequence of actions,
which in this case set parameters of the destination mode free.

If you look inside the free state, you will see the refinement shown in figure 41. This model repre-
sents the laws of gravity, which state that an object of any mass will have an acceleration of roughly

FIGURE 38. Inside the Ball Model of figure 37.

FIGURE 39. The initial state of a state machine is set by right clicking on the background and specifying the state
name.
A Hybrid System Visual Modeler 29

Hybrid Systems
 meters/second2 (roughly). The acceleration is integrated to get the velocity. which is, in turn, inte-
grated to get the vertical position.

In figure 41, a ZeroCrossingDetector actor is used to detect when the vertical position of the ball is
zero. This results in production of an event on the (discrete) output bump. Examining figure 38, you
can see that this event triggers a state transition back to the same free state, but where the initialVeloc-
ity parameter is changed to reverse the sign and attenuate it by the elasticity. This results in the ball
bouncing, and losing energy, as shown by the plot in figure 37.

As you can see from figure 38, when the position and velocity of the ball drop below a specified
threshold, the state machine transitions to the state stop, which has no refinement. This results in the
model producing no further output.

3.2 Numerical Precision and Zeno Conditions
The bouncing ball model of figures 37 and 38 illustrates an interesting property of hybrid system

modeling. The stop state, it turns out, is essential. Without it, the time between bounces keeps decreas-
ing, as does the magnitude of each bounce. At some point, these numbers get smaller than the repre-
sentable precision, and large errors start to occur. If you remove the stop state from the FSM, and re-
run the model, you get the result shown in figure 42. The ball, in effect, falls through the surface on
which it is bouncing and then goes into a free-fall in the space below.

The error that occurs here illustrates some fundamental pitfalls with hybrid system modeling. The
event detected by the ZeroCrossingDetector actor can be missed by the simulator. This actor works
with the solver to attempt to identify the precise point in time when the event occurs. It ensures that the
simulation includes a sample time at that time. However, when the numbers get small enough, numeri-
cal errors take over, and the event is missed.

A related phenomenon is called the Zeno phenomenon. In the case of the bouncing ball, the time
between bounces gets smaller as the simulation progresses. Since the simulator is attempting to capture

FIGURE 40. A state may or may not have a refinement, which specified the behavior of the model while the model i
in that state. In this case, init has no refinement.

FIGURE 41. The refinement of the free state, shown here, is a continuous-model representing the laws of gravity.

10�
30 HyVisual

Hybrid Systems
every bounce event with a time step, we could encounter the problem where the number of time steps
becomes infinite over a finite time interval. This makes it impossible for time to advance. In fact, in
theory, the bouncing ball example exhibits this Zeno phenomenon. However, numerical precision
errors take over, since the simulator cannot possibly keep decreasing the magnitude of the time incre-
ments.

The lesson is that some caution needs to be exercised when relying on the results of a simulation of
a hybrid system. Use your judgement.

3.3 Constructing Modal Models
A modal model is a component in a larger continuous-time model. You can create a modal model

by dragging one in from the utilities library. By default, it has no ports. To make it useful, you will
need to add ports. The mechanism for doing that is identical to adding ports to a composite model, and
is explained in section 2.4. Figure 37 shows a top-level continuous-time model with a single modal
model that has been renamed Ball Model. Three output ports have been added to that modal model, but
only the top one is used. It gives the vertical distance of the ball from the surface on which it bounces.

If you create a new modal model by dragging it in from the utilities library, create an output port
and name it output, and then look inside, you will get an FSM editor like that shown in figure 43. Note
that the output port is (regrettably) located at the upper left, and is only partially visible. The annota-
tion text suggests delete once you no longer need it. You may want to move the port to a more reason-
able location (where it is visible).

The output port that you created is in fact indicated in the state machine as being both an output
and input port. The reason for this is that guards in the state machine can refer to output values that are
produced on this port by refinements. In addition, the output actions of a transition can assign an out-
put value to this port. Hence, the port is, in fact, both an output and input for the state machine.

To create a finite-state machine like that in figure 38, drag in states (white circles), or click on the
state icon in the toolbar. You can rename these states by right clicking on them and selecting �Custom-
ize Name�. Choose names that are pertinent to your application. In figure 38, there is an init state for
initialization, a free state for when the ball is in the air, and a stop state for when the ball is no longer
bouncing. You must specify the initial state of the FSM by right clicking on the background of the
FSM Editor, selecting �Edit Parameters�, and specifying an initial state name, as shown in figure 39. In
that figure, the initial state is named init.

FIGURE 42. Result of running the bouncing ball model without the stop state.
A Hybrid System Visual Modeler 31

Hybrid Systems
3.3.1 Creating Transitions
To create transitions, you must hold the control button on the keyboard while clicking and drag-

ging from one state to the next (a transition can also go back to the same state). The handles on the
transition can be used to customize its curvature and orientation. Double clicking on the transition (or
right clicking and selecting �Configure�) allows you to configure the transition. The dialog for the
transition from init to free is shown in Figure 44. In that dialog, we see the following:
� The guard expression is true, so this transition is always enabled. The transition will be taken as

soon as the model begins executing. A guard expression can be any boolean-valued expression
that depends on the inputs, parameters, or even the outputs of any refinement of the current state
(see below). Thus, this transition is used to initialize the model.

� The output actions are empty, meaning that when this transition is taken, no output is specified.
This parameter can have a list of assignments of values to output ports, separated by semicolons.
Those values will be assigned to output ports when the transition is taken.

FIGURE 43. Inside of a new modal model that has had a single output port added.

output port

FIGURE 44. Transition dialog for the transition from init to free in Figure 37.
32 HyVisual

Hybrid Systems
� The set actions field contains the following statements:

free.initialPosition = initialPosition; free.initialVelocity = 0.0

The �free� in these expressions refers to the mode refinement in the free state. Thus, free.initialPo-
sition is a parameter of that mode refinement. Here, its value is assigned to the value of the param-
eter initialPosition. The parameter free.initialVelocity is set to zero.

� The reset parameter is set to true, meaning that the destination mode refinement will be initialized
when the transition is taken.

� The preemptive parameter is set to false. In this case, it makes no difference, since the init state has
no refinement. Normally, if a transition out of a state is enabled and preemptive is true, then the
transition will be taken without first executing the refinement. Thus, the refinement will not affect
the outputs of the modal model.

A state may have several outgoing transitions. However, it is up to the model builder to ensure that at
no time does more than one guard on these transitions evaluate to true. In other words, HyVisual does
not allow nondeterministic state machines, and will throw an exception if it encounters one.

3.3.2 Creating Refinements
Both states and transitions can have refinements. To create a refinement, right click on the state or

transition, and select �Add Refinement.� You will see a dialog like that in figure 46. As shown in the
figure, you will be offered the alternatives of a �Continuous Time Refinement� or a �State Machine
Refinement.� The first of these provides a continuous-time model as the refinement. The second pro-
vides another finite state machine as the refinement. In the former case (the default), an almost blank
refinement model will open, as shown in the figure. As before, the output port will appear in an incon-
venient location. You will almost certainly want to move it to a more convenient location.

You can also create refinements for transitions, but these have somewhat different behavior. They
will execute exactly once when the transition is taken. For this reason, they offer an entirely different
�solver.� In fact, transition refinements will execute according to dataflow semantics. They are typi-

FIGURE 45. Adding a refinement to a state.

output port
A Hybrid System Visual Modeler 33

Using the Plotter
cally used to perform arithmetic computations that are too elaborate to be conveniently specified as an
action on the transition.

Once you have created a refinement, you can look inside a state or transition. For the bouncing ball
example, the refinement of the free state is shown in figure 41. This model exhibits certain key proper-
ties of refinements:
� Refinements must contain solvers, unlike composite actors. In this case, the solver is named

�Refinement Solver� and is an instance of the CTEmbeddedDirector class.
� The refinement has the same ports as the modal model, and can read input value and specify output

values. When the state machine is in the state of which this is the refinement, this model will be
executed to read the inputs and produce the outputs.

3.4 Execution Semantics
The behavior of a refinement is simple. When the modal model is executed, the following

sequence of events occurs:
� For any transitions out of the current state for which preemptive is true, the guard is evaluated. If

exactly one such guard evaluates to true, then that transition is chosen. The output actions of the
transition are executed, and the refinements of the transition (if any) are executed, followed by the
set actions.

� If no preemptive transition evaluated to true, then the refinement of the current state, if there is
one, is evaluated at the current time step.

� Once the refinement has been evaluated (and it has possibly updated its output values), the guard
expressions on all the outgoing transitions of the current state are evaluated. If none is true, the
execution is complete. If one is true, then that transition is taken. If more than one is true, then an
exception is thrown (the state machine is nondeterministic). What it means for the transition to be
�taken� is that its output actions are executed, its refinements (if any) are executed, and its set
actions are executed.

� If reset is true on a transition that is taken, then the refinement of the destination mode (if there is
one) is initialized.

There is a subtle distinction between the output actions and the set actions. The intent of these two
fields on the transition is that output actions are used to define the values of output ports, while set
actions are used to define state variables in the refinements of the destination modes. The reason that
these two actions are separated is that while solving a continuous-time system of equations, the solver
may speculatively execute models at certain time steps before it is sure what the next time step will be.
The output actions make no permanent changes to the state of the system, and hence can be executed
during this speculative phase. The set actions, however, make permanent changes to the state variables
of the destination refinements, and hence are not executed during the speculative phase.

4. Using the Plotter
Several of the plots shown above have flaws that can be fixed using the features of the plotter. For

instance, the plot shown in figure 16 has the default (uninformative) title, the axes are not labeled, and
there is no legend.

The TimedPlotter actor has some pertinent parameters, shown in figure 46. The fillOnWrapup
parameter specifies whether the plot should fill the available screen area when the model completes
34 HyVisual

Using the Plotter
execution. The default value is true, and for finite executions, this is often the most useful value. The
legend parameter can be used to identify signals. It is a comma-separated listed of names that will be
attached to signals. With the values shown in figure 46, the resulting plot looks like figure 47. The
startingDataset parameter is used when two actors share the same plot, and is beyond the scope of this
discussion.

The plot in figure 47 is better, but it is still missing useful information. To control more precisely
the visual appearance of the plot, click on the second button from the right in the row of buttons at the
top right of the plot. This button brings up a format control window. It is shown in figure 48, filled in

FIGURE 46. Parameters of the TimedPlotter actor.

FIGURE 47. A plot with a legend.

FIGURE 48. Format control window for a plot.
A Hybrid System Visual Modeler 35

Expressions
with values that result in the plot shown in figure 49. Most of these are self-explanatory, but the fol-
lowing pointers may be useful:
� The grid is turned off to reduce clutter.
� Titles and axis labels have been added.
� The X range and Y range are determined by the fill button at the upper right of the plot.
� Stem plots can be had by clicking on �Stems.�
� Individual sample points can be shown by clicking on �dots.�
� Connecting lines can be eliminated by deselecting �connect.�
� The Y axis label has been changed to text rather than numbers. This is done by entering the follow-

ing in the Y Ticks field:

“minus one” -1.0, zero 0.0, one 1.0

The syntax in general is:

label value, label value, ...
where the label is any string (enclosed in quotation marks if it includes spaces), and the value is a num-
ber.

5. Expressions
In HyVisual, models specify computations by composing actors. Many computations, however,

are awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as �sin(2π (x-1)).� It is possible to express this computation by composing actors in a
block diagram, but it is far more convenient to give it textually.

The expression language provides infrastructure for specifying algebraic expressions textually and
for evaluating them. The expression language is used to specify the values of parameters, guards and
actions in state machines, and for the calculation performed by the Expression actor. In fact, the
expression language is part of the generic infrastructure in Ptolemy II, upon which HyVisual is built.

FIGURE 49. Still better labeled plot.
36 HyVisual

Expressions
5.1 Simple Arithmetic Expressions
5.1.1 Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the con-
stant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e, true, false,
i, and j. for example,

PI/2.0

is a valid expression that refers to the symbolic name �PI� and the literal �2.0.� The constants i and j
are complex numbers with value equal to 0.0 + 1.0i.

Numerical values without decimal points, such as �10� or �-3� are integers. Numerical values with
decimal points, such as �10.0� or �3.14159� are doubles. Integers followed by the character �l� (el) or
�L� are long integers. Integers beginning with a leading �0� are octal numbers. Integers beginning with
a leading �0x� are hexadecimal numbers. For example, �012� and �0xA� are both the integer 10. In
releases later than Ptolemy II 2.0.1, but not including 2.0.1 itself, integers followed by �ub� or �UB�
are unsigned bytes, as in �5ub�. Literal string constants are also supported. Anything between quotes,
�...�, is interpreted as a string constant.

A complex is defined by appending an �i� or a �j� to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token
classes to create a general complex number. Thus �2 + 3i� will result in the expected complex num-
ber. You can optionally write this �2 + 3*i�.

5.1.2 Summary of Supported Types
The types currently supported in the expression language are boolean, unsigned byte, complex,

fixedpoint, double, int, long, array, matrix, record, and string. The composite types, array, matrix, and
record, are described below in section 5.3. Note that there is no float (as yet). Use double or int instead.
A long is defined by appending an integer with �l� (lower case L) or �L�, as in Java. A fixed point
number is defined using the �fix� function, as will be explained below in section 5.5.

5.1.3 Variables
Expressions can contain references to variables within the scope of the expression. For example,

PI*x/2.0

is valid if �x� is a variable in scope. In the context of Ptolemy II models, the variables in scope include
all parameters defined at the same level of the hierarchy or higher. So for example, if an actor has a
parameter named �x� with value 1.0, then another parameter of the same actor can have an expression
with value �PI*x/2.0�, which will evaluate to π /2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting �Con-
figure� and then clicking on �Add�, or by dragging in a parameter from the utilities library. Thus, you
A Hybrid System Visual Modeler 37

Expressions
can add variables to any scope, a capability that serves the same role as the �let� construct in many pro-
gramming languages.

5.1.4 Operators
The arithmetic operators are +, −, *, /, ^, and %. Most of these operators operate on most data

types, including matrices. The ^ operator computes �to the power of� where the power can only be an
integer. The bitwise operators are &, |, #, and ~. They operate on integers, where & is bitwise and, ~ is
bitwise not, and | is bitwise or, and # is bitwise exclusive or (after MATLAB).

The relational operators are <, <=, >, >=, == and !=. They return booleans. Boolean-valued expres-
sions can be used to give conditional values. The syntax for this is

boolean ? value1 : value2

If the boolean is true, the value of the expression is value1; otherwise, it is value2.
The logical boolean operators are &&, ||, !, & and |. They operate on booleans and return booleans.

The difference between logical && and logical & is that & evaluates all the operands regardless of
whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed from
Java.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performs a logical right shift, which does not preserve the sign.

5.1.5 Comments
In expressions, anything inside /*...*/ is ignored, so you can insert comments.

5.2 Uses of Expressions
5.2.1 Parameters

The values of most parameters of actors can be given as expressions1. The variables in the expres-
sion refer to other parameters that are in scope, which are those contained by the same container or
some container above in the hierarchy. Adding parameters to actors is straightforward, as explained in
section 2.2.4.

5.2.2 Port Parameters
It is possible to define a parameter that is also a port. Such a PortParameter provides a default

value, which is specified like the value of any other parameter. When the corresponding port receives
data, however, the default value is overridden with the value provided at the port. Thus, this object
function like a parameter and a port. The current value of the PortParameter is accessed like that of any
other parameter. Its current value will be either the default or the value most recently received on the
port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a com-
posite actor, drag it into a model from the utilities library, as shown in figure 50. The resulting icon is
actually a combination of two icons, one representing the port, and the other representing the parame-

1. The exceptions are parameters that are strictly string parameters, in which case the value of
the parameter is the literal string, not the string interpreted as an expression, as for example
the function parameter of the TrigFunction actor, which can take on only �sin,� �cos,�
�tan�, �asin�, �acos�, and �atan� as values.
38 HyVisual

Expressions
ter. These can be moved separately, but doing so might create confusion, so we recommend selecting
both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, �portParameter,� is not
very compelling). To change the name, right click on the icon and select �Customize Name,� as shown
in figure 50. In the figure, the name is set to �noiseLevel.� Then set the default value by either double
clicking or selecting �Configure.� In the figure, the default value is set to 10.0.

In a continuous-time model, if a PortParameter is supplied with discrete data at the port, then it
must be declared DISCRETE. To do this, create a parameter in the PortParameter with name signal-
Type and value "DISCRETE" (with the quotation marks).

5.2.3 Expression Actor
The Expression actor is a particularly useful actor found in the math library. By default, it has one

output an no inputs, as shown in Figure 51(a). The first step in using it is to add ports, as shown in (b)
and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on Add, you will be
prompted for a Name (pick one) and a Class. Leave the Class entry blank and click OK. You then spec-
ify an expression using the port names, as shown in (e), resulting in the icon shown in (f).

5.2.4 State Machines
Expressions give the guards for state transitions, as well as the values used in actions that produce

outputs and actions that set values of parameters in the refinements of destination states. This mecha-
nism was explained earlier.

FIGURE 50. A portParameter is both a port and a parameter. To use it in a composite actor, drag it into the actor,
change its name to something meaningful, and set its default value.

customize the name:
A Hybrid System Visual Modeler 39

Expressions
5.3 Composite Data Types
5.3.1 Arrays

Arrays are specified with curly brackets, e.g., �{1, 2, 3}� is an array of integers, while �{"x",
"y", "z"}� is an array of strings. An array is an ordered list of tokens of any type, with the only con-
straint being that the elements all have the same type. Thus, for example, �{1, 2.3}� is illegal because
the first element is an integer and the second is a double. The elements of the array can be given by
expressions, as in the example �{2*pi, 3*pi}.� Arrays can be nested; for example, �{{1, 2}, {3, 4, 5}}�
is an array of arrays of integers.

5.3.2 Matrices
In HyVisual, arrays are ordered sets of tokens. Ptolemy II also supports matrices, which are more

specialized than arrays. They contain only primitive types, currently boolean, complex, double, fixed-
point, int, and long. Matrices cannot contain arbitrary tokens, so they cannot, for example, contain
matrices. They are intended for data intensive computations.

Matrices are specified with square brackets, using commas to separate row elements and semico-
lons to separate rows. E.g., �[1, 2, 3; 4, 5, 5+1]� gives a two by three integer matrix (2 rows and 3 col-
umns). Note that an array or matrix element can be given by an expression, but all elements must have
the same type, and that type must be one of the types for which matrices are defined. A row vector can
be given as �[1, 2, 3]� and a column vector as �[1; 2; 3]�. Some MATLAB-style array constructors are

FIGURE 51. Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e) (f)
40 HyVisual

Expressions
supported. For example, �[1:2:9]� gives an array of odd numbers from 1 to 9, and is equivalent to �[1,
3, 5, 7, 9].� Similarly, �[1:2:9; 2:2:10]� is equivalent to �[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].� In the syntax
�[p:q:r]�, p is the first element, q is the step between elements, and r is an upper bound on the last ele-
ment. That is, the matrix will not contain an element larger than r.

Reference to matrices have the form �name(n, m)� where name is the name of a matrix variable in
scope, n is the row index, and m is the column index. Index numbers start with zero, as in Java, not 1,
as in MATLAB.

5.3.3 Records
A record token is a composite type where each element is named, and each element can have a dis-

tinct type. Records are delimited by curly braces, with each element given a name. For example,
�{a=1, b="foo"}� is a record with two elements, named �a� and �b�, with values 1 (an integer) and
�foo� (a string), respectively. The value of a record element can be an arbitrary expression, and records
can be nested (an element of a record token may be a record token).

Fields of records may be accessed using the period operator. For example,
{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:
{a=1,b=2}.a()

5.4 Functions and Methods
5.4.1 Functions

The expression language includes an extensible set of functions, such as sin(), cos(), etc. The func-
tions that are built in include all static methods of the java.lang.Math class and the
ptolemy.data.expr.UtilityFunctions class. This can easily be extended by registering another class that
includes static methods. The functions currently available are shown in Figures 52 and 53, with the
argument types and return types1.

One slightly subtle function is the random() function shown in Figure 52. It takes no arguments,
and hence is written �random()�. It returns a random number. However, this function is evaluated
only when the expression within which it appears is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. The random() function is not called again. Thus,
for example, if the value parameter of the Const actor is set to �random()�, then its output will be a
random constant, i.e., it will not change on each firing.

The property() function accesses system properties by name. Some possibly useful system proper-
ties are:
� ptolemy.ptII.dir: The directory in which Ptolemy II is installed.
� ptolemy.ptII.dirAsURL: The directory in which Ptolemy II is installed, but represented as a URL.
� user.dir: The current working directory, which is usually the directory in which the current execut-

able was started.

1. At this time, in release 2.0, the types must match exactly for the expression evaluator to work. Thus, �sin(1)�
fails, because the argument to the sin() function is required to be a double.
A Hybrid System Visual Modeler 41

Expressions
FIGURE 52. Functions available to the expression language from the java.lang.Math class.

function argument type(s) return type description

abs double double absolute value

abs int int absolute value

abs long long absolute value

acos double double arc cosine

asin double double arc sine

atan double double arc tangent

atan2 double, double double angle of a vector

ceil double double ceiling function

cos double double cosine

exp double double exponential function (e^argument)

floor double double floor function

IEEEremainder double, double double remainder after division

log double double natural logarithm

max double, double double maximum

max int, int int maximum

max long, long long maximum

min double, double double minimum

min int, int int minimum

min long, long long minimum

pow double, double double first argument to the power of the second

random double random number between 0.0 and 1.0

rint double double round to the nearest integer

round double long round to the nearest integer

sin double double sine function

sqrt double double square root

tan double double tangent function

toDegrees double double convert radians to degrees

toRadians double double convert degrees to radians
42 HyVisual

Expressions
5.4.2 Methods
Every element and subexpression in an expression represents an instance of the Token class in

Ptolemy II (or more likely, a class derived from Token). The expression language supports invocation
of any method of a given token, as long as the arguments of the method are of type Token and the
return type is Token (or a class derived from Token, or something that the expression parser can easily
convert to a token, such as a string, double, int, etc.). The syntax for this is (token).methodName(args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but
might be useful for clarity. As an example, the ArrayToken class has a getElement(int) method, which
can be used as follows:

{1, 2, 3}.getElement(1)

This returns the integer 2. Another useful function of array token is illustrated by the following exam-
ple:

{1, 2, 3}.length()

FIGURE 53. Functions available to the expression language from the ptolemy.data.expr.UtilityFunctions class.
This class is still at a preliminary stage, and the function it provides will grow over time.

function argument type(s) return type description

constants none record Record identifying all the globally defined constants in
the expression language.

freeMemory none long Return the approximate number of bytes available for
future memory allocation.

gaussian double, double double Gaussian random variable with the specified mean, and
standard deviation

gaussian double, double, int, int double matrix Gaussian random matrix with the specified mean, stan-
dard deviation, rows, and columns

property string string Return a system property with the specified name from
the environment, or an empty string if there is none.

readFile string string Get the string text in the specified file. Return an empty
string if the file is not found.

readMatrix string double matrix Read a file that contains a matrix of reals in MATLAB
notation.

repeat int, general array Create an array by repeating the specified token the
specified number of times.

totalMemory long none Return the approximate number of bytes used by current
objects plus those available for future object allocation.

findFile string string Return an absolute file name given one that is relative to
the user directory or the classpath.
A Hybrid System Visual Modeler 43

Expressions
which returns the integer 3.
The MatrixToken classes have three particularly useful methods, illustrated in the following exam-

ples:

[1, 2; 3, 4; 5, 6].getRowCount()

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns {1, 2, 3, 4, 5, 6}. The latter function can be particularly useful for creating arrays using
MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100].toArray()

The get() method of RecordToken accesses a record field, as in the following example:

{a=1, b=2}.get("a")

which returns 1.
The Token classes from the data package form the primitives of the language. For example the

number 10 becomes an IntToken with the value 10 when evaluating an expression. Normally this is
invisible to the user. The expression language is object-oriented, of course, so methods can be invoked
on these primitives. A sophisticated user, therefore, can make use of the fact that �10� is in fact an
object to invoke methods of that object.

In particular, the convert() method of the Token class might be useful, albeit a bit subtle in how it
is used. For example:

double.convert(1)

creates a DoubleToken with value 1.0. The variable double is a built-in constant with type double. The
convert() method of DoubleToken converts the argument to a DoubleToken, so the result of this
expression is 1.0. A more peculiar way to write this is

(1.2).convert(1)

Any double constant will work in place of 1.2. Its value is irrelevant.
The convert() method supports only lossless type conversion. Lossy conversion has to be done

explicitly via a function call.
44 HyVisual

Expressions
5.5 Fixed Point Numbers
Ptolemy II includes a preliminary fixed point data type. We represent a fixed point value in the

expression language using the following format:

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
integer part can be represented as:

fix(5.375, 8, 4)

The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable with the specified precision. If the value to represent is out of range, then it is saturated, mean-
ing that the maximum or minimum fixed point value is returned, depending on the sign of the specified
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.
In addition to the fix() function, the expression language offers a quantize() function. The argu-

ments are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMa-
trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are
available:
� To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation
with 4 bits used in the integer part. This may lead to quantization errors. By default the round
quantizer is used.

� To create a Matrix with FixPoint values using the expression language:
fix([-.040609, -.001628, .17853], 10, 2)
This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a Fix-
Point value with precision(10/2). The resulting FixMatrixToken will try to fit each element of
the given double matrix into a 10 bit representation with 2 bits used for the integer part. By
default the round quantizer is used.

� To create a single DoubleToken, which is the quantized version of the double value given, using
the expression language:
quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may
lead to quantization errors. By default the round quantizer is used.

� To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize([-.040609, -.001628, .17853], 10, 2)
A Hybrid System Visual Modeler 45

Expressions
This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are
obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the
integer part. Instead of being a fixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.
46 HyVisual

	HyVisual: A Hybrid System Visual Modeler
	Contents
	1. Introduction 5
	1.1. Installation and Quick Start 5
	1.1.1. Web Start 5
	1.1.2. Standard Installers 6
	1.1.3. CD 6

	2. Continuous-Time Dynamical Systems 7
	2.1. Executing a Pre-Built Model 7
	2.2. Creating a New Model 9
	2.2.1. A Simple Sine Wave Model 10
	2.2.2. A Dynamical System Producing a Sine Wave 13
	2.2.3. Making Connections 14
	2.2.4. Parameters 16
	2.2.5. Annotations 16
	2.2.6. Impulse Response 17
	2.2.7. Using Higher-Order Dynamics Blocks 19

	2.3. Data Types 21
	2.4. Hierarchy 23
	2.4.1. Creating a Composite Actor 23
	2.4.2. Adding Ports to a Composite Actor 23
	2.4.3. Setting the Types of Ports 25

	2.5. Discrete Signals and Mixed-Signal Models 26
	2.6. Navigating Larger Models 26

	3. Hybrid Systems 27
	3.1. Examining a Pre-Built Model 28
	3.2. Numerical Precision and Zeno Conditions 30
	3.3. Constructing Modal Models 31
	3.3.1. Creating Transitions 32
	3.3.2. Creating Refinements 33

	3.4. Execution Semantics 34

	4. Using the Plotter 34
	5. Expressions 36
	5.1. Simple Arithmetic Expressions 37
	5.1.1. Constants and Literals 37
	5.1.2. Summary of Supported Types 37
	5.1.3. Variables 37
	5.1.4. Operators 38
	5.1.5. Comments 38

	5.2. Uses of Expressions 38
	5.2.1. Parameters 38
	5.2.2. Port Parameters 38
	5.2.3. Expression Actor 39
	5.2.4. State Machines 39

	5.3. Composite Data Types 40
	5.3.1. Arrays 40
	5.3.2. Matrices 40
	5.3.3. Records 41

	5.4. Functions and Methods 41
	5.4.1. Functions 41
	5.4.2. Methods 43

	5.5. Fixed Point Numbers 45

	1. Introduction
	1.1 Installation and Quick Start
	FIGURE 1. Initial welcome window.
	1.1.1 Web Start
	1.1.2 Standard Installers
	1.1.3 CD

	2. Continuous-Time Dynamical Systems
	2.1 Executing a Pre-Built Model
	FIGURE 2. A block diagram representation of a set of nonlinear ordinary differential equations.
	, (1)
	. (2)
	. (3)
	FIGURE 3. Dialog box showing solver parameters for the model in figure 2.
	FIGURE 4. Result of running the Lorenz model using the run button in the toolbar.
	FIGURE 5. Run Window, obtained via the View menu, for the Lorenz model shown in figure 2.

	2.2 Creating a New Model
	FIGURE 6. A blank model, obtained via File, New, and Graph Editor in the menus.
	2.2.1 A Simple Sine Wave Model
	FIGURE 7. A model populated with two actors.
	FIGURE 8. Execution of the sine wave example in figure 7, where all parameter values have default...
	FIGURE 9. Zoomed version of the plot in figure 8, with “dots” and “stems” turned on.
	FIGURE 10. The result of running the model in figure 7 with the initStepSize parameter of the sol...
	FIGURE 11. Another way to control the step size is to insert a sampler.

	2.2.2 A Dynamical System Producing a Sine Wave
	(4)
	, (5)
	, (6)
	. (7)
	. (8)
	FIGURE 12. Model that generates a sine wave if the integrators have a non-zero initial condition.
	FIGURE 13. Result of running the model in figure 12 with the initialState of the left integrator ...

	2.2.3 Making Connections
	FIGURE 14. An exception that results from attempting to make a multi-way connection without a rel...
	FIGURE 15. A relation can be used to broadcast an output from a single port.
	FIGURE 16. Multiple signals can be sent to a multiport, shown with the unfilled triangle on the T...

	2.2.4 Parameters
	FIGURE 17. Adding a parameter to the channel model.

	2.2.5 Annotations
	2.2.6 Impulse Response
	. (9)
	FIGURE 18. Variant of figure 12 that has an input, which is provided by the Clock actor.

	. (10)
	. (11)
	FIGURE 19. Parameters of the Clock actor that get it to output an approximate impulse.
	FIGURE 20. Exception due to running the model with the minStepSize parameter set too high.

	2.2.7 Using Higher-Order Dynamics Blocks
	(12)
	FIGURE 21. A model equivalent to that in figure 18, but using the ContinuousTransferFunction actor.
	FIGURE 22. A portion of the documentation for the ContinuousTransferFunction actor.
	FIGURE 23. Inside the ContinuousTransferFunction actor of figure 21.
	FIGURE 24. The diagram of figure 23, after invoking Automatic Layout from the Graph menu.

	2.3 Data Types
	FIGURE 25. Tooltip showing the name and data type of the output port of the ContinuousSinewave of...
	FIGURE 26. Another example, used to explore data types in HyVisual.
	FIGURE 27. An example that triggers an exception when you attempt to execute it. Strings cannot b...
	FIGURE 28. Addition of a string to an integer.

	2.4 Hierarchy
	2.4.1 Creating a Composite Actor
	FIGURE 29. Changing the name of an actor.
	FIGURE 30. Looking inside a composite actor.

	2.4.2 Adding Ports to a Composite Actor
	FIGURE 31. Summary of toolbar buttons for creating new ports.
	FIGURE 32. Right clicking on the background brings up a dialog that can be used to configure ports.
	FIGURE 33. A simple channel model defined as a composite actor.
	FIGURE 34. A model producing a noisy sine wave.

	2.4.3 Setting the Types of Ports

	2.5 Discrete Signals and Mixed-Signal Models
	2.6 Navigating Larger Models
	FIGURE 35. Summary of toolbar buttons for zooming and fitting.
	FIGURE 36. The pan window at the lower left has a red box representing the visible are of the mod...

	3. Hybrid Systems
	3.1 Examining a Pre-Built Model
	FIGURE 37. Top level of the bouncing ball example.
	FIGURE 38. Inside the Ball Model of figure 37.
	FIGURE 39. The initial state of a state machine is set by right clicking on the background and sp...
	FIGURE 40. A state may or may not have a refinement, which specified the behavior of the model wh...
	FIGURE 41. The refinement of the free state, shown here, is a continuous-model representing the l...

	3.2 Numerical Precision and Zeno Conditions
	FIGURE 42. Result of running the bouncing ball model without the stop state.

	3.3 Constructing Modal Models
	FIGURE 43. Inside of a new modal model that has had a single output port added.
	3.3.1 Creating Transitions
	FIGURE 44. Transition dialog for the transition from init to free in Figure 37.

	3.3.2 Creating Refinements
	FIGURE 45. Adding a refinement to a state.

	3.4 Execution Semantics

	4. Using the Plotter
	FIGURE 46. Parameters of the TimedPlotter actor.
	FIGURE 47. A plot with a legend.
	FIGURE 48. Format control window for a plot.
	FIGURE 49. Still better labeled plot.

	5. Expressions
	5.1 Simple Arithmetic Expressions
	5.1.1 Constants and Literals
	5.1.2 Summary of Supported Types
	5.1.3 Variables
	5.1.4 Operators
	5.1.5 Comments

	5.2 Uses of Expressions
	5.2.1 Parameters
	5.2.2 Port Parameters
	FIGURE 50. A portParameter is both a port and a parameter. To use it in a composite actor, drag i...

	5.2.3 Expression Actor
	FIGURE 51. Illustration of the Expression actor.

	5.2.4 State Machines

	5.3 Composite Data Types
	5.3.1 Arrays
	5.3.2 Matrices
	5.3.3 Records

	5.4 Functions and Methods
	5.4.1 Functions
	FIGURE 52. Functions available to the expression language from the java.lang.Math class.
	FIGURE 53. Functions available to the expression language from the ptolemy.data.expr.UtilityFunct...

	5.4.2 Methods

	5.5 Fixed Point Numbers

