
Heterogeneous Concurrent Modeling and Design 1

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868 •

LE
T THE R E BE

L IG H T

OVERVIEW OF THE
PTOLEMY PROJECT

JULY 2, 2003

Technical Memorandum UCB/ERL M03/25
http://ptolemy.eecs.berkeley.edu/

Christopher Hylands
Edward Lee
Jie Liu
Xiaojun Liu
Stephen Neuendorffer
Yuhong Xiong
Yang Zhao
Haiyang Zheng

1. Background
The Ptolemy Project is an informal group of researchers that is part of Chess (the center for hybrid

and embedded software systems) at U.C. Berkeley; see “Acknowledgements” on page 28 for a list par-
ticipants. This projects conducts foundational and applied research in software based design tech-
niques for embedded systems. Ptolemy II is the current software infrastructure of the Ptolemy Project.
For the participants in the Ptolemy Project, Ptolemy II is first and foremost a laboratory for experi-
menting with design techniques. It is published freely in open-source form. Distribution of open-
source software complements more traditional publication media, and serves as a clear, unambiguous,
and complete description our research results. Also, the open architecture and open source encourages
researchers to build their own methods, leveraging and extending the core infrastructure provided by
the software. This creates a community where much of the dialog is through the software. In addition,
the freely available software encourages designers to try out the new design techniques that are intro-
duced and give feedback to the Ptolemy Project. This helps guide further research. Finally, the open
source software encourages commercial providers of software tools to commercialize the research
results, which then helps to maximize the impact of the work.

Ptolemy II is the third generation of design software to emerge from this group, with each genera-
tion bringing a new set of problems being addressed, new emphasis, and (largely) a new group of con-
tributors.

Ptolemy Project 2

Background

1.1 Gabriel (1986-1991)

The first generation of software created by this was group was called Gabriel [16]. It was written
in Lisp and aimed at signal processing. It was during the construction of Gabriel that synchronous
dataflow (SDF) block diagrams and both sequential and parallel scheduling techniques for SDF mod-
els matured. Gabriel included code generators for programmable DSPs that produced efficient assem-
bly code for certain processors (notably, Motorola processors). Gabriel included hardware/software co-
simulators, where parallel code generators would produce assembly code which then ran on instruction
set simulators within a hardware simulation of a multiprocessor architecture. Gabriel had a graphical
user interface built on top of Vem, written by Rick Spickelmeyer, which was originally designed for
schematic capture in VLSI CAD. It used Oct, which was the design database developed by the Berke-
ley CAD group under the leadership of Professor Richard Newton.

1.2 Ptolemy Classic (1990-1997)

Ptolemy Classic, started jointly by Professors Edward Lee and Dave Messerschmitt in 1990, was
written in C++ [19]. It was the first modeling environment to systematically support multiple models
of computation, hierarchically combined. We ported the SDF capabilities from Gabriel, and also devel-
oped boolean dataflow (BDF), dynamic dataflow (DDF), multidimensional synchronous dataflow
(MDSDF) and process networks (PN) domains. We also ported the DSP code generators, and created
C and VHDL code generators as well. We developed the concept of “targets,” which encapsulated
knowledge about specific hardware platforms, and demonstrated construction of models that executed
on attached embedded processors (such as S-bus cards with DSPs), including models that executed
jointly on a Unix host and the attached embedded processor. We developed a discrete-event domain
and demonstrated joint modeling of communication networks and signal processing, and also devel-
oped a hardware simulation domain called Thor, which was adapted from an open-source hardware
simulator by the same name (see figure 1). We made major contributions to SDF scheduling tech-
niques, including introducing the concept of “single appearance schedules” (which minimize gener-
ated code size and enable extensive use of inlining of generated code). We also introduced “higher-
order components,” which greatly increased the expressiveness of visual syntaxes [65]. The Ptolemy
Classic user interface was an extension of the Gabriel interface, still based on Oct and Vem, but
extended by Tycho (written in Itcl, an object-oriented extension of Tcl/Tk). Portions of Ptolemy Clas-
sic were commercialized as part of the Agilent ADS system, and methods from Ptolemy Classic were
used in Cadence’s SPW system.

1.3 Ptolemy II (1996-?)

The Ptolemy Project (as it was now known) began working on Ptolemy II in 1996. The major rea-
sons for starting over were to exploit the network integration, migrating code, built-in threading, and
user-interface capabilities of Java. Ptolemy II introduced the notion of domain polymorphism (where
components could be designed to be able to operate in multiple domains) and modal models (where
finite state machines are combined hierarchically with other models of computation). We built a con-
tinuous-time domain, which combined with the modal modeling capability, yields hybrid system mod-
eling. Ptolemy II has a sophisticated type system with type inference and data polymorphism (where
components can be designed to operate on multiple data types), and a rich expression language. The
concept of behavioral types emerged (where components and domains could have interface definitions
that describe not just static structure, as with traditional type systems, but also dynamic behavior) [68].
Some (but not all) of the SDF capabilities from Ptolemy Classic were ported, and the heterochronous

Heterogeneous Concurrent Modeling and Design 3

Modeling and Design

dataflow model was introduced [38]. We contributed to a user-interface toolkit (called Diva) based on
Java, built a user interface for Ptolemy II (called Vergil) based on Diva, designed a Java plotter
(PtPlot), and introduced a 3-D animation domain. We built models that could be used as applets in a
web browser. And we built numerous experimental domains that explored real-time and distributed
computing (distributed discrete events (DDE), timed multitasking (TM), Giotto, and component inter-
action (CI)). As for code generation, the tactic in Ptolemy II is significantly different than that in Gab-
riel or Ptolemy Classic. Instead of components as generators, Ptolemy II uses a component-
specialization framework built on top of a Java compiler toolkit called Soot. Ptolemy II uses XML for
its persistent data representation, and has introduced the concept of migrating models [98].

2. Modeling and Design
The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent sys-

FIGURE 1. Ptolemy Classic screen image (from 1993) showing an SDF graph at the upper left that is auto-
matically mapped and scheduled onto the two processor architecture, whose model is at the lower right (in
the “Thor” domain). Assembly code for the two processor is generated, and then ISA simulators of the pro-
cessors (provided by Motorola, lower left) interact with the Thor-domain simulation, resulting in the logic
analyzer trace at the upper right.

Ptolemy Project 4

Modeling and Design

tems. The focus is on embedded systems [66], particularly those that mix technologies including, for
example, analog and digital electronics, hardware and software, and electronics and mechanical
devices. The focus is also on systems that are complex in the sense that they mix widely different oper-
ations, such as networking, signal processing, feedback control, mode changes, sequential decision
making, and user interfaces.

Modeling is the act of representing a system or subsystem formally. A model might be mathemati-
cal, in which case it can be viewed as a set of assertions about properties of the system such as its func-
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining the models until the desired functionality is obtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on a design. For instance, they may describe a mechanical system that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations, an appropriate term when the executable
model is clearly distinct from the system it models. However, in many electronic systems, a model that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

2.1 Embedded Software

Embedded software is software that resides in devices that are not first-and-foremost computers. It
is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. A technically active person probably interacts regularly with more pieces of embedded
software than conventional software. A key feature of embedded software is that it engages the physi-
cal world, and hence has temporal constraints that desktop software does not share.

A major emphasis in Ptolemy II is on the methodology for defining and producing
embedded software together with the systems within which it is embedded.

Executable models are constructed under a model of computation, which is the set of “laws of
physics” that govern the interaction of components in the model. If the model is describing a mechani-
cal system, then the model of computation may literally be the laws of physics. More commonly, how-
ever, it is a set of rules that are more abstract, and provide a framework within which a designer builds
models. A set of rules that govern the interaction of components is called the semantics of the model of
computation. A model of computation may have more than one semantics, in that there might be dis-
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on the type of model being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C++,
Java, and MATLAB will be adequate. For modeling a mechanical system, the semantics needs to be

Heterogeneous Concurrent Modeling and Design 5

Modeling and Design

able to handle concurrency and the time continuum, in which case a continuous-time model of compu-
tation such that found in Simulink, Saber, Hewlett-Packard’s ADS, and VHDL-AMS is more appropri-
ate.

The ability of a model to mutate into an implementation depends heavily on the model of compu-
tation that is used. Some models of computation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched to customized hardware because of their intrin-
sically sequential nature. Choosing an inappropriate model of computation may compromise the qual-
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality of a system design.

For embedded systems, the most useful models of computation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources of stimuli. In addition, they operate in a timed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

The objective in Ptolemy II is to support the construction and interoperability of
executable models that are built under a wide variety of models of computation.

Ptolemy II takes a component view of design, in that models are constructed as a set of interacting
components. A model of computation governs the semantics of the interaction, and thus imposes a dis-
cipline on the interaction of components.

Component-based design in Ptolemy II involves disciplined interactions between
components governed by a model of computation.

2.2 Actor-Oriented Design

Most (but not all) models of computation in Ptolemy II support actor-oriented design. This con-
trasts with (and complements) object-oriented design by emphasizing concurrency and communication
between components. Components called actors execute and communicate with other actors in a
model, as illustrated in figure 2. Like objects, actors have a well defined component interface. This
interface abstracts the internal state and behavior of an actor, and restricts how an actor interacts with
its environment. The interface includes ports that represent points of communication for an actor, and
parameters which are used to configure the operation of an actor. Often, parameter values are part of
the a priori configuration of an actor and do not change when a model is executed, but not always. The
“port/parameters” shown in figure 2 function as both ports and parameters.

Central to actor-oriented design are the communication channels that pass data from one port to
another according to some messaging scheme. Whereas with object-oriented design, components
interact primarily by transferring control through method calls, in actor-oriented design, they interact
by sending messages through channels. The use of channels to mediate communication implies that
actors interact only with the channels that they are connected to and not directly with other actors.

Like actors, a model may also define an external interface; this interface is called its hierarchical
abstraction. This interface consists of external ports and external parameters, which are distinct from
the ports and parameters of the individual actors in the model. The external ports of a model can be

Ptolemy Project 6

Modeling and Design

connected by channels to other external ports of the model or to the ports of actors that compose the
model. External parameters of a model can be used to determine the values of the parameters of actors
inside the model.

Taken together, the concepts of models, actors, ports, parameters and channels describe the
abstract syntax of actor-oriented design. This syntax can be represented concretely in several ways,
such as graphically, as in figure 4, in XML as in figure 3, or in a program designed to a specific API (as
in SystemC). Ptolemy II offers all three alternatives.

port/parameters

hierarchical abstraction

model

director

annotation

actor
port

relation

external port

FIGURE 2. Illustration of an actor-oriented model (above) and its hierarchical abstraction (below).

<class name="Sinewave">
<property name="samplingFrequency" value="8000.0"/>
<property name="frequency" value="440.0"/>
<property name="phase" value="0.0"/>
<property name="SDF Director" class="ptolemy.domains.sdf.kernel.SDFDirector"/>
<port name="output"><property name="output"/>
<entity name="Ramp" class="ptolemy.actor.lib.Ramp">

<property name="init" value="phase"/>
<property name="step" value="frequency*2*PI/samplingFrequency"/>

</entity>
<entity name="TrigFunction" class="ptolemy.actor.lib.TrigFunction">

<property name="function" value="sin" class="ptolemy.kernel.util.StringAttribute"/>
</entity>
<relation name="relation"/>
<relation name="relation2"/>
<link port="output" relation="relation2"/>
<link port="Ramp.output" relation="relation"/>
<link port="TrigFunction.input" relation="relation"/>
<link port="TrigFunction.output" relation="relation2"/>

</class>

FIGURE 3. An XML representation of a simplified sinewave source.

Heterogeneous Concurrent Modeling and Design 7

Modeling and Design

It is important to realize that the syntactic structure of an actor-oriented design says little about the
semantics. The semantics is largely orthogonal to the syntax, and is determined by a model of compu-
tation. The model of computation might give operational rules for executing a model. These rules
determine when actors perform internal computation, update their internal state, and perform external
communication. The model of computation also defines the nature of communication between compo-
nents.

Our notion of actor-oriented modeling is related to the work of Gul Agha and others. The term
actor was introduced in the 1970’s by Carl Hewitt of MIT to describe the concept of autonomous rea-
soning agents [48]. The term evolved through the work of Agha and others to describe a formalized
model of concurrency [1-5]. Agha’s actors each have an independent thread of control and communi-
cate via asynchronous message passing. We have further developed the term to embrace a larger family
of models of concurrency that are often more constrained than general message passing. Our actors are
still conceptually concurrent, but unlike Agha’s actors, they need not have their own thread of control.
Moreover, although communication is still through some form of message passing, it need not be
strictly asynchronous.

Actor-oriented modeling has been around for some time, and is in widespread use through such
programs as Simulink, from The Mathworks, LabView, from National Instruments, and many others. It
is gaining broader legitimacy through the efforts of OMG in UML-2 [101], for example, some of
which has its roots in the actor-oriented framework ROOM [116]. Many research projects are based on
some form of actor-oriented modeling, but the Ptolemy Project is unique in the breadth of exploration
of semantic alternatives and in the commitment made to a particular model of computation within a
domain.

2.3 Architecture Design

Architecture description languages (ADLs), such as Wright [6] and Rapide [85], focus on formal-
isms for describing the rich sorts of component interactions that commonly arise in software architec-
ture. Ptolemy II, by contrast, might be called an architecture design language, because its objective is
not so much to describe existing interactions, but rather to promote coherent software architecture by
imposing some structure on those interactions. Thus, while an ADL might focus on the compatibility
of a sender and receiver in two distinct components, we would focus on a pattern of interactions among
a set of components. Instead of, for example, verifying that a particular protocol in a single port-to-port
interaction does not deadlock [6], we would focus on whether an assemblage of components can dead-
lock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy II, such pre-
existing components would have to wrapped in Ptolemy II actors. Moreover, designing components to
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All of these are valid points, and indeed a major part of our research effort is to ameliorate these
limitations. The net effect, we believe, is an approach that is much more powerful than ADLs.

First, we design components to be domain polymorphic, meaning that they can interact with other
components within a wide variety of domains. In other words, instead of coming up with an ADL that
can describe a number of different interaction mechanisms, we have come up with an architecture
where components can be easily designed to interact in a number of ways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman-
tics is possible. By contrast, with pre-existing components that have rigid interfaces, the best we can

Ptolemy Project 8

Models of Computation

hope for is ad-hoc synthesis of adapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [6], we use a technique much more powerful
than type checking alone, namely polymorphism [68].

Second, to avoid the problem that a particular interaction mechanism may not fit the needs of a
component well, we provide a rich set of interaction mechanisms embodied in the Ptolemy II domains.
The domains force component designers to think about the overall pattern of interactions, and trade off
uniformity for expressiveness. Where expressiveness is paramount, the ability of Ptolemy II to hierar-
chically mix domains offers essentially the same richness of more ad-hoc designs, but with much more
discipline. By contrast, a non-trivial component designed without such structure is likely to use a
melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embed it within a com-
prehensible system.

Third, whereas an ADL might choose a particular model of computation to provide it with a for-
mal structure, such as CSP for Wright [6], we have developed a more abstract formal framework that
describes models of computation at a meta level [71]. This means that we do not have to perform awk-
ward translations to describe one model of computation in terms of another. For example, stream based
communication via FIFO channels are awkward in Wright [6].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy II domains.

3. Models of Computation
There is a rich variety of models of computation that deal with concurrency and time in different

ways. Each gives an interaction mechanism for components. The utility of a model of computation
stems from the modeling properties that apply to all similar models. For many models of computation
these properties are derived through formal mathematics. Depending on the model of computation, the
model may be determinate [55], statically schedulable [72], or time safe [47]. Because of its modeling
properties, a model of computation represents a style of modeling that is useful in any circumstance
where those properties are desirable. In other words, models of computation form design patterns of
component interaction, in the same sense that Gamma, et al. describe design patterns in object oriented
languages [35].

For a particular application, an appropriate model of computation does not impose unnecessary
constraints, and at the same time is constrained enough to result in useful derived properties. For
example, by restricting the design space to synchronous designs, Scenic [74] enables cycle-driven sim-
ulation [41], which greatly improves execution efficiency over more general discrete-event models of
computation (such as that found in VHDL). However, for applications with multirate behavior, syn-
chronous design can be constraining. In such cases, a less constrained model of computation, such as
synchronous dataflow [72] or Kahn process networks [55] may be more appropriate. One drawback of
this relaxation of synchronous design constraints is that buffering becomes more difficult to analyze.
On the other hand, techniques exist for synchronous dataflow that allow co-optimization of memory
usage and execution latency [118] that would otherwise be difficult to apply to a multirate system.
Selecting an appropriate model of computation for a particular application is often difficult, but this is
a problem we should embrace instead of avoiding.

In this section, we describe models of computation that are implemented in Ptolemy II domains.
Our focus has been on models of computation that are most useful for embedded systems. All of these
can lend a semantics to the same bubble-and-arc, or block-and-arrow diagram shown in figure 4.

Heterogeneous Concurrent Modeling and Design 9

Models of Computation

Ptolemy II models are (clustered, or hierarchical) graphs of the form of figure 4, where the nodes are
entities and the arcs are relations. For most domains, the entities are actors (entities with functionality)
and the relations connecting them represent communication between actors.

3.1 Component Interaction - CI

The component interaction (CI) domain, created by Xiaojun Liu and Yang Zhao, models systems
that blend data-driven and demand-driven styles of computation. As an example, the interaction
between a web server and a browser is mostly demand-driven. When the user clicks on a link in the
browser, it pulls the corresponding page from the web server. A stock-quote service can use a data-
driven style of computation. The server generates events when stock prices change. The data drive the
clients to update their displayed information. Such push/pull interaction between a data producer and
consumer is common in distributed systems, and has been included in middleware services, most nota-
bly in the CORBA event service. These services motivated the design of this domain to study the inter-
action models in distributed systems, such as stock-quote services, traffic or weather information
systems. Other applications include database systems, file systems, and the Click modular router [57].

An actor in a CI model can be active, which means it possesses its own thread of execution. For
example, an interrupt source of an embedded system can be modeled as an active source actor. Such a
source generates events asynchronously with respect to the software execution on the embedded pro-
cessor. CI models can be used to simulate and study how the embedded software handles the asynchro-
nous events, such as external interrupts and asynchronous I/O.

3.2 Communicating Sequential Processes - CSP

In the CSP domain (communicating sequential processes), created by Neil Smyth [117], actors
represent concurrently executing processes, implemented as Java threads. These processes communi-
cate by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing).
If two processes are to communicate, and one reaches the point first at which it is ready to communi-
cate, then it stalls until the other process is ready to communicate. “Atomic” means that the two pro-
cesses are simultaneously involved in the exchange, and that the exchange is initiated and completed in
a single uninterruptable step. Examples of rendezvous models include Hoare’s communicating sequen-
tial processes (CSP) [51] and Milner’s calculus of communicating systems (CCS) [90]. This model of
computation has been realized in a number of concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware

A

C

B

FIGURE 4. A single syntax (bubble-and-arc or block-and-arrow diagram)
can have a number of possible semantics (interpretations).

Ptolemy Project 10

Models of Computation

resources. A key feature of rendezvous-based models is their ability to cleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive. It also
includes an experimental timed extension.

3.3 Continuous Time - CT

In the CT domain (continuous time), created Jie Liu [81], actors represent components that interact
via continuous-time signals. Actors typically specify algebraic or differential relations between inputs
and outputs. The job of the director in the domain is to find a fixed-point, i.e., a set of continuous-time
functions that satisfy all the relations.

The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systems with linear or nonlinear algebraic/differential equation descrip-
tions, such as analog circuits and many mechanical systems. Its model of computation is similar to that
used in Simulink, Saber, and VHDL-AMS, and is closely related to that in Spice circuit simulators.

Mixed Signal Models. Embedded systems frequently contain components that are best modeled using
differential equations, such as MEMS and other mechanical components, analog circuits, and micro-
wave circuits. These components, however, interact with an electronic system that may serve as a con-
troller or a recipient of sensor data. This electronic system may be digital. Joint modeling of a
continuous subsystem with digital electronics is known as mixed signal modeling [82]. The CT domain
is designed to interoperate with other Ptolemy domains, such as DE, to achieve mixed signal modeling.
To support such modeling, the CT domain models of discrete events as Dirac delta functions. It also
includes the ability to precisely detect threshold crossings to produce discrete events.

Modal Models and Hybrid Systems. Physical systems often have simple models that are only valid
over a certain regime of operation. Outside that regime, another model may be appropriate. A modal
model is one that switches between these simple models when the system transitions between regimes.
The CT domain interoperates with the FSM domain to create modal models. Such modal models are
often called hybrid systems.

3.4 Discrete-Events - DE

In the discrete-event (DE) domain, created by Lukito Muliadi [94], the actors communicate via
sequences of events placed in time, along a real time line. An event consists of a value and time stamp.
Actors can either be processes that react to events (implemented as Java threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
and for simulating telecommunications systems, and has been realized in a large number of simulation
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Every event is placed precisely on a globally consistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen-
eral need to maintain a global queue of pending events sorted by time stamp (this is called a priority
queue). This can be fairly expensive, since inserting new events into the list requires searching for the
right position at which to insert it. The DE domain uses a calendar queue data structure [17] for the
global event queue. A calendar queue may be thought of as a hashtable that uses quantized time as a

Heterogeneous Concurrent Modeling and Design 11

Models of Computation

hashing function. As such, both enqueue and dequeue operations can be done in time that is indepen-
dent of the number of events in the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competing discrete-event simulators. This means that for any two events with the same time stamp, the
order in which they are processed can be inferred from the structure of the model. This is done by ana-
lyzing the graph structure of the model for data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation-
ships. VHDL, for example, uses delta time to accomplish the same objective.

3.5 Distributed Discrete Events - DDE

The distributed discrete-event (DDE) domain, created by John Davis [26], can be viewed either as
a variant of DE or as a variant of PN (described below). Still highly experimental, it addresses a key
problem with discrete-event modeling, namely that the global event queue imposes a central point of
control on a model, greatly limiting the ability to distribute a model over a network. Distributing mod-
els might be necessary either to preserve intellectual property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains a local notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees that no event
will be supplied with a time stamp less than some specified value.

3.6 Discrete Time - DT

The discrete-time (DT) domain, written by Chamberlain Fong [32], extends the SDF domain
(described below) with a notion of time between tokens. Communication between actors takes the
form of a sequence of tokens where the time between tokens is uniform. Multirate models, where dis-
tinct connections have distinct time intervals between tokens, are also supported. There is considerable
subtlety in this domain when multirate components are used. The semantics is defined so that compo-
nent behavior is always causal, in that outputs whose values depend on inputs are never produced at
times prior to those of the inputs.

3.7 Finite-State Machines - FSM

The finite-state machine (FSM) domain, written by Xiaojun Liu, is radically different from the
other Ptolemy II domains. The entities in this domain represent not actors but rather state, and the con-
nections represent transitions between states. Execution is a strictly ordered sequence of state transi-
tions. The FSM domain leverages the built-in expression language in Ptolemy II to evaluate guards,
which determine when state transitions can be taken.

FSM models are excellent for expressing control logic and for building modal models (models
with distinct modes of operation, where behavior is different in each mode). FSM models are amena-
ble to in-depth formal analysis, and thus can be used to avoid surprising behavior.

*Charts. FSM models have some key weaknesses. First, at a very fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to
describe all partial recursive functions. However, this weakness is acceptable in light of the formal
analysis that becomes possible. Many questions about designs are decidable for FSMs and undecidable

Ptolemy Project 12

Models of Computation

for other models of computation. A second key weakness is that the number of states can get very large
even in the face of only modest complexity. This makes the models unwieldy.

Both problems can often be solved by using FSMs in combination with concurrent models of com-
putation. This was first noted by David Harel, who introduced that Statecharts formalism. Statecharts
combine a loose version of synchronous-reactive modeling (described below) with FSMs [42]. FSMs
have also been combined with differential equations, yielding the so-called hybrid systems model of
computation [45].

The FSM domain in Ptolemy II can be hierarchically combined with other domains. We call the
resulting formalism “*charts” (pronounced “starcharts”) where the star represents a wildcard [38].
Since most other domains represent concurrent computations, *charts model concurrent finite state
machines with a variety of concurrency semantics. When combined with CT, they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-
charts. When combined with process networks, they resemble SDL [115].

3.8 Process Networks - PN

In the process networks (PN) domain, created by Mudit Goel [39], processes communicate by
sending messages through channels that can buffer the messages. The sender of the message need not
wait for the receiver to be ready to receive the message. This style of communication is often called
asynchronous message passing. There are several variants of this technique, but the PN domain specif-
ically implements one that ensures determinate computation, namely Kahn process networks [55].

In the PN model of computation, the arcs represent sequences of data values (tokens), and the enti-
ties represent functions that map input sequences into output sequences. Certain technical restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specified.
In particular, the function implemented by an entity must be prefix monotonic. The PN domain realizes
a subclass of such functions, first described by Kahn and MacQueen [56], where blocking reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize or distribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
A key weakness of PN models is that they are awkward for specifying control logic, although much of
this awkwardness may be ameliorated by combining them with FSM.

The PN domain in Ptolemy II has a highly experimental timed extension. This adds to the blocking
reads a method for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.

3.9 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu-
tations that operate on streams. Dataflow models, popular in signal processing, are a special case of
process networks (for the complete explanation of this, see [70]). Dataflow models construct processes
of a process network as sequences of atomic actor firings. Synchronous dataflow (SDF) is a particu-
larly restricted special case with the extremely useful property that deadlock and boundedness are
decidable. Moreover, the schedule of firings, parallel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real-time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, although fundamentally these questions are

Heterogeneous Concurrent Modeling and Design 13

Models of Computation

undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stat-
ically answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy II. Process networks (PN) serves in the interim to handle computations that do
not match the restrictions of SDF.

3.10 Giotto

The Giotto domain, created by Christoph Meyr Kirsch, realizes a model of computation developed
by Tom Henzinger, Christoph Kirsch, Ben Horowitz and Haiyang Zheng [44]. This domain has a time-
triggered flavor, where each actor is invoked periodically with a specified period. The domain is
designed to work with the FSM domain to realize modal models. It is intended for hard-real-time sys-
tems, where resource allocation is precomputed.

3.11 Synchronous/Reactive - SR

In the synchronous/reactive (SR) domain, written by Paul Whitaker [121] implements a model of
computation [11] where the arcs represent data values that are aligned with global clock ticks. Thus,
they are discrete signals, but unlike discrete time, a signal need not have a value at every clock tick.
The entities represent relations between input and output values at each tick, and are usually partial
functions with certain technical restrictions to ensure determinacy. Examples of languages that use the
SR model of computation include Esterel [13], Signal [12], Lustre [23], and Argos [86].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because of the tight synchronization, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seek a global fixed point at each clock tick. The SR domain implementation in Ptolemy II is similar
to the SR implementation in Ptolemy Classic by Stephen Edwards[28].

3.12 Timed Multitasking - TM

The timed multitasking (TM) domain, created by Jie Liu [80], supports the design of concurrent
real-time software. It assumes an underlying priority-driven preemptive scheduler, such as that typi-
cally found in a real-time operating systems (RTOS). But the behavior of models is more deterministic
than that obtained by more ad hoc uses of an RTOS.

In TM, each actor executes (conceptually) as a concurrent task. It is a timed domain, meaning that
there is a notion of "model time" that advances monotonically and uniformly. Each actor has a speci-
fied execution time T, and it delays the production of the outputs until it has had access to the CPU for
that specified amount of time (in model time, which may or may not match real time). Actors execute
when they receive new inputs, so the execution is event driven. Conceptually, the actor begins execu-
tion at some time t, and its output is produced at time t + T + P, where T is the declared execution time,
and P is the amount of time where the actor is suspended due to being preempted by a higher priority
actor. At any given model time t, the task with the highest priority that has received inputs but not yet
produced its outputs has the CPU. All other tasks are suspended.

TM offers a way to design real-time systems that is more deterministic than ad hoc uses of an
RTOS. In particular, typically, a task produces outputs at a time that depends on the actual execution
time of the task, rather than on some declared parameter. This means that consumers of that data may
or may not see updates to the data, depending on when their execution occurs relative to the actual exe-
cution time. Thus, the computational results that are produced depend on the actual execution time.

Ptolemy Project 14

Choosing Models of Computation

TM avoids this by declaring the time that elapses before production of the outputs. By maintaining
model time correctly, TM ensures that the data computation is deterministic, irrespective of actual exe-
cution time.

4. Choosing Models of Computation
The rich variety of concurrent models of computation outlined in the previous section can be

daunting to a designer faced with having to select them. Most designers today do not face this choice
because they get exposed to only one or two. This is changing, however, as the level of abstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be a real number that advances uniformly, and placing events
on a time line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa-
tion [71].

A grand unified approach to modeling would seek a concurrent model of computation that serves
all purposes. This could be accomplished by creating a melange, a mixture of all of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another alternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in the-
ory. It is the premise of Wright [6] and Metropolis (http://www.gigascale.org/metropolis/), for exam-
ple. Most of these models of computation are sufficiently expressive to be able to subsume most of the
others. However, this fails to acknowledge the strengths and weaknesses of each model of computa-
tion. Wright, for example, uses rendezvous, which is very good at resource management, but very
awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management is awkward, but data-oriented computations are natural1. Thus,
to design interesting systems, designers need to use heterogeneous models.

5. Visual Syntaxes
Visual depictions of systems have always held a strong human appeal, making them extremely

effective in conveying information about a design. Many of the domains of interest in the Ptolemy
project use such depictions to completely and formally specify models.

One of the principles of the Ptolemy project is that visual depictions of systems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

1. Consider the difference between the telephone (rendezvous) and email (asynchronous message passing). If you
are trying to schedule a meeting between four busy people, getting them all on a conference call would lead to a
quick resolution of the meeting schedule. Scheduling the meeting by email could take several days, and may in
fact never converge. Other sorts of communication, however, are far more efficient by email.

Heterogeneous Concurrent Modeling and Design 15

Visual Syntaxes

These visual depictions offer an alternative syntax to associate with the semantics of a model of com-
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they are judiciously combined with textual syntaxes.

Figures 5 and 6 show two different visual renditions of Ptolemy II models. Both renditions are
constructed in Vergil, the visual editor framework in Ptolemy II designed by Steve Neuendorffer. In
figure 5, a Ptolemy II model is shown as a block diagram, which is an appropriate rendition for many
discrete event models. In this particular example, records are constructed at the left by composing
strings with integers representing a sequence number. The records are launched into a network that
introduces random delay. The records may arrive at the right out of order, but the Sequence actor is
used to re-order them using the sequence number.

Figure 6 also shows a visual rendition of a Ptolemy II model, but now, the components are repre-
sented by circles, and the connections between components are represented by labeled arcs. This visual
syntax is a familiar way to represent finite state machines (FSMs). Each circle represents a state of the
model, and the arcs represent transitions between states. The particular example in the figure comes
from a hybrid system model, where the two states, Separate and Together, represent two different
modes of operation of a continuous-time system. The arcs are labeled with two lines, the first of which
is a guard, and the second of which is an action. The guard is a boolean-valued textual expression that
specifies when the transition should be taken, and the action is a sequence of commands that are exe-
cuted when the transition is taken.

The visual renditions in figures 5 and 6 are both constructed using the same underlying infrastruc-
ture, Vergil, built by Stephen Neuendorffer. Vergil, in turn, in built on top of a GUI package called

FIGURE 5. Visual rendition of a Ptolemy II model as a block diagram in Vergil (in the DE domain).

Ptolemy Project 16

Visual Syntaxes

Diva, developed by John Reekie and Michael Shilman at Berkeley. Diva, in turn, is built on top of
Swing and Java 2D, which are part of the Java platform from Sun Microsystems. In Vergil, a visual
editor is constructed as an assembly of components in a Ptolemy II model. Thus, the system is config-
urable and customizable, and a great deal of infrastructure can be shared between the two distinct
visual editors of figures 5 and 6.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capturing
the behavior of software. Recently, a number of innovative visual formalisms have been garnering sup-
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention. The static struc-
ture diagrams of UML, in fact, are used fairly extensively in the design of Ptolemy II itself (see appen-
dix A of this chapter). Moreover, the Statecharts diagrams of UML are very similar to a hierarchical
composition of the FSM and SR domains in Ptolemy II.

A subset of visual languages that are recognizable as “block diagrams” represent concurrent sys-
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to be used
for system specification and design. Ptolemy II supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability of diverse models is essential.

FIGURE 6. Visual rendition of a Ptolemy II model as a state transition diagram in Vergil (FSM domain).

Heterogeneous Concurrent Modeling and Design 17

Ptolemy II Architecture

6. Ptolemy II Architecture
Ptolemy II offers a unified infrastructure for implementations of a number of models of computa-

tion. The overall architecture consists of a set of packages that provide generic support for all models
of computation and a set of packages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered graph representations of models, pack-
ages that support executable models, and domains, which are packages that implement a particular
model of computation.

Ptolemy II is modular, with a careful package structure that supports a layered approach. The core
packages support the data model, or abstract syntax, of Ptolemy II designs. They also provide the
abstract semantics that allows domains to interoperate with maximum information hiding. The UI
packages provide support for our XML file format, called MoML, and a visual interface for construct-
ing models graphically. The library packages provide actor libraries that are domain polymorphic,
meaning that they can operate in a variety of domains. And finally, the domain packages provide
domains, each of which implements a model of computation, and some of which provide their own,
domain-specific actor libraries.

6.1 Core Packages

The core packages are shown in figure 7. This is a UML package diagram. The name of each pack-
age is in the tab at the top of each box. Subpackages are contained within their parent package. Depen-
dencies between packages are shown by dotted lines with arrow heads. For example, actor depends on
kernel which depends on kernel.util. Actor also depends on data and graph. The role of each package
is explained below.

actor This package supports executable entities that receive and send data through ports.
It includes both untyped and typed actors. For typed actors, it implements a sophis-
ticated type system that supports polymorphism. It includes the base class Director
that is extended in domains to control the execution of a model.

actor.lib This subpackage and its subpackages contain domain polymorphic actors. The
actor.lib package is discussed further in section 6.3.

actor.parameters
This subpackage provides specialized parameters for specifying locations, ranges
of values, etc.

actor.process This subpackage provides infrastructure for domains where actors are processes
implemented on top of Java threads.

actor.sched This subpackage provides infrastructure for domains where actors are statically
scheduled by the director, or where there is static analysis of the topology of a
model associated with scheduling.

actor.util This subpackage contains utilities that support directors in various domains. Spe-
cifically, it contains a simple FIFO Queue and a sophisticated priority queue called
a calendar queue.

copernicus This subpackage contains the “actor specialization” infrastructure (Java code gen-
eration).

Ptolemy Project 18

Ptolemy II Architecture

FIGURE 7. The core packages shown here support the data model (abstract syntax) and the actor model,
(abstract semantics) of Ptolemy II designs.

data

AWTImageToken
AbstractConvertibleToken
AbstractNotConvertibleToken
ActorToken
ArrayToken
BitwiseOperationToken
BooleanMatrixToken
BooleanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken
DoubleToken
EventToken
FixMatrixToken
FixToken
ImageToken
IntMatrixToken
IntMatrixToken
IntToken
LongMatrixToken
LongToken
MatrixToken
Numerical
ObjectToken
RecordToken
ScalarToken
StringToken
Token
TokenUtilities
UnsignedByteToken

data.expr

AST...Node (generated)
AbstractParseTreeVisitor
CachedMethod
ConcreteMatrixToken
ConcreteScalarToken
Constants
ConversionUtilities
ExplicitScope
ExpressionFunction
FixPointFunctions
JJTMatrixParserState
JJTPtParserState
MatlabUtilities
MatrixParser
MatrixParserConstants
MatrixParserTokenManager
MatrixParserTreeConstants
ModelScope
NamedConstantsScope
NestedScope
Node
NotEditableParameter
Parameter
ParseException
ParseTree... (various classes)
ParserScope
PtParser
PtParserConstants
PtParserTokenManager
PtParserTreeConstants
ScopeExtender
ScopeExtendingAttribute
SimpleCharStream
SimpleNode
Token
TokenMgrError
UnknownResultException
UnknownToken
UtilityFunctions
Variable

AbstractReceiver
Actor
AtomicActor
CompositeActor
Director
Executable
ExecutionListener
FiringEvent
GraphReader
IOPort
IORelation
Mailbox
Manager
NoRoomException
NoTokenException
QueueReceiver
Receiver
StreamExecutionListener
TypeAttribute
TypeConflictException
TypeEvent
TypeListener
TypedActor
TypedAtomicActor
TypedCompositeActor
TypedIOPort
TypedIORelation

kernel

actor

graph

ComponentEntity
ComponentPort
ComponentRelation
CompositeEntity
Entity
Port
Relation

CPO
DirectedAcyclicGraph
DirectedGraph
Edge
Element
ElementList
Graph
GraphActionException
GraphConstructionException
GraphElementException
GraphException
GraphStateException
GraphTopologyException
GraphWeightException
Graphs
Inequality
InequalitySolver
InequalityTerm
LabeledList
Node

math

data.type

ArrayType
BaseType
RecordType
StructuredType
Type
TypeConstant
TypeLattice
Typeable

...

actor.process

actor.util

CQComparator
CalendarQueue
FIFOQueue
TimedEvent

ArrayStringFormat
Complex
ComplexArrayMath
ComplexBinaryOperation
ComplexMatrixMath
ComplexUnaryOperation
DoubleArrayMath
DoubleArrayStat
DoubleBinaryOperation
DoubleMatrixMath
DoubleUnaryOperation
ExtendedMath
FixPoint
FloatArrayMath
FloatBinaryOperation
FloatMatrixMath
FloatUnaryOperation
Fraction
IntegerArrayMath
IntegerBinaryOperation
IntegerMatrixMath
IntegerUnaryOperation
Interpolation
LongArrayMath
LongBinaryOperation
LongMatrixMath
LongUnaryOperation
Overflow
Precision
Quantization
Quantizer
Rounding
SignalProcessing

Attribute
BasicModelErrorHandler
ChangeListener
ChangeRequest
Configurable
ConfigurableAttribute
CrossRefList
DebugEvent
DebugListener
Debuggable
IllegalActionException
InternalErrorException
InvalidStateException
KernelException
KernelRuntimeException
Locatable
Location
ModelErrorHandler
NameDuplicationException
Nameable
NamedList
NamedObj
NoSuchItemException
NotPersistant
PtolemyThread
RecorderListener
Settable
SingletonAttribute
SingletonConfigurableAttribute
StreamChangeListener
StreamListener
StringAttribute
TransientSingletonConfigurableAttribute
ValueListener
Workspace

kernel.util

actor.lib

BoundaryDetector
Branch
BranchController
CompositeProcessDirector
MailboxBoundaryReceiver
NotifyThread
ProcessDirector
ProcessReceiver
ProcessThread
TerminateProcessException

Firing
NotSchedulableException
Schedule
ScheduleElement
Scheduler
StaticSchedulingDirector

actor.sched

kernel.attributes

FileAttribute
RequireVersion
URIAttribute
VersionAttribute

...

actor.gui

graph.analysis

AcyclicAnalysis
Analysis
Mapping
SelfLoopAnalysis
SinkNodeAnalysis
SourceNodeAnalysis
TransitiveClosureAnalysis

IntRangeParameter
LocationParameter
ParameterPort
PortParameter

actor.parameters

Heterogeneous Concurrent Modeling and Design 19

Ptolemy II Architecture

data This package provides classes that encapsulate and manipulate data that is trans-
ported between actors in Ptolemy models. The key class is the Token class, which
defines a set of polymorphic methods for operating on tokens, such as add(), sub-
tract(), etc.

data.expr This class supports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. These expressions
may refer to other parameters. Dependencies between parameters are handled
transparently, as in a spreadsheet, where updating the value of one will result in the
update of all those that depend on it.

data.type This package contains classes and interfaces for the type system.
graph This package provides algorithms for manipulating and analyzing mathematical

graphs. This package is expected to supply a growing library of algorithms. These
algorithms support scheduling and analysis of Ptolemy II models.

kernel This package provides the software architecture for the Ptolemy II data model, or
abstract syntax. This abstract syntax has the structure of clustered graphs. The
classes in this package support entities with ports, and relations that connect the
ports. Clustering is where a collection of entities is encapsulated in a single com-
posite entity, and a subset of the ports of the inside entities are exposed as ports of
the composite entity.

kernel.attributes
This subpackage of the kernel package provides specialized attributes such as File-
Attribute, which is used in actors to specify a file or URL.

kernel.util This subpackage of the kernel package provides a collection of utility classes that
do not depend on the kernel package. It is separated into a subpackage so that these
utility classes can be used without the kernel. The utilities include a collection of
exceptions, classes supporting named objects with attributes, lists of named
objects, a specialized cross-reference list class, and a thread class that helps
Ptolemy keep track of executing threads.

math This package encapsulates mathematical functions and methods for operating on
matrices and vectors. It also includes a complex number class, a class supporting
fractions, and a set of classes supporting fixed-point numbers.

matlab This package contains the MATLAB interface.
util This package contains various Ptolemy-independent utilities, such as string utilities

and XML utilities.

6.1.1 Overview of Key Classes

Some of the key classes in Ptolemy II are shown in figure 8. This is a UML static structure dia-
gram (see appendix A of this chapter). The key syntactic elements are boxes, which represent classes,
the hollow arrow, which indicates generalization (or subclassing), and other lines, which indicate asso-
ciations. Some lines have a small diamond, which indicates aggregation. The details of these classes
will be discussed in subsequent chapters.

Instances of all of the classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances of NamedObj.

Ptolemy Project 20

Ptolemy II Architecture

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported by Ptolemy II. They are fully explained in the kernel chap-
ter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding sup-
port for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggregation of
instances of ComponentEntity and ComponentRelation.

The Executable interface, explained in the actors chapter, defines objects that can be executed. The
Actor interface extends this with capability for transporting data through ports. AtomicActor and Com-
positeActor are concrete classes that implement this interface. The Executable and Actor interfaces are
key to the Ptolemy II abstract semantics.

An executable Ptolemy II model consists of a top-level CompositeActor with an instance of Direc-
tor and an instance of Manager associated with it. The manager provides overall control of the execu-
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govern the execution of actors contained by the CompositeActor.

FIGURE 8. Some of the key classes in Ptolemy II. These are defined in the kernel, kernel.util, and actor
packages. They define the Ptolemy II abstract syntax and abstract semantics.

ComponentEntity CompositeEntity

AtomicActor

Director

«Interface»
Executable

CompositeActor0..n
0..1

0..1

0..n container

«Interface»
Actor

0..2

1

Manager

0..1

1

NamedObj

«Interface»
Nameable

Workspace

0..n 1
Attribute

0..n

0..1

Entity Port

0..n

0..1

container

Relation

0..n

0..nlink

link

ComponentPort

ComponentRelation

0..n

0..1container

{consistency}

«Interface»
Debuggable

Heterogeneous Concurrent Modeling and Design 21

Ptolemy II Architecture

Director is the base class for directors that implement models of computation. Each such director
is associated with a domain. We have defined in Ptolemy II directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com-
municating sequential processes.

6.2 Domains

The domains in Ptolemy II are subpackages of the ptolemy.domains package. The more mature
and frequently used domains are shown in figure 9. The experimental domains and less commonly
used domains are not shown, but the examples in figure 9 are illustrative of their structure. These pack-

FIGURE 9. Package structure of common Ptolemy II domains.

actor

domains

sdf

kernel

ArrayFIFOQueue
SDFDirector
SDFIOPort
SDFReceiver
SDFScheduler

demo

...

lib

ArrayToSequence
Autocorrelation
BitsToInt
Chop
DelayLine
DotProduct
DownSample
FFT
FIR
IFFT
IntToBits
LMSAdaptive
LineCoder
MatrixToSequence
RaisedCosine
Repeat
SDFConverter
SDFTransformer
SampleDelay
SequenceToArray
SequenceToMatrix
UpSample
VariableFIR
VariableLattice
VariableRecursiveLattice

de

kernel

DEActor
DECQEventQueue
DEDirector
DEEvent
DEEventQueue
DEIOPort
DEReceiver
DEThreadActor

lib

DETransformer
EventButton
EventFIlter
Inhibit
Merge
PreemptableTask
Previous
Queue
QueuWithNextOut
Sampler
SamplerWithDefault
Server
SingleEvent
TimeGap
TimeDelay
Timer
VariableDelay
WaitingTime

demo

...

fsm

kernel

AbstractActionsAttribute
Action
ChoiceAction
CommitAction
CommitActionsAttribute
FSMActor
FSMDirector
HSDirector
InterfaceAutomaton
InterfaceAutomatonTransition
OutputActionsAttribute
ParseTreeEvaluatorForGuardExpression
RelationList
State
StateEvent
StatePair
Transition demo

...

ct

kernel

BreakpointODESolver
CTBaseIntegrator
CTCompositeActor
CTDirector
CTDynamicActor
CTEmbeddedDirector
CTEventGenerator
CTMixedSignalDirector
CTMultiSolverDirector
CTReceiver
CTScheduler
CTStatefulActor
CTStepSizeControlActor
CTTransparentDirector
CTWaveformGenerator
NumericalNonconvergenceException
ODESolver demo

...

lib

CTPeriodicSampler
CTRateLimiter
CTTriggeredSampler
ContinuousClock
ContinuousTransferFunction
DifferentialSystem
EventSource
FirstOrderHold
Integrator
IPCInterface
LevelCrossingDetector
LinearStateSpace
ThresholdMonitor
TriggeredContinuousClock
ZeroCrossingDetector
ZeroOrderHold

pn

kernel
demo

BasePNDirector
PNDirector
PNQueueReceiver
TimedPNDirector

...

Ptolemy Project 22

Ptolemy II Architecture

ages generally contain a kernel subpackage, which defines classes that extend those in the actor or ker-
nel packages of Ptolemy II. The lib subpackage, when it exists, includes domain-specific actors.

6.3 Library Packages

Most domains extend classes in the actor package to give a specific semantic interpretation to an
interconnection of actors. It is possible, and strongly encouraged, to define actors in such a way that
they can operate in multiple domains. Such actors are said to be domain polymorphic. Actor that are
domain polymorphic are organized in the packages shown in figure 10. These packages are briefly
described below:

actor.lib This package is the main library of polymorphic actors.
actor.lib.comm

This is a library of actors for modeling communications systems.
actor.lib.conversions

This package provides domain polymorphic actors that convert data between dif-
ferent types.

actor.lib.gui This package is a library of polymorphic actors with user interface components,
such as plotters.

actor.lib.hoc This package is a library of higher-order components, which are components that
construct portions of a model.

actor.lib.image
This package is a library of image processing actors.

actor.lib.io This package provides file I/O.
actor.lib.io.comm

This package provides an actor that communicate via the serial ports. This actor
works only under Windows.

actor.lib.jai This is a library of image processing actors based on the Java advanced imaging
API.

actor.lib.javasound
This package provides sound actors.

actor.lib.jmf This is a library of image processing actors based on the Java media framework
API.

actor.lib.joystick
This package provides an example actor that communicates with a particular I/O
device, a joystick.

actor.lib.jxta This is a library of experimental actors supporting the JXTA discovery mechanism
from Sun Microsystems.

actor.lib.logic This package provides actors that perform logical functions like AND, OR and
NOT.

actor.lib.net This package provides actors that communicate using datagrams.
actor.lib.python

This package provides an actor whose operation can be specified in Python.

Heterogeneous Concurrent Modeling and Design 23

Ptolemy II Architecture

FIGURE 10. The major actor libraries are in packages containing domain-polymorphic actors.

actor

actor.lib

AbsoluteValue
Accumulator
AddSubtract
ArrayAppend
ArrayElement
ArrayExtract
ArrayLength
ArrayMaximum
ArrayMinimum
Average
Bernoulli
BooleanMultiplexor
BooleanSelect
BooleanSwitch
BusAssembler
BusDisassembler
ClassWrapper
Clock
Commutator
Const
Counter
CurrentTime
DB
Differential
Discard
DiscreteRandomSource
Distributor
DoubleReader
Expression
FileWriter
Gaussian
IIR
Interpolator
Lattice
LevinsonDurbin
Limiter
LinearDifferenceEquationSystem
LookupTable
MathFunction
MaxIndex
Maximum
Minimum
MonitorValue
Multiplexor
MultiplyDivide
NonStrictTest
OrderedMerge
PhaseUnwrap
PoissonClock
Pulse
Quantizer
Ramp
RandomSource
Reader
RecordAssembler
RecordDisassembler
RecordUpdater
Recorder
RecursiveLattice
Remainder
Rician
Scale
Select
SequenceActor

plot actor.gui

SequenceSource
Sequencer
SequentialClock
SetVariable
Sink
Sleep
Source
Stop
Switch
Synchronizer
Test
ThrowException
ThrowModelError
TimedActor
TimedSource
Transformer
TrigFunction
TriggeredClock
TypeTest
URLDirectoryReader
URLReader
Uniform
VariableClock
VariableSleep
VectorAssembler
VectorDisassembler
WallClockTime
Writer

BooleanToAnything
CartesianToComplex
CartesianToPolar
ComplexToCartesian
ComplexToPolar
Converter
DoubleToFix
ExpressionToToken
FixToDouble
FixToFix
InUnitsOf
IntArrayToString
LongToDouble
PolarToCartesian
PolarToComplex
Round
StringToIntArray
StringToUnsignedByteArray
TokenToExpression
UnsignedByteArrayToString

actor.lib.conversions

Comparator
Equals
IsPresent
LogicFunction
LogicalNot

actor.lib.logic

ConvolutionalCoder
DeScrambler
HadamardCode
Scrambler
ViterbiDecoder

actor.lib.comm

ArrayPlotter
ArrowKeySensor
BarGraph
Display
HistogramPlotter
InteractiveShell
KeystrokeSensor
MatrixViewer
Plotter
PlotterBase
RealTimePlotter
SequencePlotter
SequenceScope
SketchedSource
SliderSource
TimedPlotter
TimedScope
XYPlotter
XYScope

actor.lib.gui

AudioCapture
AudioPlayer
AudioReadBuffer
AudioReader
AudioWriteBuffer
AudioWriter

actor.lib.javasound

DatagramReader
DatagramWriter

actor.lib.net

ImageDisplay
ImageReader
ImageRotate
ImageToString
Transform
URLToImage

actor.lib.image
DoubleMatrixToJAI
JAIAffineTransform
JAIBMPWriter
JAIBandCombine
JAIBandSelect
JAIBorder
JAIBoxFilter
JAIConvolve
JAICrop
JAIDCT
JAIDFT
JAIDataCaster
JAIEdgeDetection
JAIIDCT
JAIIDFT
JAIImageReader
JAIImageToken
JAIInvert
JAIJPEGWriter
JAILog
JAIMagnitude
JAIMedianFilter
JAIPNMWriter
JAIPeriodicShift
JAIPhase
JAIPolarToComplex
JAIRotate
JAIScale
JAITIFFWriter
JAIToDoubleMatrix
JAITranslate
JAITranspose

actor.lib.jai

ExpressionReader
ExpressionWriter
FileReader
LineReader
LineWriter

actor.lib.io

ColorFinder
JMFImageToken
PlaySound
VideoCamera

actor.lib.jmf

Joystick

actor.lib.joystick

JxtaCorbaActorClient
MoMLSimpleApplication
Peer

actor.lib.jxta

PythonScript

actor.lib.python

java.awt

javax.swing

java.net

org.python.core

com.centralnexus.input

net.jxta

org.apache.log4j

org.apache.log4j

ptolemy.media

javax.mediajava.awt com.sun.media.jaijava.net

actor.lib
.io.comm

SerialComm

Ptolemy Project 24

Ptolemy II Architecture

6.4 User Interface Packages

The UI packages provide support for our XML file format, called MoML, and a visual interface
for constructing models graphically, called Vergil. These packages are organized as shown in figures
11 and 12. The intent of each package is described below:

actor.gui This package contains the configuration infrastructure, which supports modular
construction of user interfaces that are themselves Ptolemy II models.

actor.gui.style This package contains classes that decorate attributes to serve as hints to a user
interface about how to present these attributes to the user.

gui This package contains generically useful user interface components.
media This package encapsulates a set of classes supporting audio and image processing.
moml This package contains classes support our XML modeling markup language

(MoML), which is used to describe Ptolemy II models.
moml.filter This package provides backward compatibility between Ptolemy release. We hope

to replace it with an XSL based solution in a future release.
plot This package and its packages provides two-dimensional signal plotting widgets.
vergil This package and its packages contains the Ptolemy II graphical user interface. It

builds on Diva, a toolkit that extends Java 2D. For more information about Diva,
see http://www.gigascale.org/diva

6.5 Capabilities

Ptolemy II is a third generation system. Its immediate predecessor, Ptolemy Classic, still has active
users and developers, particularly through a commercial product that is based partly on it, Agilent’s
ADS. Ptolemy II has a somewhat different emphasis, and through its use of Java, concurrency, and
integration with the network, is aggressively experimental. Some of the major capabilities in Ptolemy
II that we believe to be new technology in modeling and design environments include:

• Higher level concurrent design in JavaTM. Java support for concurrent design is very low level,
based on threads and monitors. Maintaining safety and liveness can be quite difficult [60]. Ptolemy
II includes a number of domains that support design of concurrent systems at a much higher level
of abstraction, at the level of their software architecture. Some of these domains use Java threads
as an underlying mechanism, while others offer an alternative to Java threads that is much more
efficient, scalable, and understandable.

• Better modularization through the use of packages. Ptolemy II is divided into packages that can be
used independently and distributed on the net, or drawn on demand from a server. This breaks with
tradition in design software, where tools are usually embedded in huge integrated systems with
interdependent parts.

• Complete separation of the abstract syntax from the semantics. Ptolemy designs are structured as
clustered graphs. Ptolemy II defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha-
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the
graphs.

Heterogeneous Concurrent Modeling and Design 25

Ptolemy II Architecture

FIGURE 11. Packages in Ptolemy II that support the user interfaces, including the MoML XML schema,
plotters and other display infrastructure, and support for windows and application configurations.

actor

actor.gui

BrowserEffigy
BrowserLauncher
BrowserTableau
CompositeActorApplication
Configuration
ConfigurationEffigy
Configurer
DebugListenerTableau
EditParametersDialog
EditorFactory
EditorPaneFactory
Effigy
EffigyFactory
ExpressionShellEffigy
ExpressionShellFrame
ExpressionShellTableau
ExternalTextEffigy
ExternalTextTableau
GenerateCopyrights
HTMLAbout
HTMLEffigy
HTMLEffigyFactory
HTMLViewer
HTMLViewerTableau
JNLPUtilities
JVMTableau
LocationAttribute
MatrixPane
MatrixTokenTableau
MoMLApplet
MoMLApplication
MoMLSimpleApplication
MoMLSimpleStatisticalApplication
ModelDirectory
ModelFrame
ModelPane
Placeable
PlotEffigy
PlotTableau
PlotTableauFrame
PortConfigurer
PortConfigurerDialog
PtExecuteApplication
PtolemyApplet
PtolemyApplication
PtolemyEffigy
PtolemyFrame
PtolemyQuery
PtolemyTableauFactory
RenameConfigurer
RenameDialog
RunTableau
SizeAttribute
Tableau
TableauFactory
TableauFrame
TextEditor
TextEditorTableau
TextEffigy
TokenEffigy
TokenTableau
WindowPropertiesAttribute

moml

Documentation
EntityLibrary
ErrorHandler
ImportAttribute
LibraryAttribute
MoMLAttribute
MoMLChangeRequest
MoMLFilter
MoMLParser
MoMLUndoChangeRequest
MoMLUndoEntry
ParserAttribute
StreamErrorHandler
UndoContext
UndoInfoAttribute
URLAttribute
Vertex

data.expr

actor.gui.style

CheckBoxStyle
ChoiceStyle
EditableChoiceStyle
FileChooserStyle
LineStyle
NotEditableLineStyle
ParameterEditorStyle
StyleConfigurer
TextStyle

AddEditorFactory
AddIcon
BackwardCompatibility
ClassChanges
HideAnnotationNames
ParameterNameChanges
PortNameChanges
PropertyClassChanges
RemoveGraphicalClasses

moml.filter

plot

CmdLineArgException
EPSGraphics
EditListener
EditablePlot
Histogram
HistogramApplet
Plot
PlotApplet
PlotApplication
PlotBox
PlotDataException
PlotFormatter
PlotFrame
PlotLive
PlotLiveApplet
PlotPoint

plot.compat

PxgraphApplet
PxgraphApplication
PxgraphParse

plot.plotml

EditablePlotMLApplet
EditablePlotMLApplication
HistogramMLApplet
HistogramMLApplication
HistogramMLParser
PlotBoxMLParser
PlotMLApplet
PlotMLApplication
PlotMLFrame
PlotMLParser

media

Audio
AudioViewer
Picture

media.javasound

LiveSound
LiveSoundEvent
LiveSoundListener
SoundPlayback
SoundReader
SoundWriter

gui

BasicJApplet
CancelException
CloseListener
ComponentDialog
GraphicalMessageHandler
JTextAreaExec
MessageHandler
Query
QueryListener
ShellInterpreter
ShellTextArea
StatusBar
StreamExec
SwingWorker
Top

java.awt javax.swingutil

com.microstar.xml

sun.audio javax.sound

Ptolemy Project 26

Ptolemy II Architecture

FIGURE 12. Packages in Ptolemy II provide the Vergil visual editor.

vergil

MoMLViewerApplet
TypeAnimatorApplet
VergilApplication
VergilErrorHandler

ActorController
ActorEditorGraphController
ActorGraphFrame
ActorGraphModel
ActorGraphTableau
ActorViewerGraphController
ExternalIOPortController
IOPortController
LinkController

vergil.actor

vergil.fsm

FSMGraphController
FSMGraphFrame
FSMGraphModel
FSMGraphTableau
FSMViewerGraphController
StateController
TransitionController

AbstractBasicGraphModel
BasicGraphController
BasicGraphFrame
EditorDropTarget
ExtendedGraphFrame
IconController
LocatableNodeController
LocatableNodeDragInteractor
NamedObjController
NamedObjNodeModel
NodeControllerFactory
ParameterizedNodeController
RunnableGraphController

vergil.basic

vergil.icon

AttributeValueIcon
BoxedValueIcon
EditorIcon
ImageEditorIcon
SimpleSelection
UpdatedValueIcon
ValueIcon
XMLIcon

vergil.kernel

AnimationRenderer
AttributeController
AttributeNodeModel
CompositeEntityModel
DebugRenderer
Link
PortDialogFactory
RelationController
RenameDialogFactory
SetIconAction

vergil.tree

EntityTreeModel
FullTreeModel
PTree
PtolemyTreeCellRenderer
TreeEditor
TreeEditorPanel
TreeTableau
VisibleTreeModel

vergil.toolbox

AnnotationEditorFactory
ConfigureAction
FigureAction
GraphicElement
MenuActionFactory
MenuItemFactory
PortSite
PtolemyListCellRenderer
PtolemyMenuFactory
PtolemyTransferable
SnapConstraint
VisibleParamterEditorFactory

diva

InterfaceAutomatonGraphController
InterfaceAutomatonGraphFrame
InterfaceAutomatonGraphTableau

vergil.fsm.ia

vergil.fsm.modal

HierarchicalStateController
HierarchicalStateControllerFactory
ModalController
ModalModel
ModalPort
ModalTransitionController
Refinement
RefinementPort
TransitionRefinement
TransitionRefinementPort

domains.fsm java.awt javax.swing actor.gui gui moml

Heterogeneous Concurrent Modeling and Design 27

Ptolemy II Architecture

• Improved heterogeneity via a well-defined abstract semantics. Ptolemy Classic provided a worm-
hole mechanism for hierarchically coupling heterogeneous models of computation. This mecha-
nism is improved in Ptolemy II through the use of opaque composite actors, which provide better
support for models of computation that are very different from dataflow, the best supported model
in Ptolemy Classic. These include hierarchical concurrent finite-state machines and continuous-
time modeling techniques.

• Thread-safe concurrent execution. Ptolemy models are typically concurrent, but in the past, sup-
port for concurrent execution of a Ptolemy model has been primitive. Ptolemy II supports concur-
rency throughout, allowing for instance for a model to mutate (modify its clustered graph
structure) while the user interface simultaneously modifies the structure in different ways. Consis-
tency is maintained through the use of monitors and read/write semaphores [51] built upon the
lower level synchronization primitives of Java.

• A software architecture based on object modeling. Since Ptolemy Classic was constructed, soft-
ware engineering has seen the emergence of sophisticated object modeling [89][110][113] and
design pattern [35] concepts. We have applied these concepts to the design of Ptolemy II, and they
have resulted in a more consistent, cleaner, and more robust design. We have also applied a simpli-
fied software engineering process that includes systematic design and code reviews [107].

• A truly polymorphic type system. Ptolemy Classic supported rudimentary polymorphism through
the “anytype” particle. Even with such limited polymorphism, type resolution proved challenging,
and the implementation is ad-hoc and fragile. Ptolemy II has a more modern type system based on
a partial order of types and monotonic type refinement functions associated with functional blocks.
Type resolution consists of finding a fixed point, using algorithms inspired by the type system in
ML [92]. The type system is described in [124] and [125].

• Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain.
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy II,
this idea is taken much further. Actors with intrinsically polymorphic functionality can be written
to operate in a much larger set of domains. The mechanism they use to communicate with other
actors depends on the domain in which they are used. This is managed through a concept that we
call a process level type system.

• Extensible XML-based file formats. XML is an emerging standard for representation of informa-
tion that focuses on the logical relationships between pieces of information. Human-readable rep-
resentations are generated with the help of style sheets. Ptolemy II will use XML as its primary
format for persistent design data.

• Distributed models. Ptolemy II has (still preliminary) infrastructure supporting distributed model-
ing using CORBA, Java RMI, or lower-level networking primitives. Ptolemy II has (still prelimi-
nary) support for migrating software components.

• Component specialization. Ptolemy II has an evolving code generation mechanism that is very dif-
ferent from that in Ptolemy Classic. In Ptolemy Classic, each component has to have a definition in
the target language, and the code generator merely stitches together these components. In Ptolemy
II, components are defined in Java, and the Java definition is parsed. An API for performing opti-
mization transformations on the abstract syntax tree is defined, and then compiler back ends can be
used to generate target code. A preliminary implementation of this approach is described in [98],
[119] and [120].

• Fully integrated expression language. The Ptolemy II expression language is a higher-order, richly
expressive language that is fully integrated with actor-oriented modeling. The type system infer-
ence mechanism propagates through expressions, parameters, and actor ports seamlessly.

Ptolemy Project 28

Acknowledgements

6.6 Future Capabilities

Capabilities that we anticipate making available in the future include:
• Integrated verification tools. Modern verification tools based on model checking [46] could be

integrated with Ptolemy II at least to the extent that finite state machine models can be checked.
We believe that the separation of control logic from concurrency will greatly facilitate verification,
since only much smaller cross-sections of the system behavior will be offered to the verification
tools.

• Reflection of dynamics. Java supports reflection of static structure, but not of dynamic properties
of process-based objects. For example, the data layout required to communicate with an object is
available through the reflection package, but the communication protocol is not. We plan to extend
the notion of reflection to reflect such dynamic properties of objects.

• Meta modeling. The domains in Ptolemy II are constructed based on an intuitive understanding of
a useful class of modeling techniques, and then the support infrastructure for specifying and exe-
cuting models in the domain are built by hand by writing Java code. Others have built tools that
have the potential of improving on this situation by meta modeling. In Dome (from Honeywell)
and GME (from Vanderbilt), for example, a modeling strategy itself is modeled, and user inter-
faces supporting that modeling strategy are synthesized from that model. We can view the current
component-based architecture of Vergil as a starting point in this direction. In the future, we expect
to see much more use of Ptolemy II itself to define and construct Ptolemy II domains and their user
interfaces.

7. Acknowledgements
There have been many participants in the Ptolemy Project over the years. So many, that we may

(inadvertently) omit some names here. With apologies to those people, we list the contributors. The
principal authors of version 3.0 of Ptolemy II and of this version of the overview document are
• Christopher Hylands,
• Edward Lee,
• Jie Liu,
• Xiaojun Liu,
• Stephen Neuendorffer,
• Yuhong Xiong,
• Yang Zhao, and
• Haiyang Zheng.
Major contributors to earlier versions include:
• John Davis, II,
• Chamberlain Fong,
• Mudit Goel,
• Bilung Lee,
• Lukito Muliadi,
• John Reekie,
• Neil Smyth, and
• Jeff Tsay.

Heterogeneous Concurrent Modeling and Design 29

References

Other contributors include Vincent Arnould, Frederic Boulanger, Adam Cataldo, Chris Chang, Albert
Chen, Elaine Cheong, Brieuc Desoutter, Pedro Domecq, Johan Eker, Geroncio Galicia, Ben Horowitz,
Heloise Hse, Jörn Janneck, Zoltan Kemenczy, Bart Kienhuis, Christoph Meyer Kirsch, Sanjeev Kohli,
Robert Kroeger, David Lee, Michael Leung, John Li, Andrew Mihal, Eleftherios Matsikoudis, Ale-
ksandar Necakov, Sarah Packman, Shankar Rao, Sonia Sachs, Michael Shilman, Sean Simmons,
Mandeep Singh, Peter N. Steinmetz, Dick Stevens, Mary Stewart, Ned Stoffel, Manda Sutijono, Neil
Turner, Guillaume Vibert, Kees Vissers, Brian K. Vogel, Yuke Wang, Xavier Warzee, Scott Weber,
Paul Whitaker, Winthrop Williams, Ed Willink, Michael Wirthlin, William Wu, Paul Yang, James Yeh,
Nick Zamora, and Rachel Zhou.

The Ptolemy Project has received financial support the Defense Advanced Research Projects
Agency (DARPA), the National Science Foundation, Chess (the Center for Hybrid and Embedded
Software Systems), the MARCO/DARPA Gigascale Silicon Research Center (GSRC), the State of
California MICRO program, and the following companies: Agilent, Atmel, Cadence, Hewlett-Pack-
ard, Hitachi, National Semiconductor, and Philips.

8. References
[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cam-

bridge, MA, 1986.

[2] G. Agha, “Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed Sys-
tems,” in Formal Methods for Open Object-based Distributed Systems, IFIP Transactions, E.
Najm and J.-B. Stefani, Eds., Chapman & Hall, 1997.

[3] G. Agha, “Concurrent object-oriented programming,” Communications of the ACM, 33(9):125–
140, Sept. 1990.

[4] G. Agha, S. Frolund, W. Kim, R. Panwar, A. Patterson, and D. Sturman, “Abstraction and modu-
larity mechanisms for concurrent computing. IEEE Parallel and Distributed Technology: Systems
and Applications, 1(2):3–14, May 1993.

[5] G. Agha, I. A. Mason, S. F.Smith, and C. L. Talcott, “A foundation for actor computation. Journal
of Functional Programming, 7(1):1–72, 1997.

[6] R. Allen and D. Garlan, “Formalizing Architectural Connection,” in Proc. of the 16th Interna-
tional Conference on Software Engineering (ICSE 94), May 1994, pp. 71-80, IEEE Computer
Society Press.

[7] G. R. Andrews, Concurrent Programming — Principles and Practice, Addison-Wesley, 1991.

[8] R. L. Bagrodia, “Parallel Languages for Discrete Event Simulation Models,” IEEE Computa-
tional Science & Engineering, vol. 5, no. 2, April-June 1998, pp 27-38.

[9] R. Bagrodia, R. Meyer, et al., “Parsec: A Parallel Simulation Environment for Complex Sys-
tems,” IEEE Computer, vol. 31, no. 10, October 1998, pp 77-85.

[10] M. von der Beeck, “A Comparison of Statecharts Variants,” in Proc. of Formal Techniques in
Real Time and Fault Tolerant Systems, LNCS 863, pp. 128-148, Springer-Verlag, 1994.

[11] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Systems,”
Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp. 1270-1282.

Ptolemy Project 30

References

[12] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Lan-
guage,” IEEE Tr. on Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990.

[13] G. Berry and G. Gonthier, “The Esterel synchronous programming language: Design, semantics,
implementation,” Science of Computer Programming, 19(2):87-152, 1992.

[14] S. Bhatt, R. M. Fujimoto, A. Ogielski, and K. Perumalla, “Parallel Simulation Techniques for
Large-Scale Networks,” IEEE Communications Magazine, Vol. 36, No. 8, August 1998, pp. 42-
47.

[15] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee, Software Synthesis from Dataflow Graphs, Klu-
wer Academic Publishers, Norwell, Mass, 1996.

[16] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O'Reilly, G. Sih and E. A. Lee, “Gabriel: A Design Envi-
ronment for DSP,” IEEE Micro Magazine, October 1990, vol. 10, no. 5, pp. 28-45.

[17] Randy Brown, “CalendarQueue: A Fast Priority Queue Implementation for The Simulation Event
Set Problem”, Communications of the ACM, October 1998, Volume 31, Number 10.

[18] V. Bryant, “Metric Spaces,” Cambridge University Press, 1985.

[19] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems,” Int. Journal of Computer Simulation, special issue on
“Simulation Software Development,” vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.berke-
ley.edu/publications/papers/94/JEurSim).

[20] A. Burns, Programming in OCCAM 2, Addison-Wesley, 1988.

[21] James C. Candy, “A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital Con-
verters,” IEEE Tr. on Communications, Vol. COM-22, No. 3, pp. 298-305, March 1974.

[22] L. Cardelli, Type Systems, Handbook of Computer Science and Engineering, CRC Press, 1997.

[23] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A Declarative Language for Pro-
gramming Synchronous Systems,” Conference Record of the 14th Annual ACM Symp. on Princi-
ples of Programming Languages, Munich, Germany, January, 1987.

[24] K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation Via a Sequence of Parallel
Computations,” Communications of the ACM, vol. 24, no. 11, November 1981, pp. 198-205.

[25] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University Press,
1990.

[26] John Davis II, "Order and Containment in Concurrent System Design," Ph.D. thesis, Memoran-
dum UCB/ERL M00/47, Electronics Research Laboratory, University of California, Berkeley,
September 8, 2000.(http://ptolemy.eecs.berkeley.edu/publications/papers/00/concsys/)

[27] S. A. Edwards and E. A. Lee, “The Semantics and Execution of a Synchronous Block-Diagram
Language,” to appear in Science of Computer Programming, 2003.

[28] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive Sys-
tems,” Ph.D. thesis, University of California, Berkeley, May 1997. Available as UCB/ERL M97/
31. (http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

Heterogeneous Concurrent Modeling and Design 31

References

[29] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y. Xiong,
“Taming Heterogeneity-the Ptolemy Approach,” Proceedings of the IEEE, V. 91, No 1, January
2003.

[30] P. H. J. van Eijk, C. A. Vissers, M. Diaz, The formal description technique LOTOS, Elsevier Sci-
ence, B.V., 1989. (http://wwwtios.cs.utwente.nl/lotos)

[31] P. A. Fishwick, Simulation Model Design and Execution: Building Digital Worlds, Prentice Hall,
1995.

[32] C. Fong, "Discrete-Time Dataflow Models for Visual Simulation in Ptolemy II," Master's Report,
Memorandum UCB/ERL M01/9, Electronics Research Laboratory, University of California, Ber-
keley, January 2001.(http://ptolemy.eecs.berkeley.edu/publications/papers/00/dt/)

[33] M. Fowler and K. Scott, UML Distilled, Addison-Wesley, 1997.

[34] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Communications of the ACM, vol. 33, no.
10, October 1990, pp 30-53.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading MA, 1995.

[36] C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice Hall
Inc. 1971.

[37] A. J. C. van Gemund, “Performance Prediction of Parallel Processing Systems: The PAMELA
Methodology,” Proc. 7th Int. Conf. on Supercomputing, pages 418-327, Tokyo, July 1993.

[38] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines with Multiple Concurrency
Models,” April 13, 1998 (revised from Memorandum UCB/ERL M97/57, Electronics Research
Laboratory, University of California, Berkeley, CA 94720, August 1997). (http://
ptolemy.eecs.berkeley.edu/publications/papers/98/starcharts)

[39] M. Goel, Process Networks in Ptolemy II, MS Report, ERL Technical Report UCB/ERL No.
M98/69, University of California, Berkeley, CA 94720, December 16, 1998. (http://
ptolemy.eecs.berkeley.edu/publications/papers/98/PNinPtolemyII)

[40] M. Grand, Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns Illustrated with
UML, John Wiley & Sons, 1998.

[41] C. Hansen, “Hardware logic simulation by compilation,” In Proceedings of the Design Automa-
tion Conference (DAC). SIGDA, ACM, 1988.

[42] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Sci. Comput. Program., vol 8,
pp. 231-274, 1987.

[43] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithms,” The Computer Journal, Vol.
35, No. 6, 1992.

[44] T. A. Henzinger, B. Horowitz and C. M. Kirsch, “Giotto: A Time-Triggered Language for Embed-
ded Programming,” EMSOFT 2001, Tahoe City, CA, Springer-Verlag,

[45] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of the 11th Annual Symposium
on Logic in Computer Science, IEEE Computer Society Press, 1996, pp. 278-292, invited tutorial.

Ptolemy Project 32

References

[46] T.A. Henzinger, and O. Kupferman, and S. Qadeer, “From prehistoric to postmodern symbolic
model checking,” in CAV 98: Computer-aided Verification, pp. 195-206, eds. A.J. Hu and M.Y.
Vardi, Lecture Notes in Computer Science 1427, Springer-Verlag, 1998.

[47] T. A. Henzinger and C. M. Kirsch, “The Embedded Machine: Predictable, portable real-time
code,” In Proceedings of Conference on Programming Language Design and Implementation
(PLDI). SIGPLAN, ACM, June 2002.

[48] C. Hewitt, “Viewing control structures as patterns of passing messages,” Journal of Artificial
Intelligence, 8(3):323–363, June 1977.

[49] M. G. Hinchey and S. A. Jarvis, Concurrent Systems: Formal Developments in CSP, McGraw-
Hill, 1995.

[50] C. W. Ho, A. E. Ruehli, and P. A. Brennan, “The Modified Nodal Approach to Network Analy-
sis,” IEEE Tran. on Circuits and Systems, Vol. CAS-22, No. 6, 1975, pp. 504-509.

[51] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, Vol. 21,
No. 8, August 1978.

[52] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[53] IEEE DASC 1076.1 Working Group, “VHDL-A Design Objective Document, version 2.3,” http:/
/www.vhdl.org/analog/ftp_files/requirements/DOD_v2.3.txt

[54] D. Jefferson, Brian Beckman, et al, “Distributed Simulation and the Time Warp Operating Sys-
tem,” UCLA Computer Science Department: 870042, 1987.

[55] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

[56] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,” Information
Processing 77, B. Gilchrist, editor, North-Holland Publishing Co., 1977.

[57] E. Kohler, The Click Modular Router, Ph.D. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, February 2001.

[58] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, Klu-
wer Academic Publishers, 1997.

[59] P. Laramie, R.S. Stevens, and M.Wan, “Kahn process networks in Java,” ee290n class project
report, Univ. of California at Berkeley, 1996.

[60] D. Lea, Concurrent Programming in JavaTM, Addison-Wesley, Reading, MA, 1997.

[61] B. Lee and E. A. Lee, “Interaction of Finite State Machines with Concurrency Models,” Proc. of
Thirty Second Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
California, November 1998. (http://ptolemy.eecs.berkeley.edu/publications/papers/98/Interaction-
FSM/)

[62] B. Lee and E. A. Lee, “Hierarchical Concurrent Finite State Machines in Ptolemy,” Proc. of Inter-
national Conference on Application of Concurrency to System Design, p. 34-40, Fukushima,
Japan, March 1998 (http://ptolemy.eecs.berkeley.edu/publications/papers/98/HCFSMinPtolemy/)

Heterogeneous Concurrent Modeling and Design 33

References

[63] E. A. Lee, S. Neuendorffer and M. J. Wirthlin, “Actor-Oriented Design of Embedded Hardware
and Software Systems,” invited paper, to appear in Journal of Circuits, Systems, and Comput-
ers, 2003.

[64] E. A. Lee, “Embedded Software,” in Advances in Computers (M. Zelkowitz, editor), Vol. 56,
Academic Press, London, 2002.

[65] E. A. Lee and T. M. Parks, “Dataflow Process Networks,” in Readings in Hardware/Software Co-
Design, G. De Micheli, R. Ernst, and W. Wolf, eds., Morgan Kaufmann, San Francisco, 2002
(reprinted from 70).

[66] E. A. Lee, “What's Ahead for Embedded Software?” IEEE Computer, September 2000, pp. 18-26.

[67] E. A. Lee, “Modeling Concurrent Real-time Processes Using Discrete Events,” Invited paper to
Annals of Software Engineering, Special Volume on Real-Time Software Engineering, Volume 7,
1999, pp 25-45. Also UCB/ERL Memorandum M98/7, March 4th 1998.(http://ptolemy.eecs.ber-
keley.edu/publications/papers/98/realtime)

[68] E. A. Lee and Y. Xiong, “System-Level Types for Component-Based Design,” First Workshop on
Embedded Software, EMSOFT 2001, Lake Tahoe, CA, USA, Oct. 8-10, 2001. (also Technical
Memorandum UCB/ERL M00/8, Electronics Research Lab, University of California, Berkeley,
CA 94720, USA, February 29, 2000. http://ptolemy.eecs.berkeley.edu/publications/papers/01/sys-
temLevelType/).

[69] E. A. Lee, “Computing for Embedded Systems,” invited paper, IEEE Instrumentation and Mea-
surement Technology Conference, Budapest, Hungary, May 21-23, 2001.

[70] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”, Proceedings of the IEEE, vol. 83, no.
5, pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/publications/papers/95/processNets)

[71] E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing Models of Computa-
tion,”, IEEE Transactions on CAD, Vol 17, No. 12, December 1998 (Revised from ERL Memo-
randum UCB/ERL M97/11, University of California, Berkeley, CA 94720, January 30, 1997).
(http://ptolemy.eecs.berkeley.edu/publications/papers/97/denotational/)

[72] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Programs for
Digital Signal Processing,” IEEE Trans. on Computers, January, 1987.

[73] M. A. Lemkin, Micro Accelerometer Design with Digital Feedback Control, Ph.D. dissertation,
University of California, Berkeley, Fall 1997.

[74] S. Y. Liao, S. Tjiang, and R. Gupta, “An efficient implementation of reactivity for modeling hard-
ware in the Scenic design environment,” In Proceedings of the 34th Design Automation Confer-
ence (DAC’1997). SIGDA, ACM, 1997.

[75] J. Liu, J. Eker, J. W. Janneck and E. A. Lee, “Realistic Simulations of Embedded Control Sys-
tems,” International Federation of Automatic Control, 15th IFAC World Congress, Barcelona,
Spain, July 21-26, 2002.

[76] J. Liu, X. Liu, and E. A. Lee, “Modeling Distributed Hybrid Systems in Ptolemy II,” invited
embedded tutorial in American Control Conference, Arlington, VA, June 25-27, 2001.

Ptolemy Project 34

References

[77] J. Liu, S. Jefferson, and E. A. Lee, “Motivating Hierarchical Run-Time Models in Measurement
and Control Systems,” American Control Conference, Arlington, VA, pp. 3457-3462, June 25-27,
2001.

[78] J. Liu and E. A. Lee, “A Component-Based Approach to Modeling and Simulating Mixed-Signal
and Hybrid Systems,” to appear in ACM Trans. on Modeling and Computer Simulation, special
issue on computer automated multi-paradigm modeling, 2003.

[79] J. Liu and E. A. Lee, “On the Causality of Mixed-Signal and Hybrid Models,” 6th International
Workshop on Hybrid Systems: Computation and Control (HSCC '03), April 3-5, Prague, Czech
Republic, 2003.

[80] J. Liu, "Responsible Frameworks for Heterogeneous Modeling and Design of Embedded Sys-
tems," Ph.D. thesis, Technical Memorandum UCB/ERL M01/41, University of California, Ber-
keley, CA 94720, December 20th, 2001. (http://ptolemy.eecs.berkeley.edu/publications/papers/
01/responsibleFrameworks/)

[81] J. Liu, Continuous Time and Mixed-Signal Simulation in Ptolemy II, MS Report, UCB/ERL
Memorandum M98/74, Dept. of EECS, University of California, Berkeley, CA 94720, December
1998. (http://ptolemy.eecs.berkeley.edu/publications/papers/98/MixedSignalinPtII/)

[82] J. Liu and E. A. Lee, "Component-based Hierarchical Modeling of Systems with Continuous and
Discrete Dynamics," Proc. of the 2000 IEEE International Conference on Control Applications
and IEEE Symposium on Computer-Aided Control System Design (CCA/CACSD'00), Anchorage,
AK, September 25-27, 2000. pp. 95-100

[83] J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee, "A Hierarchical Hybrid System and
Its Simulation", 1999 38th IEEE Conference on Decision and Control (CDC'99), Phoenix, Ari-
zona.

[84] X. Liu, J. Liu, J. Eker, and E. A. Lee, “Heterogeneous Modeling and Design of Control Systems,”
to appear in Software-Enabled Control: Information Technology for Dynamical Systems, T.
Samad and G. Balas (eds.), New York City: IEEE Press, 2003.

[85] D. C. Luckham and J. Vera, “An Event-Based Architecture Definition Language,” IEEE Transac-
tions on Software Engineering, 21(9), pp. 717-734, September, 1995.

[86] F. Maraninchi, “The Argos Language: Graphical Representation of Automata and Description of
Reactive Systems,” in Proc. of the IEEE Workshop on Visual Languages, Kobe, Japan, Oct. 1991.

[87] S. McConnell, Code Complete: A Practical Handbook of Software Construction, Microsoft Press,
1993.

[88] K. Mehlhorn and Stefan Naher. LEDA: A Platform for Combinatorial and Geometric Computing.
Cambridge University Press, 1997.

[89] B. Meyer, Object Oriented Software Construction, 2nd ed., Prentice Hall, 1997.

[90] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[91] R. Milner, “A Calculus of Communicating Systems”, Lecture Notes in Computer Science, Vol.
92, Springer-Verlag, 1980.

Heterogeneous Concurrent Modeling and Design 35

References

[92] R. Milner, A Theory of Type Polymorphism in Programming, Journal of Computer and System
Sciences 17, pp. 384-375, 1978.

[93] J. Misra, “Distributed Discrete-Event Simulation,” Computing Surveys, vol. 18, no. 1, March
1986, pp. 39-65.

[94] L. Muliadi, "Discrete Event Modeling in Ptolemy II," MS Report, Dept. of EECS, University of
California, Berkeley, CA 94720, May 1999. (http://ptolemy.eecs.berkeley.edu/publications/
papers/99/deModeling/)

[95] P. K. Murthy and E. A. Lee, “Multidimensional Synchronous Dataflow,” IEEE Transactions on
Signal Processing, volume 50, no. 8, pp. 2064 -2079, August 2002.

[96] L. W. Nagal, “SPICE2: A Computer Program to Simulate Semiconductor Circuits,” ERL Memo
No. ERL-M520, Electronics Research Laboratory, University of California, Berkeley, CA 94720.

[97] NASA Office of Safety and Mission Assurance, Software Formal Inspections Guidebook, August
1993 (http://satc.gsfc.nasa.gov/fi/gdb/fitext.txt).

[98] S. Neuendorffer, “Automatic Specialization of Actor-Oriented Models in Ptolemy II,” Master's
Report, Technical Memorandum UCB/ERL M02/41, University of California, Berkeley, CA
94720, December 25, 2002.(http://ptolemy.eecs.berkeley.edu/papers/02/actorSpecialization)

[99] A. R. Newton and A. L. Sangiovanni-Vincentelli, “Relaxation-Based Electrical Simulation,”
IEEE Tr. on Electronic Devices, Vol. ed-30, No. 9, Sept. 1983.

[100]S. Oaks and H. Wong, Java Threads, O’Reilly, 1997.

[101]OMG, Unified Modeling Language: Superstructure, version 2.0, 3rd revised submission to RFP
ad/00-09-02, April 10, 2003

[102]J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

[103]J. K. Ousterhout, Scripting: Higher Level Programming for the 21 Century, IEEE Computer
magazine, March 1998.

[104]T. M. Parks, Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105.
Ph.D. Dissertation. EECS Department, University of California. Berkeley, CA 94720, December
1995. (http://ptolemy.eecs.berkeley.edu/publications/papers/95/parksThesis/)

[105]J. K. Peacock, J. W. Wong and E. G. Manning, “Distributed Simulation Using a Network of Pro-
cessors,” Computer Networks, vol. 3, no. 1, February 1979, pp. 44-56.

[106]Rational Software Corporation, UML Notation Guide, Version 1.1, September 1997, http://
www.rational.com/

[107]J. Reekie, S. Neuendorffer, C. Hylands and E. A. Lee, “Software Practice in the Ptolemy
Project,” Technical Report Series, GSRC-TR-1999-01, Gigascale Silicon Research Center, Uni-
versity of California, Berkeley, CA 94720, April 1999.(http://ptolemy.eecs.berkeley.edu/publica-
tions/papers/99/sftwareprac/)

[108]J. Rehof and T. Mogensen, “Tractable Constraints in Finite Semilattices,” Third International
Static Analysis Symposium, pp. 285-301, Volume 1145 of Lecture Notes in Computer Science,
Springer, Sept., 1996.

Ptolemy Project 36

References

[109]C. Rettig, “Automatic Units Tracking,” Embedded System Programming, March, 2001.

[110]A. J. Riel, Object Oriented Design Heuristics, Addison Wesley, 1996.

[111]R. C. Rosenberg and D.C. Karnopp, Introduction to Physical System Dynamics, McGraw-Hill,
NY, 1983.

[112]J. Rowson and A. Sangiovanni-Vincentelli, “Interface Based Design,” Proc. of DAC ‘97.

[113]J. Rumbaugh, et al. Object-Oriented Modeling and Design Prentice Hall, 1991.

[114]J. Rumbaugh, OMT Insights, SIGS Books, 1996.

[115]S. Saracco, J. R. W. Smith, and R. Reed, Telecommunications Systems Engineering Using SDL,
North-Holland - Elsevier, 1989.

[116]B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented Modeling, John Wiley & Sons,
New York, NY 1994.

[117]N. Smyth, Communicating Sequential Processes Domain in Ptolemy II, MS Report, UCB/ERL
Memorandum M98/70, Dept. of EECS, University of California, Berkeley, CA 94720, December
1998. (http://ptolemy.eecs.berkeley.edu/publications/papers/98/CSPinPtolemyII/)

[118]J. Teich, E. Zitzler, and S. Bhattacharyya, “3D exploration of software schedules for DSP algo-
rithms,” In Proceedings of International Symposium on Hardware/Software Codesign (CODES).
SIGDA, ACM, May 1999.

[119]J. Tsay, “A Code Generation Framework for Ptolemy II,” ERL Technical Report UCB/ERL No.
M00/25, Dept. EECS, University of California, Berkeley, CA 94720, May 19, 2000. (http://
ptolemy.eecs.berkeley.edu/publications/papers/00/codegen).

[120]J. Tsay, C. Hylands and E. A. Lee, "A Code Generation Framework for Java Component-Based
Designs," CASES '00, November 17-19, 2000, San Jose, CA.

[121]P. Whitaker, "The Simulation of Synchronous Reactive Systems In Ptolemy II," Master's Report,
Memorandum UCB/ERL M01/20, Electronics Research Laboratory, University of California,
Berkeley, May 2001. (http://ptolemy.eecs.berkeley.edu/publications/papers/01/sr/)

[122]World Wide Web Consortium, XML 1.0 Recommendation, October 2000, http://www.w3.org/
XML/

[123]World Wide Web Consortium, Overview of SGML Resources, August 2000, http://www.w3.org/
MarkUp/SGML/

[124]Y. Xiong and E. A. Lee, "An Extensible Type System for Component-Based Design," 6th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems, Ber-
lin, Germany, March/April 2000. LNCS 1785.

[125]Y. Xiong, "An Extensible Type System for Component-Based Design," Ph.D. thesis, Technical
Memorandum UCB/ERL M02/13, University of California, Berkeley, CA 94720, May 1, 2002.
(http://ptolemy.eecs.berkeley.edu/papers/02/typeSystem).

	Overview of The Ptolemy Project
	July 2, 2003
	Technical Memorandum UCB/ERL M03/25
	http://ptolemy.eecs.berkeley.edu/
	Christopher Hylands
	Edward Lee
	Jie Liu
	Xiaojun Liu
	Stephen Neuendorffer
	Yuhong Xiong
	Yang Zhao
	Haiyang Zheng
	1. Background
	1.1 Gabriel (1986-1991)
	1.2 Ptolemy Classic (1990-1997)
	FIGURE 1. Ptolemy Classic screen image (from 1993) showing an SDF graph at the upper left that is...

	1.3 Ptolemy II (1996-?)

	2. Modeling and Design
	2.1 Embedded Software
	2.2 Actor-Oriented Design
	FIGURE 2. Illustration of an actor-oriented model (above) and its hierarchical abstraction (below).
	FIGURE 3. An XML representation of a simplified sinewave source.

	2.3 Architecture Design

	3. Models of Computation
	FIGURE 4. A single syntax (bubble-and-arc or block-and-arrow diagram) can have a number of possib...
	3.1 Component Interaction - CI
	3.2 Communicating Sequential Processes - CSP
	3.3 Continuous Time - CT
	Mixed Signal Models
	Modal Models and Hybrid Systems

	3.4 Discrete-Events - DE
	3.5 Distributed Discrete Events - DDE
	3.6 Discrete Time - DT
	3.7 Finite-State Machines - FSM
	*Charts

	3.8 Process Networks - PN
	3.9 Synchronous Dataflow - SDF
	3.10 Giotto
	3.11 Synchronous/Reactive - SR
	3.12 Timed Multitasking - TM

	4. Choosing Models of Computation
	5. Visual Syntaxes
	FIGURE 5. Visual rendition of a Ptolemy II model as a block diagram in Vergil (in the DE domain).
	FIGURE 6. Visual rendition of a Ptolemy II model as a state transition diagram in Vergil (FSM dom...

	6. Ptolemy II Architecture
	6.1 Core Packages
	FIGURE 7. The core packages shown here support the data model (abstract syntax) and the actor mod...

	6.1.1 Overview of Key Classes
	FIGURE 8. Some of the key classes in Ptolemy II. These are defined in the kernel, kernel.util, an...

	6.2 Domains
	FIGURE 9. Package structure of common Ptolemy II domains.

	6.3 Library Packages
	FIGURE 10. The major actor libraries are in packages containing domain-polymorphic actors.

	6.4 User Interface Packages
	FIGURE 11. Packages in Ptolemy II that support the user interfaces, including the MoML XML schema...
	FIGURE 12. Packages in Ptolemy II provide the Vergil visual editor.

	6.5 Capabilities
	6.6 Future Capabilities

	7. Acknowledgements
	8. References
	[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambrid...
	[2] G. Agha, “Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed Syste...
	[3] G. Agha, “Concurrent object-oriented programming,” Communications of the ACM, 33(9):125– 140,...
	[4] G. Agha, S. Frolund, W. Kim, R. Panwar, A. Patterson, and D. Sturman, “Abstraction and modula...
	[5] G. Agha, I. A. Mason, S. F.Smith, and C. L. Talcott, “A foundation for actor computation. Jou...
	[6] R. Allen and D. Garlan, “Formalizing Architectural Connection,” in Proc. of the 16th Internat...
	[7] G. R. Andrews, Concurrent Programming — Principles and Practice, Addison-Wesley, 1991.
	[8] R. L. Bagrodia, “Parallel Languages for Discrete Event Simulation Models,” IEEE Computational...
	[9] R. Bagrodia, R. Meyer, et al., “Parsec: A Parallel Simulation Environment for Complex Systems...
	[10] M. von der Beeck, “A Comparison of Statecharts Variants,” in Proc. of Formal Techniques in R...
	[11] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Systems,” Pr...
	[12] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Language,” ...
	[13] G. Berry and G. Gonthier, “The Esterel synchronous programming language: Design, semantics, ...
	[14] S. Bhatt, R. M. Fujimoto, A. Ogielski, and K. Perumalla, “Parallel Simulation Techniques for...
	[15] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee, Software Synthesis from Dataflow Graphs, Kl...
	[16] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O'Reilly, G. Sih and E. A. Lee, “Gabriel: A Design E...
	[17] Randy Brown, “CalendarQueue: A Fast Priority Queue Implementation for The Simulation Event S...
	[18] V. Bryant, “Metric Spaces,” Cambridge University Press, 1985.
	[19] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating ...
	[20] A. Burns, Programming in OCCAM 2, Addison-Wesley, 1988.
	[21] James C. Candy, “A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital Conver...
	[22] L. Cardelli, Type Systems, Handbook of Computer Science and Engineering, CRC Press, 1997.
	[23] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A Declarative Language for Pro...
	[24] K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation Via a Sequence of Parallel C...
	[25] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University Pre...
	[26] John Davis II, "Order and Containment in Concurrent System Design," Ph.D. thesis, Memorandum...
	[27] S. A. Edwards and E. A. Lee, “The Semantics and Execution of a Synchronous Block-Diagram Lan...
	[28] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive System...
	[29] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y. ...
	[30] P. H. J. van Eijk, C. A. Vissers, M. Diaz, The formal description technique LOTOS, Elsevier ...
	[31] P. A. Fishwick, Simulation Model Design and Execution: Building Digital Worlds, Prentice Hal...
	[32] C. Fong, "Discrete-Time Dataflow Models for Visual Simulation in Ptolemy II," Master's Repor...
	[33] M. Fowler and K. Scott, UML Distilled, Addison-Wesley, 1997.
	[34] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Communications of the ACM, vol. 33, no...
	[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Objec...
	[36] C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice ...
	[37] A. J. C. van Gemund, “Performance Prediction of Parallel Processing Systems: The PAMELA Meth...
	[38] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines with Multiple Concurr...
	[39] M. Goel, Process Networks in Ptolemy II, MS Report, ERL Technical Report UCB/ERL No. M98/69,...
	[40] M. Grand, Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns Illustrated with...
	[41] C. Hansen, “Hardware logic simulation by compilation,” In Proceedings of the Design Automati...
	[42] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Sci. Comput. Program., vol ...
	[43] P. G. Harrison, “A Higher-Order Approach to Parallel Algorithms,” The Computer Journal, Vol....
	[44] T. A. Henzinger, B. Horowitz and C. M. Kirsch, “Giotto: A Time-Triggered Language for Embedd...
	[45] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of the 11th Annual Symposiu...
	[46] T.A. Henzinger, and O. Kupferman, and S. Qadeer, “From prehistoric to postmodern symbolic mo...
	[47] T. A. Henzinger and C. M. Kirsch, “The Embedded Machine: Predictable, portable real-time cod...
	[48] C. Hewitt, “Viewing control structures as patterns of passing messages,” Journal of Artifici...
	[49] M. G. Hinchey and S. A. Jarvis, Concurrent Systems: Formal Developments in CSP, McGraw- Hill...
	[50] C. W. Ho, A. E. Ruehli, and P. A. Brennan, “The Modified Nodal Approach to Network Analysis,...
	[51] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, Vol. 21, No...
	[52] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
	[53] IEEE DASC 1076.1 Working Group, “VHDL-A Design Objective Document, version 2.3,” http:/ /www...
	[54] D. Jefferson, Brian Beckman, et al, “Distributed Simulation and the Time Warp Operating Syst...
	[55] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” Proc. of the IFIP Co...
	[56] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,” Information Pro...
	[57] E. Kohler, The Click Modular Router, Ph.D. Thesis, Massachusetts Institute of Technology, De...
	[58] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, Kluwe...
	[59] P. Laramie, R.S. Stevens, and M.Wan, “Kahn process networks in Java,” ee290n class project r...
	[60] D. Lea, Concurrent Programming in JavaTM, Addison-Wesley, Reading, MA, 1997.
	[61] B. Lee and E. A. Lee, “Interaction of Finite State Machines with Concurrency Models,” Proc. ...
	[62] B. Lee and E. A. Lee, “Hierarchical Concurrent Finite State Machines in Ptolemy,” Proc. of I...
	[63] E. A. Lee, S. Neuendorffer and M. J. Wirthlin, “Actor-Oriented Design of Embedded Hardware a...
	[64] E. A. Lee, “Embedded Software,” in Advances in Computers (M. Zelkowitz, editor), Vol. 56, Ac...
	[65] E. A. Lee and T. M. Parks, “Dataflow Process Networks,” in Readings in Hardware/Software Co-...
	[66] E. A. Lee, “What's Ahead for Embedded Software?” IEEE Computer, September 2000, pp. 18-26.
	[67] E. A. Lee, “Modeling Concurrent Real-time Processes Using Discrete Events,” Invited paper to...
	[68] E. A. Lee and Y. Xiong, “System-Level Types for Component-Based Design,” First Workshop on E...
	[69] E. A. Lee, “Computing for Embedded Systems,” invited paper, IEEE Instrumentation and Measure...
	[70] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”, Proceedings of the IEEE, vol. 83, n...
	[71] E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing Models of Computation,”...
	[72] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Programs for ...
	[73] M. A. Lemkin, Micro Accelerometer Design with Digital Feedback Control, Ph.D. dissertation, ...
	[74] S. Y. Liao, S. Tjiang, and R. Gupta, “An efficient implementation of reactivity for modeling...
	[75] J. Liu, J. Eker, J. W. Janneck and E. A. Lee, “Realistic Simulations of Embedded Control Sys...
	[76] J. Liu, X. Liu, and E. A. Lee, “Modeling Distributed Hybrid Systems in Ptolemy II,” invited ...
	[77] J. Liu, S. Jefferson, and E. A. Lee, “Motivating Hierarchical Run-Time Models in Measurement...
	[78] J. Liu and E. A. Lee, “A Component-Based Approach to Modeling and Simulating Mixed-Signal an...
	[79] J. Liu and E. A. Lee, “On the Causality of Mixed-Signal and Hybrid Models,” 6th Internationa...
	[80] J. Liu, "Responsible Frameworks for Heterogeneous Modeling and Design of Embedded Systems," ...
	[81] J. Liu, Continuous Time and Mixed-Signal Simulation in Ptolemy II, MS Report, UCB/ERL Memora...
	[82] J. Liu and E. A. Lee, "Component-based Hierarchical Modeling of Systems with Continuous and ...
	[83] J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee, "A Hierarchical Hybrid Sys...
	[84] X. Liu, J. Liu, J. Eker, and E. A. Lee, “Heterogeneous Modeling and Design of Control System...
	[85] D. C. Luckham and J. Vera, “An Event-Based Architecture Definition Language,” IEEE Transacti...
	[86] F. Maraninchi, “The Argos Language: Graphical Representation of Automata and Description of ...
	[87] S. McConnell, Code Complete: A Practical Handbook of Software Construction, Microsoft Press,...
	[88] K. Mehlhorn and Stefan Naher. LEDA: A Platform for Combinatorial and Geometric Computing. Ca...
	[89] B. Meyer, Object Oriented Software Construction, 2nd ed., Prentice Hall, 1997.
	[90] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
	[91] R. Milner, “A Calculus of Communicating Systems”, Lecture Notes in Computer Science, Vol. 92...
	[92] R. Milner, A Theory of Type Polymorphism in Programming, Journal of Computer and System Scie...
	[93] J. Misra, “Distributed Discrete-Event Simulation,” Computing Surveys, vol. 18, no. 1, March ...
	[94] L. Muliadi, "Discrete Event Modeling in Ptolemy II," MS Report, Dept. of EECS, University of...
	[95] P. K. Murthy and E. A. Lee, “Multidimensional Synchronous Dataflow,” IEEE Transactions on Si...
	[96] L. W. Nagal, “SPICE2: A Computer Program to Simulate Semiconductor Circuits,” ERL Memo No. E...
	[97] NASA Office of Safety and Mission Assurance, Software Formal Inspections Guidebook, August 1...
	[98] S. Neuendorffer, “Automatic Specialization of Actor-Oriented Models in Ptolemy II,” Master's...
	[99] A. R. Newton and A. L. Sangiovanni-Vincentelli, “Relaxation-Based Electrical Simulation,” IE...
	[100] S. Oaks and H. Wong, Java Threads, O’Reilly, 1997.
	[101] OMG, Unified Modeling Language: Superstructure, version 2.0, 3rd revised submission to RFP ...
	[102] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.
	[103] J. K. Ousterhout, Scripting: Higher Level Programming for the 21 Century, IEEE Computer mag...
	[104] T. M. Parks, Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105. Ph.D....
	[105] J. K. Peacock, J. W. Wong and E. G. Manning, “Distributed Simulation Using a Network of Pro...
	[106] Rational Software Corporation, UML Notation Guide, Version 1.1, September 1997, http:// www...
	[107] J. Reekie, S. Neuendorffer, C. Hylands and E. A. Lee, “Software Practice in the Ptolemy Pro...
	[108] J. Rehof and T. Mogensen, “Tractable Constraints in Finite Semilattices,” Third Internation...
	[109] C. Rettig, “Automatic Units Tracking,” Embedded System Programming, March, 2001.
	[110] A. J. Riel, Object Oriented Design Heuristics, Addison Wesley, 1996.
	[111] R. C. Rosenberg and D.C. Karnopp, Introduction to Physical System Dynamics, McGraw-Hill, NY...
	[112] J. Rowson and A. Sangiovanni-Vincentelli, “Interface Based Design,” Proc. of DAC ‘97.
	[113] J. Rumbaugh, et al. Object-Oriented Modeling and Design Prentice Hall, 1991.
	[114] J. Rumbaugh, OMT Insights, SIGS Books, 1996.
	[115] S. Saracco, J. R. W. Smith, and R. Reed, Telecommunications Systems Engineering Using SDL, ...
	[116] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented Modeling, John Wiley & Sons,...
	[117] N. Smyth, Communicating Sequential Processes Domain in Ptolemy II, MS Report, UCB/ERL Memor...
	[118] J. Teich, E. Zitzler, and S. Bhattacharyya, “3D exploration of software schedules for DSP a...
	[119] J. Tsay, “A Code Generation Framework for Ptolemy II,” ERL Technical Report UCB/ERL No. M00...
	[120] J. Tsay, C. Hylands and E. A. Lee, "A Code Generation Framework for Java Component-Based De...
	[121] P. Whitaker, "The Simulation of Synchronous Reactive Systems In Ptolemy II," Master's Repor...
	[122] World Wide Web Consortium, XML 1.0 Recommendation, October 2000, http://www.w3.org/ XML/
	[123] World Wide Web Consortium, Overview of SGML Resources, August 2000, http://www.w3.org/ Mark...
	[124] Y. Xiong and E. A. Lee, "An Extensible Type System for Component-Based Design," 6th Interna...
	[125] Y. Xiong, "An Extensible Type System for Component-Based Design," Ph.D. thesis, Technical M...

