
Actor-oriented Metaprogramming

by

Stephen Andrew Neuendorffer

B.S. (University of Maryland, College Park) 1998
B.S. (University of Maryland, College Park) 1998
M.S. (University of California, Berkeley) 2002

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Edward Lee, Chair

Professor Kurt Keutzer
Professor Masayoshi Tomizuka

Fall 2004

The dissertation of Stephen Andrew Neuendorffer is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2004

Actor-oriented Metaprogramming

Copyright 2004

by

Stephen Andrew Neuendorffer

1

Abstract

Actor-oriented Metaprogramming

by

Stephen Andrew Neuendorffer

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward Lee, Chair

Robust design of concurrent systems is important in many areas of engineering, from em-

bedded systems to scientific computing. Designing such systems using dataflow-oriented

models can expose large amounts of concurrency to system implementation. Utilizing this

concurrency effectively enables distributed execution and increased throughput, or reduced

power usage at the same throughput. Code generation can then be used to automatically

transform the design into an implementation, allowing design refactoring at the dataflow

level and reduced design time over hand implementation.

This thesis focuses particularly on the benefits and disadvantages that arise when con-

structing models from generic, parameterized, dataflow-oriented components calledactors.

A designer can easily reuse actors in different models with different parameter values, data

types, and interaction semantics. Additionally, during execution of a model actors can be

reconfigured by changing their connections or assigning new parameter values. This form

of reconfiguration can conveniently represent adaptive systems, systems with multiple op-

erating modes, systems without fixed structure, and systems that control other systems.

Ptolemy II is a Java-based design environment that supports the construction and execution

of hierarchical, reconfigurable models using actors.

Unfortunately, allowing unconstrained reconfiguration of actors can sometimes cause

problems. If a model is reconfigured, it may no longer accurately represent the system

being modeled. Reconfiguration may prevent the application of static scheduling analysis

to improve execution performance. In systems with data type parameters, reconfiguration

2

may prevent static analysis of data types, eliminating an important form of error detection.

In such cases, it is therefore useful to limit which parameters or structures in a model can

be reconfigured, or when during execution reconfiguration can occur.

This thesis describes a reconfiguration analysis that determines when reconfiguration

occurs in a hierarchical model. Given appropriate formulated constraints, the analysis can

alert a designer to potential design problems. The analysis is based on a mathematical

framework for approximately describing periodic points in the behavior of a model. This

framework has a lattice structure that reflects the hierarchical structure of actors in a model.

Because of the lattice structure of the framework, this analysis can be performed efficiently.

Models of two different systems are presented where this analysis helps verify that recon-

figuration does not violate the assumptions of the model.

Run-time reconfiguration of actors not only presents difficulties for a system modeler,

but can also impede efficient system implementation. In order to support run-time re-

configuration of actors in Java, Ptolemy II introduces extra levels of indirection into many

operations. The overhead from this indirection is incurred in all models, even if a particular

model does not use reconfiguration.

In order to remove the indirection overhead, we have developed a system called Coper-

nicus which transforms a Ptolemy II model into self-contained Java code. In performing

this transformation the Java code for each actor is specialized to its usage in a particular

model. As a result, indirection overhead only remains in the generated code if it is required

by reconfiguration in the model. The specialization is guided by various types of static

analysis, including data type analysis and analysis of reconfiguration. In certain cases, the

generated code runs 100 times faster and with almost no memory allocation, compared to

the same model running in a Ptolemy II simulation. For small examples, performance close

to handwritten Java code has been achieved.

Professor Edward Lee
Dissertation Committee Chair

i

To Cynthia and our Acorn.

“I wanted a perfect ending. Now I’ve learned, the hard way, that some poems

don’t rhyme, and some stories don’t have a clear beginning, middle, and end. Life

is about not knowing, having to change, taking the moment and making the best

of it, without knowing what’s going to happen next.”–Gilda Radner

ii

Contents

List of Figures v

1 Introduction 1
1.1 Metaprogramming and Generative Programming. 2
1.2 Component Based Design. 5
1.3 System-level Design. 6
1.4 Actor-oriented Metaprogramming. 7

2 Actor-oriented Design 9
2.1 Actor-oriented Models. .10
2.2 Hierarchical Semantics. .12
2.3 Parameterization and Reconfiguration. 13
2.4 Dataflow Models of Computation. 15
2.5 Dataflow Execution. .15
2.6 Static Dataflow Scheduling. 17

2.6.1 Synchronous Dataflow. 17
2.6.2 Parameterized Synchronous Dataflow. 18
2.6.3 Boolean- and Integer-controlled Dataflow. 22
2.6.4 Hierarchical Dataflow Scheduling. 24

3 Reconfiguration of Actor-oriented Models 26
3.1 Hierarchical Parameter Reconfiguration. 26

3.1.1 Modal Models .26
3.1.2 Reconfiguration Ports. 27
3.1.3 Reconfiguration Actors. 30

3.2 Delayed Reconfiguration. 31
3.3 Efficient Parameter Evaluation. 32
3.4 Assumptions about Reconfiguration. 33

3.4.1 Reconfiguration and Type Checking. 34
3.4.2 Reconfiguration and Structural Parameters. 34
3.4.3 Reconfiguration and Model Correctness. 35
3.4.4 Reconfiguration and Dataflow Scheduling. 36

iii

4 Reasoning About Reconfiguration 38
4.1 Parameterization Model. .38
4.2 Reconfiguration Semantics. 41
4.3 Change Contexts. .42
4.4 The Least Change Context. 45
4.5 Conditional Reconfiguration. 47

5 Design Examples 51
5.1 Blind Communication Receiver. 51
5.2 Rijndael Encryption. .55

6 Actor-Oriented Metaprogramming System 59
6.1 Ptolemy II .60

6.1.1 Indirection in Object-oriented Frameworks. 62
6.1.2 Data and Data Types. 63
6.1.3 Type Checking. .65
6.1.4 Parameters and Expressions. 66
6.1.5 Ports and Communication. 67
6.1.6 Actor Specifications. 69
6.1.7 Model Specifications. 70

6.2 Copernicus .70
6.2.1 Code Generation from a Model. 73
6.2.2 Transformation Rules. 73

6.3 Actor Specialization. .74
6.3.1 Structural Specialization. 75
6.3.2 Parameter Specialization. 77
6.3.3 Type Specialization. 82

6.4 Domain Specialization. .88
6.4.1 Dataflow Scheduling is Model Specialization. 88
6.4.2 Domain Specialization Transformations. 91
6.4.3 Token Unboxing. 91

6.5 Application Extraction .95
6.5.1 Reachable Method Analysis. 96
6.5.2 Side-Effecting Method Analysis. 97
6.5.3 Dead Field Analysis. 98
6.5.4 Obfuscation. .98

6.6 Performance. .98
6.6.1 FIR Filter .100
6.6.2 Adaptive FIR Filter. .105

7 Conclusion 111

A Mathematical Background 114

iv

B Summary of Theorems 118

Bibliography 123

v

List of Figures

1.1 A prototypical metaprogramming system. 3
1.2 A prototypical partial evaluation system. 4

2.1 A simple actor. .10
2.2 A simple actor-oriented model. 11
2.3 A graphical representation of quiescent points in a model.. 13
2.4 A dataflow model that cannot be executed in bounded memory.. 16
2.5 Synchronous dataflow scheduling. 19
2.6 Parameterized synchronous dataflow scheduling. 21
2.7 Control flow actors .23
2.8 A dataflow model with unbounded memory and unbounded time. 24
2.9 A dataflow model with bounded memory and unbounded time. 24

3.1 A modal model example.. 28
3.2 The output from the example in Figure3.1. 29
3.3 A modal model that changes its external rates. 29
3.4 A reconfiguration port example.. 30
3.5 Delayed reconfiguration with thesetVariable actor 32
3.6 The ExpressionToToken actor. 34
3.7 An example of a model with constant parameter assumptions. 36
3.8 TheFIR actor .37

4.1 An example of parameterization.. 40
4.2 An algorithm for computing the set of change contexts.. 44
4.3 An example lattice of least change contexts. 46
4.4 A modal model example of conditional reconfiguration.. 48
4.5 Another example of conditional reconfiguration.. 49

5.1 A process network design example. 53
5.2 Inconsistent reconfiguration constraints. 53
5.3 A parameterized synchronous dataflow design. 54
5.4 Consistent reconfiguration constraints for Figure5.3 54

vi

5.5 A dynamic dataflow model of Rijndael Encryption. 56
5.6 A synchronous dataflow model of Rijndael Encryption. 57
5.7 Satisfied reconfiguration constraints for Figure5.6 58

6.1 UML for theptolemy.actor package . 61
6.2 A simple indirection diagram.. 62
6.3 The Ptolemy II data type lattice.. 64
6.4 Typical indirection diagram for thedata package 65
6.5 Type constraints in dataflow models. 66
6.6 Type inference in a dataflow model. 66
6.7 Indirection in parse tree evaluation. 67
6.8 Indirection in sending data. 68
6.9 CompleteConst actor class. 69
6.10 Methods that can be invoked on theTypedIOPort class. 71
6.10 Methods that can be invoked on theTypedIOPort class. 72
6.11 Transformations applied during structural specialization.. 75
6.12 Domain-independent transformations for specializing connections.. 76
6.13 A merge actor.. .76
6.14 Transformations applied during dynamic parameter specialization.. 78
6.15 Transformations applied during parameter specialization.. 79
6.16 Original code fromSequenceToArray. 79
6.17 TheSequenceToArray actor after specialization. 80
6.18 TheSequenceToArray actor after additional specialization. 80
6.19 Transformations for parameter specialization using the Least Change Con-

text evaluation strategy.. .81
6.20 Transformations applied during dynamic parameter specialization.. 82
6.21 The Ptolemy II type lattice for Java code.. 83
6.22 Rules for inferring token type constraints in Java code. 84
6.23 ARamp actor specification, which does not have exact token types. 85
6.24 ARamp actor specification with exact token types. 85
6.25 Code from theDotProduct actor. 86
6.26 An actor that scales its input.. 87
6.27 An algorithm for sequential execution of dataflow models.. 90
6.28 Specialized execution code for an SDF model. 90
6.29 Domain specialization transformations for actors in SDF models. 92
6.30 TheSequenceToArray actor, with optimized communication.. 93
6.31 Speedup achieved by Copernicus. .101
6.32 Static memory usage reduction achieved by Copernicus.102
6.33 Dynamic memory usage reduction achieved by Copernicus. 103
6.34 Code size generated by Copernicus. .104
6.35 A simple FIR filter example .105
6.36 Hand optimized FIR filter code.. .106

vii

6.37 Original code from an actor representing a single-rate FIR filter.. 107
6.38 Code generated by Copernicus by specialization of a generic single-rate

FIR filter. .108
6.39 Performance comparison of FIR filter implementations.109
6.40 C code for an FIR filter generated from Simulink..109
6.41 An adaptive FIR filter example. .109
6.42 A model of an adaptive FIR filter. .110
6.43 Performance comparison of LMS adaptive filter implementations. 110

A.1 Example Posets. .117

viii

Acknowledgments

This thesis describes a relatively small portion of the entire Ptolemy II system, which many

people have put their own effort into. I have had the pleasure of working with almost

everybody who has contributed to Ptolemy II. In order to avoid forgetting anyone, I will

leave them largely unnamed: they know who they are. I hope I will again find a group of

such motivated and interesting people.

However, there are several people who deserve special attention for their contributions.

The work on Copernicus was inspired by several discussions with Jeff Tsay. Christopher

Hylands Brooks provided invaluable assistance with Copernicus, including some rather

nasty scripts for collecting performance data and performing treeshaking on generated

code. Xiaojun Liu discovered an error in an early version of one of the proofs. Rachel

Zhou was patient enough to listen to some early ideas that eventually resulted in the re-

configuration analysis. Haiyang Zheng helped push a few models through Simulink for

performance comparison. Lastly, Pieter Mosterman mentioned the difficulty with naive

modeling of variable capacitors.

Edward Lee has always been an open-minded and consistent supporter from the first

time I walked into his office as a not-yet student. Looking back, he always seemed to know

when I really needed advice and when I was better off figuring things out for myself. I also

greatly appreciate the time that Kurt Keutzer, Masayoshi Tomizuka, and Tom Henzinger

took from their busy schedules to sit on my qualifying exam committee and review my

work. As an undergraduate, Nariman Farvardin, Dave Stewart, and the late John Gannon

were valuable mentors and instrumental in encouraging me to pursue graduate work.

Lastly, my wife Cynthia has been a great source of encouragement and support. I’m

sure that we will find many new adventures.

1

Chapter 1

Introduction

For inexperienced software engineers, writing correct programs can be a challenge.

Often, simply writing syntactically valid programs that can be compiled is difficult, dis-

regarding functional correctness, testing, or usability. However as software engineers be-

come more experienced, addressing these issues becomes second nature and other aspects

of engineering craft become more important. These engineering considerations, such as

robustness, ease of maintenance, and reusability, arise in the search for better, more well-

structured programs.

Although designing well-structured programs takes quite a bit of experience, recog-

nizing such programs is relatively easy. A program that performs one task is good, but a

program that performs a variety of similar tasks is generally better. A part of a program that

can be extracted and reused is generally more useful than a part that cannot be extracted.

A program structured according to well-described concepts or metaphors is more easily

understood than one which lacks structure. A program that orthogonalizes unrelated con-

cepts from one another is more easily modified than one with highly dependent concepts.

A program with concepts that are highly localized in the program is generally less fragile

than one where concepts appear in many places.

Unfortunately, although many software engineering advances help programmers to con-

struct well-structured programs, these improvements often come with cost. For instance,

common object-oriented design patterns deal well with concept localization and orthogo-

nalization but add indirection overhead. Recursive algorithm implementations can be more

1.1. Metaprogramming and Generative Programming 2

concise than iterative implementations at the expense of stack usage and procedural over-

head. Binary component frameworks often incur large communication overhead across

component boundaries.

In contrast, highly optimized software is often highly obfuscated and more difficult

to modify directly. Control structures are simplified by code duplication and explicit case

expansion, requiring later changes to be made consistently in multiple places. Assumptions

are made about the organization of data that must be guaranteed by code elsewhere in

the program. The intent of a designer is also often obscured through the replacement of

meaningful identifiers and expressions to save space.

1.1 Metaprogramming and Generative Programming

One way of approaching making a better tradeoff between organization and optimiza-

tion is byMetaprogrammingor Generative Programming[21], i.e., using one program (a

metaprogram) to describe another. Interpreting a metaprogram, either throughexecutionor

throughcompilation, generates the desired program. This extra step, allows the metapro-

gram to be nicely organized, even when the generated program is not. The process of

metaprogramming is illustrated in Figure1.1.

Metaprogramming is often performed using pre-processor macros, allowing a program-

mer to automatically generate code that would be awkward or redundant to write by hand.

The template mechanism in C++ is a structured, turing-complete language that is evaluated

at compile time. Although awkward, the template mechanism has been used effectively to

generate efficient software frameworks [21, 35]. In C++, new language features intended

to directly support metaprogramming have been developed [101]. By expressing compile-

time operations in a C++-like syntax and allowing richer design patterns, new language

features have the potential to make metaprogramming more accessible to C++ program-

mers. In some cases, metaprogramming has also been found applicable to dynamic run-

time code generation [19, 50].

Metaprogramming is commonly used to perform manualprogram specializationto im-

prove execution performance. In cases where a C++ compiler might otherwise not perform

certain analysis or optimizations, such as loop unrolling or propagation of constant argu-

1.1. Metaprogramming and Generative Programming 3

Program

Specialized
Program

Meta-Program

Meta-Compiler

Executable

Compiler

Run-time
Inputs

Run-time
Outputs

Figure 1.1:A diagram illustrating metaprogramming. The input to the meta-

compiler consists of a program and a metaprogram, which are explicitly

distinguished. Executing the metaprogram on the program results in a new

program, which is then compiled and executed.

ments into a function body, these optimizations can be manually specified using a meta-

program. Specific optimizations that would be impractical to build into a compiler, either

because they are not correct in all cases or because they are complex and rarely applicable,

can be applied programmatically. Fundamentallyanyoptimization that can be performed

using compile-time information can be written using a metaprogram. This technique has

been particularly used to build highly optimized C++ libraries for numerical computation

[97].

Metaprogramming mechanisms have also been built into hardware description lan-

guages used to specify ASIC circuits or FPGA configurations. Thegenerate statement in

Verilog-2001 allows for automatic generation of circuit structures. The structure of these

circuits must be statically elaborated early in the process of circuit synthesis. Recent work

on Bluespec [40, 5, 82] is partially concerned with providing improved semantics for circuit

synthesis in the presence of automatically generated circuit structures.

The above metaprogramming approaches do not tend to enforce patterns or structure

in metaprograms, leaving designers responsible for building good metaprograms.Aspect-

oriented programmingprovides a structured form of metaprogramming targeted at a spe-

cific architectural problem [55, 54]. In particular, aspect-oriented programming attempts to

elegantly represent and encapsulate of functionality in a program which is normally distrib-

uted throughout the program. Suchcross-cuttingfunctionality is represented by anaspect.

Aspects are incorporated into the primary functionality of a program by theaspect weaver

1.1. Metaprogramming and Generative Programming 4

Program

Specialized
Program

Partial
Evaluator

Executable

Compiler

Compile-time
Inputs

Run-time
Inputs

Run-time
Outputs

Figure 1.2:A diagram illustrating partial evaluation. The input to the partial

evaluator is a program and a partial set of inputs. The resulting specialized

program can be compiled and executed on the remaining inputs.

that outputs code which can be compiled normally.

Because of the separation betweendesign timewhen compilation is performed and

metaprograms are executed andexecution timewhen normal system processing occurs,

languages that support metaprogramming are also calledtwo-stage languagesor two-level

languages. One disadvantage this separation is that a programmer must explicitly distin-

guish which parts of an algorithm are executed at a particular stage of execution. In other

words, a program must express an algorithm differently in order to take advantage of the

beneifts of metaprogramming.

One way of eliminating this separation is to focus on automatic specialization of a

generic program to a particular set of inputs. This technique is calledpartial evaluation

[57]. In languages with the ability to manipulate programs as well as data, such as func-

tional languages, partial evaluation is a natural way of generating more efficient programs.

The partial evaluation process is illustrated in Figure1.2.

Recently, there has been significant interest in applying partial evaluation techniques

to complete object-oriented languages [20, 89, 90, 91]. These techniques rely on sophisti-

cated inter-proceduralbinding-time analysisto infer which functions in a program should

be partially evaluated. Variables withstatic binding timecan be computed by the partial

evaluator and used to specialize a program. Variables withdynamic binding timeremain in

a partially evaluated program and are computed at run-time. Although effectively making

use of these techniques generally requires some manual annotation of binding times in a

program, partial evaluation generally requires less explicit specification by a programmer

1.2. Component Based Design 5

than other metaprogramming techniques.

1.2 Component Based Design

Another approach to better program organization iscomponent based design[93].

Component based design focuses on component specifications with well-defined exter-

nal interfaces. The external interface exposes all of the points of interaction with other

components and complex behaviors can be constructed by composing components using

their external interfaces. One benefit of component based design is improveddesign reuse,

where components are reused from one design to the next or purchased as intellectual prop-

erty from component providers [75]. Design reuse can reduce time spent in the design cycle

when applied effectively [76].

One disadvantage of many component models is the overhead of run-time component

interfaces. Component middleware that provides rich interactions between components,

such as the Common Object Request Broker Architecture (CORBA) or the Message Pass-

ing Interface (MPI), can have significant overhead for fine-grained components. Although

simpler component frameworks may have less overhead, simpler frameworks are often

more constraining and difficult to leverage effectively. To make matters worse, migrating

from one component framework to another, if the initial choice turns out to be unsatisfac-

tory, often involves significant reimplementation.

Recently, compile time analysis and transformation of component frameworks in order

to optimize execution has been applied to object-oriented component frameworks, particu-

larly in embedded systems [1, 59, 77, 96, 102]. These systems use design time information

to specialize a composition of components in a particular model. These systems are capable

of breaking component interfaces apart in order to integrate components more efficiently

and perform this composition in a safe manner, a process that can be generically called

invasive software composition[4]. These systems preserve components as a design-time

abstraction, while eliminating component interfaces at execution time.

1.3. System-level Design 6

1.3 System-level Design

Addressing the tradeoff between between organization and optimization is also impor-

tant at a system-level of design. At the system level, understanding design structure be-

comes more critical since resource constraints and architectural tradeoffs can greatly affect

the behavior of a system. Without a system-level viewpoint, these properties must be de-

rived from low-level design, which can limit the effectiveness of system-level refactoring.

Concurrencyplays an important role in system-level design. The concurrency between

software running on different processors, or different threads on a single processor, is usu-

ally hidden in most programming languages. Unfortunately, current design practice tends

to architect concurrent behavior through low-level mechanisms, such as monitors and criti-

cal sections. Given the flexibility and potential pitfalls in these mechanisms, a higher-level

approach to managing concurrency is preferable.

Part of the system-level approach of this thesis is to consider the design of hardware,

e.g., digital circuits and FPGA configurations, and software, e.g., microprocessor programs.

Traditionally, hardware design has focused on concurrent, cycle-accurate, register-transfer

level design, while software design has focused on sequential, behavior-accurate, function-

level design. However, increasingly, this separation is fading. In hardware, there is a need

to increase the speed of the design process as systems become larger. Although some

design will inevitably performed at a cycle-accurate level, higher-level design techniques

are still in great demand. In software, untimed and sequential programming abstractions

are becoming less attractive, particularly in embedded systems which are intrinsically timed

and distributed.

Recently, there has been a trend towards embedding system-level constructs into exist-

ing programming languages, as in Scenic [71] and SystemC. The resulting library is often

called adomain-specific embedded language, or DSEL [42]. While this approach adds no

fundamentally new semantics, DSELs can be significantly easier to build (since they can

rather easily evolve) and for users to learn. Instead of learning new syntax and seman-

tics, designers instead learn libraries and techniques for using these libraries to represent

behavior.

One disadvantage of embedded languages is increased execution overhead, since li-

1.4. Actor-oriented Metaprogramming 7

braries often add indirection. For domain specific languages embedded into functional

languages, such as Haskell, this indirection can be removed through partial evaluation

[42]. The resulting specialized program has the design time benefits of domain-specific

constructs combined with execution efficiency of a low-level implementation.

1.4 Actor-oriented Metaprogramming

Actor-oriented designis an approach to system-level design using concurrent dataflow-

oriented components calledactors. Actors specify behavior abstractly without relying on

low-level implementation constructs such as function calls, threads, or distributed comput-

ing infrastructure. Typically actor-oriented models are designed to reflect the static struc-

ture of a concurrent system. In this thesis, actor-oriented models are viewed as descriptions

of concurrent software architectures, i.e., structured metaprograms. The behavior of the

model can besimulatedwithout compile-time interpretation of the metaprogram orspe-

cializedand executed in a more efficient manner [81]. Specialization is largely based on

model analysis in the style of partial evaluation tools, rather than through explicit metapro-

gramming.

This thesis provides two main contributions. Firstly, it will present a formal model

for analyzing reconfiguration and parameter dependencies in actor-oriented models. This

model is a central part of the compile-time analysis that guides specialization of actors to

particular parameter values. The model also provides a decidable algorithm for validating

constraints on reconfiguration in a model which often arise from other forms of specializa-

tion, such as dataflow scheduling analysis. For this reason, analysis of reconfiguration is

described as abehavioral type theory of reconfiguration.

The second contribution is a system for generating optimized software implementations

of actor-oriented models through automatic specialization of actor oriented models. This

system is constructed within Ptolemy II [44], an object-oriented software framework where

components are highly generic and reusable. In Ptolemy II, generic aspects of components

are implemented using run-time mechanisms, such as interfaces and indirection. Based

on compile-time analysis of the model, actor-oriented components can be specialized to

particular uses, reducing the need for costly run-time indirection. The resulting system can

1.4. Actor-oriented Metaprogramming 8

be considered in many ways: as a code generator for a concurrent programming language,

as a tuned partial evaluation system, or as a component optimization system.

In contrast with other actor-oriented systems, such as Ptolemy ’Classic’ [14, 85] or

commmercial tools such as Simulink from The Mathworks, the system described here al-

lows models to be reconfigured in various ways during execution. This reconfiguration

may include modification of types and the structure of the system in addition to the modi-

fication of parameter values. Furthermore, the generation of an optimized implementation

incorporates code that is used for simulation as a specification of behavior. In contrast,

other systems generally use separate specifications for simulation models of actors and for

generating specialized code. As a result, ensuring consistency of these separate specifica-

tions becomes a significant problem. This thesis follows an approach based on systematic

optimization of a single behavioral specification. This approach can also be combined

with more explicit specifications of generated code for components that are not sufficiently

optimized, but we anticipate that the majority of a system can be generated automatically.

9

Chapter 2

Actor-oriented Design

Actor-oriented modeling and design [63, 65, 67] is a methodology for system-level

design that has evolved over many years of research. Carl Hewitt and others developed

basic techniques for constructing systems based onasynchronous message passing, in-

stead of applicative evaluation, as in the lambda calculus [38, 39]. Gul Agha developed

a formal theory for describing concurrent systems that combined Hewitt’s message pass-

ing with local state update [2, 3]. More recent work [29] focuses on the use of patterns

of message passing between components, calledmodels of computation, with interesting

modeling properties. This thesis focuses particularly ondataflowmodels of computation

derived from the work of Gilles Kahn [47, 48] and Jack Dennis [24].

The actor-oriented models described in this thesis differ from the actor models of Hewitt

and Agha in several ways. In particular, Hewitt and Agha focus on dynamically instanti-

ated actors and acquaintance relationships for message passing between actors. In contrast,

this thesis emphasizes models with static structure and shared life cycle, while still allow-

ing dynamic instantiation. Secondly, Hewitt and Agha view actors as a universal concept;

everything in the system is an actor that responds to messages. This thesis will tend to

distinguish data tokens, which encapsulate data and do not interact with one another, from

actors which exchange and process data. This distinction allows the optimization of ex-

ecution performance with respect to the static structure of a model without considering

dynamic data.

2.1. Actor-oriented Models 10

Input

Port
Output

Port

Actor Name

Figure 2.1: An example of the interface of a simple actor in Ptolemy II.

Parameters and internal state are not shown.

2.1 Actor-oriented Models

In actor-oriented design,actorsare the primary units of functionality. Actors have a

well defined interface, which abstracts internal state and execution of an actor and restricts

how an actor interacts with its environment. Externally, this interface includesports that

represent points of communication for an actor andparameterswhich are used to configure

the behavior of an actor. Actors will be shown graphically in the Ptolemy II [44] style, as

in Figure2.1.

Actors are composed with other actors to formcomposite actorsor models. Connec-

tions between actor ports represent communicationchannelsthat pass datatokensfrom one

port to another. The semantics of composition, including the communication style, is de-

termined by amodel of computation. When necessary, the model of computation will be

shown explicitly as an independentdirector object in model. Models often export an ex-

ternal actor interface, enabling them to be further composed with other models. A simple

actor-oriented model is shown in Figure2.2.

A central concept in actor-oriented design is that internal behavior and state of an actor

are hidden behing the actor interface and not visible externally. This property ofstrong

encapsulationseparates the behavior of a component from the interaction of that compo-

nent with other components. System architects can design at a high level of abstraction and

consider the behavioral properties of different models of computation independently from

the behavioral properties of components. Furthermore, different models of computation

can be used at different levels of hierarchy, enablinghierarchically heterogeneousdesign

[29]. By emphasizing strong encapsulation, actor-oriented design addresses theseparation

2.1. Actor-oriented Models 11

External

Input

Port

External

Input

Port

Figure 2.2: An example of a simple hierarchical synchronous dataflow

model in Ptolemy II. The filter component is hierarchically decomposed

into two multi-rate FIR filters with input and output token rates shown on

the figure. The synchronous dataflow scheduler uses these rates to compute

the number of tokens consumed and produced by the filter actor, as will be

described in Section2.6.1.

of concerns[53] between component behavior and component interaction.

In addition to supporting hierarchically heterogeneous models, strong encapsulation

allows primitive oratomicactors to be specified in a variety of ways. For instance, actors

are often specified by drawing finite-state machines where each transition corresponds to

a particular sequence of operations [72]. Another technique is to use a special purpose

textual language that specifies what tokens to consume and what operations to compute

on that data, such as CAL [30, 100]. However, one of the most flexible ways to specify

actor behavior is to embed the specification within a traditional programming language,

such as Java or C, and use special purpose programming interfaces for specifying ports and

sending and receiving data. This technique has been widely used in actor-oriented systems

[15, 31, 80] since it allows for existing code to be integrated into an actor-oriented design

tool and for programmers to quickly start using actor-oriented methodologies.

2.2. Hierarchical Semantics 12

2.2 Hierarchical Semantics

Previous work has focused on giving a formal framework for describing the behavior

of actors and models as transition systems [39, 45, 73]. Transitions represent both internal

computation and external interaction, such as the production and consumption of data from

the ports of an actor or coordination with other actors. The behavior of an actor is primarily

determined by anactor specification. The execution of this specification in the context of

other actors and data from the environment results in an actor’s observed behavior.

In this framework, a model of computation determines a style of composition of actor

specifications. This style includes the behavior of communication channels between ac-

tors, and any additional control logic for ordering the transitions of actor specifications.

As with actors, communication and control logic can also be represented as transition sys-

tems. Composing the transition systems for individual actors in a model with the transition

systems representing a model of computation results in a transition system for the entire

model.

In order to be composed in this framework, actors and models are required to havepre-

cise reactions[73]. Each actor must consist of a totally ordered sequence ofactor firingsor

iterations, which are similar to concept of anactivitydeveloped by Hewitt and Baker [39].

During the firing of an actor, it may send and receive data from communication channels

and perform computation. Between firings, an actor isquiescentand cannot communi-

cate or perform computation. Additionally, compositions are required to behierarchically

reactive, where each actor firing must be encompassed by a single firing of the actor’s con-

tainer. Equivalently, when a composite actor is quiescent, all actors deeply contained by

the composite actor are also quiescent. A figure illustrating the quiescent points of a model

is shown in Figure2.3.

Because the internal state of each actor is hidden from other actors in a model, there are

few intrinsic constraints on the firings of different actors in a model. The lack of execution

constraints implies that actors in a model arefundamentally concurrent. In order to obtain

efficient execution in single processor environments, additional execution constraints are

often added to a model to enforce sequential execution of actor firings. In the absence of

additional constraints, the firings of two distinct actors are allowed to occur completely

2.3. Parameterization and Reconfiguration 13

toplevel

AudioPlayer

Filter

FIR

Figure 2.3:A graphical representation of the quiescent points in one exe-

cution of the model in Figure2.2. The model is one where actortoplevel

contains actorsAudioPlayer andFilter, and actorFilter in turn contains ac-

tor FIR. Quiescent points are shown as vertical lines and actor firings are

shown as arrows. A quiescent point is a quiescent point of an actor if a fir-

ing arrow of the actor starts or end at the quiescent point. The direction of

arrows represents the partial ordering of quiescent points.

independently.

Unfortunately, the fundamentally concurrent nature of actor-oriented models can re-

sult in rather complex transition systems for actor compositions. In contrast, the structure

of quiescent points in a model is somewhat simpler. Quiescent points abstract the con-

currency and sequentiality between actors in a model and represent only the hierarchical

relationships between actors. This simpler framework for formal analysis can be useful

when analyzing hierarchical properties of models, as will be seen in Chapter4.

2.3 Parameterization and Reconfiguration

The communication interface consisting of an actor’s ports also allows actors to be

developed independently and provided as reusable library elements. Actor parameters in-

crease the reusability of such library elements, by allowing the same actor specification

to be reused with different parameter values. For instance, an actor representing a finite-

impulse response (FIR) filter might have a parameter that determines the filter taps. The

2.3. Parameterization and Reconfiguration 14

same actor might also provide multi-rate capabilities for efficient upsampling and down-

sampling, with corresponding parameters to determine the number of tokens produced and

consumed during each execution of the filter. At design time, parameters help keep the

size of actor libraries manageable and allow models to be quickly modified or tuned for

performance. At run time, actor parameters allow for dynamic reconfiguration of actors

(and models) while a model is executing.

There are many applications that can make use of dynamically reconfigured models.

For instance, a communication system with adaptive echo cancellation can be modeled by

reconfiguration of a parameterized filter. Parameter reconfiguration enables a single com-

ponent to be used either as a fixed filter or an adaptive filter, obviating the need for two

separate components. At a coarser level of granularity, systems with multiple operating

modes are common. For instance, a communication system might operate in either a train-

ing mode or a communication mode. In the training mode, the system communicates a

predetermined bit sequence and estimates the characteristics of the channel. These charac-

teristics are used in the communication mode to improve the bit-error performance of the

modem. Transitions between training mode and communication mode can be modeled as

system reconfiguration.

In actor-oriented models, parameters are usually used to represent configuration values

specified by a designer. Configuration parameters are usually used in atop-downfash-

ion, where parameter values of contained actors are dependent on parameter values higher

in a model. However, parameters in actor-oriented models can also be used to represent

synthesized properties of actors, such as data types, execution schedules, and token rates.

The dependencies between such parameters are generallybottom-up, with parameters of

the toplevel depending on parameters of contained actors. In this thesis we will leverage

parameters as a uniform representation for properties in a model that can be affected by

reconfiguration.

We distinguish two forms of reconfiguration: parameter reconfiguration and structural

reconfiguration. Parameter reconfiguration changes the value of actor parameters, while

structural reconfiguration may add or remove actors and modify the connections between

ports. In actor-oriented models, both structural and parameter reconfiguration are allowed

only at quiescent points in execution. The hierarchical structure of quiescent points can be

2.4. Dataflow Models of Computation 15

used to analyze parameter reconfiguration for statically structured models, as described in

Chapter4.

2.4 Dataflow Models of Computation

In actor-oriented models, many models of computation are possible [63, 66]. By us-

ing different models of computation, actor-oriented modeling principles can be adapted to

a variety of problem domains, such as physical systems, communication networks, and

embedded systems. For the purposes of this thesis, we focus on dataflow models of com-

putation applied to computing systems.

Dataflow models of computation [24, 47, 69] have been used to represent a wide vari-

ety of computing systems, such as signal processing algorithms [85], distributed computing

workflows [74, 99], and embedded processing architectures [49, 92]. In a dataflow model,

message communication between actors is performed through queues of data. These mes-

sage queues desynchronize the communication between actors, allowing the sending actor

to continue concurrently without waiting for the message to be received. At the same time,

message queues ensure that messages are received in order of transmission with no message

loss.

Dataflow models of computation are appealing since they often closely match a de-

signer’s conceptualization of a system as a block diagram. Additionally, dataflow models

of computation offer opportunities for efficient concurrent and sequential implementation.

Since actors only communicate through ports and do not share state, system parallelism

is exposed in the model and concurrent execution is possible. However, parallel imple-

mentation is not required and static scheduling analysis can generate efficient sequential

implementation.

2.5 Dataflow Execution

One advantage of dataflow modeling is a wide variety of techniques for operationally

executing a model. One of the most basic execution techniques, known as dynamically

scheduled dataflow (DDF), requires actors to declare theirtoken ratesfor each input and

2.5. Dataflow Execution 16

Figure 2.4:A dataflow model that cannot be executed in bounded memory.

output port. The token rate of a port determines the number of tokens that port will pro-

duce or consume during the next firing of the actor. Based on this information, a centralized

scheduler decides on the next actor (or actors) to fire. After firing those actors, the sched-

uler inspects the token rates which may have changed, and selects another set of actors to

execute.

A closely related technique for executing dataflow models, the process network (PN)

model of computation [48], does not rely on a centralized dataflow scheduler or declara-

tions of token rates. Instead, each actor in a process network is associated with a indepen-

dent sequential thread of control, roughly corresponding to an operating system process.

The actor’s thread of control processes data from input ports as it becomes available using

a blocking read. If no input is present, an actor must block until the data is available and

there can be no way for an actor to query for the presence of data. In a process network,

blocking reads ensure that the output of a dataflow model is correct, regardless of when

processes are actually executed. As a result, operating system scheduling techniques that

are not aware of token rates can be applied in order to execute more than one actor on a

single processor.

In general, dataflow models of computation areTuring completeand it is undecid-

able whether a particular dataflow model can be executed in bounded memory. Both DDF

and PN are capable of executing arbitrary dataflow models, even those that require an un-

bounded amount of memory, such as the model in Figure2.4. However, they can be imple-

mented robustly so that every model which can execute in bounded memory will actually

be executed in bounded memory, using Park’s algorithm [69, 83, 7].

2.6. Static Dataflow Scheduling 17

2.6 Static Dataflow Scheduling

Although dataflow models can require an unbounded amount of buffer memory in order

to execute, many interesting computations can be executed in bounded memory. Although

showing this for an arbitrary model is undecidable, model analysis techniques have been

developed that allow bounded memory usage to be guaranteed for restricted forms of data-

flow models. These techniques determine if a given dataflow model has aminimal complete

cycle[16], which is a sequence of actor firings that returns the dataflow model to the same

original state without deadlocking. If complete cycles do exist, then dataflow scheduling

techniques are usually capable of producing a finite lengthexecution schedule, which re-

sults in complete cycles when executed.

Unfortunately, even if execution schedules can be found, they may not have desirable

properties for system design. In particular, a schedule may use an unbounded amount of

buffer memory before returning to the original state. It is also possible for a schedule

to use a bounded amount of buffer memory, but require an unbounded number of actor

firings. This section will summarize these dataflow scheduling techniques, and summa-

rize the conditions under which execution schedules can be found which arefinite length,

bounded memory, and can be executed inbounded time.

2.6.1 Synchronous Dataflow

In a synchronous dataflow (SDF) model [11, 64], the token rates of actors are assumed

to not change during execution. Given the token rates, an execution schedule consisting of a

finite sequence of actor firings can always be found, if a minimal complete cycle exists. The

resulting scheduling is guaranteed to use bounded buffer memory and to produce bounded

executions. Since buffer memory usage is bounded, the synchronous dataflow model of

computation is not Turing complete, unless actors can use unbounded memory internally.

SDF analysis occurs in two steps. The first step involves solving a set ofbalance

equationsdetermined by the token rates and structure of the model. The balance equa-

tions require that the number of tokens produced on a channel match the number of tokens

consumed. Generally, these equations will have a set of linearly dependent solutions that

determine the number of times each actor must fire in a complete cycle. Selecting the

2.6. Static Dataflow Scheduling 18

smallest positive solution gives the shortest schedule, although any positive solution can

be used. If such a solution exists, an execution schedule is possible. However, if no non-

zero solution to the balance equations exists, then the model isinconsistentand cannot be

executed forever in bounded memory.

The second scheduling step simulates the execution of the model, allowing each actor

to fire a maximum number of times determined by the balance equations. If the simulated

execution does not deadlock, then the resulting sequence of actor firings is an execution

schedule. If an execution schedule is found, then it is guaranteed to execute in bounded

memory and with a bounded number of actor firings. A scheduling example is shown in

Figure2.5.

2.6.2 Parameterized Synchronous Dataflow

Parameterized synchronous dataflow (PSDF) [8, 9] is another technique for analyzing

dataflow models that allows more general models than SDF. The key difference is that para-

meterized synchronous dataflow allows token rates to change during execution. However,

rate changes are only allowed between executions of a parameterized schedule. Such a

model is calledlocally synchronous[10]. For locally synchronous models with bounded

token rates, PSDF schedules are guaranteed to use bounded memory and have bounded

executions.

The procedure for parameterized synchronous dataflow scheduling is very similar to

synchronous dataflow scheduling, except that token rates are considered to be variables,

instead of constants. The balance equations are solved symbolically, and a quasi-static

schedule is generated that is a function of the token rates determined at run-time. Although

the execution of this schedule depends on token rates that might change at run-time, the

schedule is statically determined and can be compiled into efficient executable software.

In Figure2.6, a solution to the balance equations exists for any token rates. Such a

model is calledstrongly consistent[62]. Alternatively, it is possible for some models that

an integer solution to the balance equations only exists for certain token rates, in which

case the model is onlyweakly consistent. As with SDF, is it also possible for no non-trivial

solution to exist, in which case the model isinconsistentand no execution schedule can be

2.6. Static Dataflow Scheduling 19

(a) Example Model

input.tokenConsumptionRate = 2 ∗ FIR.firingCount

1 ∗ FIR.firingCount = 3 ∗ FIR2.firingCount

4 ∗ FIR2.firingCount = output.tokenProductionRate

(b) Balance Equations

FIR.firingCount = 3

FIR2.firingCount = 1

input.tokenConsumptionRate = 6

output.tokenProductionRate = 4

(c) Balance Equation Solution

Figure 2.5:An example of synchronous dataflow scheduling. The balance

equations for the model in(a)are shown in(b) and the least positive solution

is shown in(c). Note that the rates of external ports are inferred from the

solution to the balance equations.

found.

For complex parameter constraints determined by arithmetic expressions, it is generally

undecidable whether a model is inconsistent, strongly consistent, or weakly consistent.

Since dataflow scheduling analysis is used to assert safety properties, such as bounded

memory usage, it is preferable to disallow scheduling for models which cannot be shown

to be strongly consistent. However, by adding the appropriate assumptions to a model, it

is often possible to manipulate a weakly consistent model into a strongly consistent one.

This addition may be necessary because a parameter value is known to a designer to never

2.6. Static Dataflow Scheduling 20

FIR

FIR

FIR

FIR2

(d) Execution Simulation

Figure 2.5:Execution of the model in(a), given the required six input to-

kens.

change, is known to take on only constrained values, or is known to be related to other

parameter values. The extra assumptions may be either checked at run-time, or become

additional proof obligations in a formal analysis framework.

In PSDF models, the memory usage of a schedule generally depends on parameter

values specified at run-time. Larger parameter values often result in larger memory usage

(as in Figure2.6). Hence bounded memory usage is only generally guaranteed given either

constraints on parameter values or explicit bounds on buffer sizes from which constraints

on parameter values can be inferred. These parameter value constraints are also treated as

extra assumptions, which must either be checked at run-time or proved satisfied outside

of PSDF scheduling. PSDF models are also guaranteed to have a complete cycle that

execute in bounded time as a function of parameter values. If the parameter values are

themselves bounded, then the resulting schedule will execute in bounded time. Based on

these results, locally synchronous and strongly consistent dataflow models with bounded

parameter values cannot express arbitrary computations and are fundamentally decidable.

Existing scheduling techniques based on parameterized acyclic pairwise grouping of

2.6. Static Dataflow Scheduling 21

(a)

input.tokenConsumptionRate = 2 ∗ FIR.firingCount

X ∗ FIR.firingCount = Y ∗ FIR2.firingCount

4 ∗ FIR2.firingCount = output.tokenProductionRate

(b) Balance Equations

FIR.firingCount = Y/gcd(X,Y)

FIR2.firingCount = X/gcd(X,Y)

input.tokenConsumptionRate = 2 ∗ Y/gcd(X,Y)

output.tokenProductionRate = 4 ∗ X/gcd(X,Y)

(c) Balance Equation Solution

FIR

(Y/gcd(X,Y) times)

FIR2

(Y/gcd(X,Y) times)

(d) Execution Simulation

Figure 2.6:An example of parameterized synchronous dataflow scheduling.

2.6. Static Dataflow Scheduling 22

adjacent nodes (P-APGAN) [8] generate finite schedules only for models without feedback,

or models where feedback does not affect scheduling. For models with tight feedback,

good static scheduling techniques have yet to be developed, although bounded run-time

scheduling is still possible. It is likely that improved clustering techniques, such as those

applicable to Boolean-controlled dataflow are capable of generating schedules for arbitrary

PSDF models.

2.6.3 Boolean- and Integer-controlled Dataflow

Boolean-controlled dataflow (BDF) [16] and integer-controlled dataflow (IDF) [17] are

closely related scheduling techniques. The primary difference between them and PSDF is

that BDF and IDF lift the restriction on local synchrony and allow token rates to change

every time an actor fires. This seemingly simple change makes scheduling significantly

more complex, and introduces the possibility that execution schedules may not terminate.

For general BDF and IDF models, determining if a model can be executed in bounded

memory is undecidable, although heuristic techniques are able to find execution schedules

for commonly used structures.

BDF and IDF models are usually constructed using flow control actors, shown in Figure

2.7. These actors change their behavior according to the current value of the control signal.

Each token received from a control input reconfigures the actor, determining the routing of

the next data token. These actors are not locally synchronous and cannot be used directly

in PSDF models. In terms of the FIR filter example given previously, IDF allows the filter

to have input ports which determine decimation and interpolation factors.

Switch and Select actors are usually used in well-behaved patterns or schema, such as

conditionals and loops. Using these patterns, finite execution schedules can be found and

complete cycles are guaranteed to be bounded [33]. However, in general, strongly consis-

tent models are not guaranteed to execute in bounded memory, or in finite time [16]. For

example, Figure2.8is a model that might require unbounded memory and unbounded time

to execute. It is also possible for a model for model to execute in unbounded time, but only

use bounded memory, as shown in Figure2.9. In both of these models theControlSource

actor can produce an arbitrary sequence of control values, but the minimal complete cycle

2.6. Static Dataflow Scheduling 23

Figure 2.7:Control flow actors in Ptolemy II.BooleanSwitch andBoolean-

Select take a boolean control input that determines which output consumes

or produces the next token and no tokens are produced or consumed from

the remaining port.Switch and Select take an integer control input that

determines which channel of the multiport produces or consumes the next

token and no tokens are produced or consumed from other channels. Note

that the names here used in Ptolemy II differ slightly from the literature

[16, 24], where actors with boolean control input are calledSwitch andSe-

lect and actors with integer control inputs are calledCase andEndCase.

occurs only after theControlSource actor produces twoTRUE tokens.

Note that the scheduling difficulties of BDF and IDF models only arise in models that

are not locally synchronous. If the control flow actors always receive the same value from

their control ports and this fact is available to a scheduler, then SDF scheduling can be

applied. If the value received from their control port doesn’t change until the end of the

minimal complete cycle, then PSDF scheduling can be applied. For this reason, it is use-

ful to consider the the control ports of control-flow actors to bereconfiguration ports, as

described in Section3.1.

2.6. Static Dataflow Scheduling 24

Figure 2.8:A dataflow model where a minimal complete cycle might require

unbounded memory and unbounded time. In an execution whereControl-

Source produces a singleTRUE token followed by a sequence ofFALSE

tokens, the output ofActor2 will accumulate at the input to theBoolean-

Select actor.

Figure 2.9:A dataflow model where a minimal complete cycle might require

unbounded time, but is guaranteed to require only bounded memory.

2.6.4 Hierarchical Dataflow Scheduling

In a hierarchical actor-oriented framework, it is natural to use different scheduling tech-

niques at different layers of hierarchy. While dataflow scheduling techniques are not typi-

cally presented in a hierarchical framework, it is generally straightforward to extend them

to operate hierarchically. One possibility is to recursively schedule a hierarchical model

beginning with scheduling of models deep in the hierarchy. Scheduling each model deter-

mines the token rates of external ports, which can then be used to schedule higher-level

models. This procedure maximizes use of the rate information of primitive actors without

2.6. Static Dataflow Scheduling 25

additional annotation.

Declaration of token rates does not occur solely at compile-time, but may also occur

at run-time when a model is reconfigured. As a result, there are dependencies between

token rates that behave in exactly the same way as dependencies between configuration

parameters. As mentioned previously, this fact will be leveraged by representing token

rates asrate parameters, despite the fact that rate parameters are not usually configured

directly by a designer. As a result, token rate changes can be considered in the same way

as any other parameter change.

26

Chapter 3

Reconfiguration of Actor-oriented

Models

Although actor-oriented design encourages the use of parameters and reconfiguration

of a model, reconfiguration can also cause difficulties. In some cases, the implementation

of an actor assumes that certain parameters don’t change during execution of the actor.

In other cases, reconfiguration can modify parameters that are not meaningful to modify

during execution of a model, such as parameters specifying physical parameters. Recon-

figuration can also indirectly affect properties of an actor or model used for static analysis,

such as dataflow scheduling or type checking.

3.1 Hierarchical Parameter Reconfiguration

Many different modeling syntaxes have been used to represent reconfiguration in data-

flow systems. This section presents a brief summary of the mechanisms which have been

implemented in Ptolemy II.

3.1.1 Modal Models

One syntax for specifying reconfiguration is based on an extended version of a finite

state machine, called amodal model. Each state of the finite state machine contains a data-

flow model that isactivein that particular state. The active dataflow model is alternatively

3.1. Hierarchical Parameter Reconfiguration 27

called arefinementof the state. Essentially, the active dataflow model replaces the finite

state machine until the state machine makes a state transition. Additionally, finite state ma-

chine transitions are capable of reconfiguring parameters of the target state’s refinement.

This syntax is similar to the *-charts model [34, 61], the FunState model [92], and the

Stream-Based Functions model [56].

During each firing of a modal model, the dataflow model associated with the active state

is fired once and it communicates directly with the external ports of the modal model. After

the active dataflow model is fired, the guard of each transition originating in the active state

is evaluated. If exactly one guard is satisfied, then that transition is taken and the destination

state of the transition will be active in the next firing. If no guard is satisfied, then the active

state will remain active in the next firing. If multiple guards are satisfied, then either the

model is considered incorrect or one of the transitions can be chosen non-deterministically.

If a transition is taken then the action of the transition is performed, possibly resulting in

reconfiguration of a model parameter at the quiescent point after the firing. An example

model is shown in Figure3.1and a plot from running the model in Figure3.2.

Another example of a modal model is shown in Figure3.3. This modal model has

multiple states, and a different refinement model is active in each state. Each refinement is

a statically scheduled synchronous dataflow model, but the external rates of the refinement

models are different. When the modal model changes state, the rate parameters of the

modal model are reconfigured to reflect the rate parameters of the new refinement.

Modal models (and finite state machines in general) are practically limited by the num-

ber of states that a designer can specify explicitly. It is common to use various forms of

extended state machine formalisms to reduce the states that must be specified explicitly.

For instance, the state machine may include state variables which may be modified in state

transitions and used to govern transition guards. Another possibility is to use hierarchical

state machines and parallel state machine composition, as in Statecharts [36, 37].

3.1.2 Reconfiguration Ports

The second syntax ties reconfiguration to dataflow in a model. Reconfiguration in this

model is represented byreconfiguration ports, a special form of dataflow input port. An

3.1. Hierarchical Parameter Reconfiguration 28

Figure 3.1:A graphical representation of a simple modal model in Ptolemy

II showing three levels of hierarchy. In this model, the refinement for the

current state is executed first producing a block of output tokens. After pro-

ducing output tokens, the modal model transition is taken since the guard

expression always evaluates toTRUE, resulting in reconfiguration of the con-

tained model for the next block. In this model, reconfiguration results in

sinusoidal segments with different amplitudes. The parameters of the inte-

rior dataflow model ensure that 130 samples of the sinusoid are generated

in each block.

example of this syntax is shown in Figure3.4. Each reconfiguration port is bound to a pa-

rameter of its actor and tokens received through the port reconfigure the parameter. More

specifically, a firing of an actor with reconfiguration ports is composed of two distinct sub-

firings separated by an internal quiescent state. During the first sub-firing the actor con-

sumes a single input token only from reconfiguration ports. The input tokens determine the

reconfiguration applied during the internal quiescent state. During the second sub-firing in-

3.1. Hierarchical Parameter Reconfiguration 29

2
x10

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

S equenceP lotter

Figure 3.2:A plot from running the model shown in Figure3.1. Note the

obvious jumps in the generated signal, corresponding to mode switches in

the model.

Figure 3.3:A modal model example with multiple states. In each state, the

modal model reconfigures its rate parameters to reflect the rate parameters

of the current refinement.

put tokens are consumed from normal dataflow input ports, computation is performed, and

any outputs are produced. For a composite actor, contained actors are not fired during the

first sub-firing and the associated dataflow model is executed only during the second sub-

3.1. Hierarchical Parameter Reconfiguration 30

Reconfiguration

Port

Figure 3.4:A graphical representation of a simple model with a reconfigura-

tion port in Ptolemy II. In this model, the reconfiguration port is shaded gray

instead of black and reconfigures the parameter named “factor” directly to

its right. This model behaves essentially identically to the one in Figure3.1,

except that the reconfiguration occurs prior to each block of samples being

produced rather than after.

firing. Reconfiguration ports exist in many dynamically-scheduled dataflow environments,

such as AVS/Express (Advanced Visual Systems, Inc.).

3.1.3 Reconfiguration Actors

A third syntax represents reconfiguration using a special actor, thesetVariable actor.

This actor has a single input port and is associated with a parameter of the containing model.

The actor consumes a single token during each firing and reconfigures the associated pa-

rameter during the quiescent point after the firing. Although thesetVariable actor might

appear similar to a reconfiguration port, it allows for a parameter to be more frequently re-

configured, since thesetVariable actor might fire more than once in the execution schedule

of its contained model.

As with reconfiguration ports, thesetVariable actor can be used to implement models

that are not locally synchronous. Furthermore, thesetVariable actor can be used to imple-

3.2. Delayed Reconfiguration 31

ment models which are not deterministic. For instance, thesetVariable actor can be used

similarly to the graph variables in the Process Graph Method (PGM) [51]. In such models

the behavior of a model is dependent on the order in which actor firings are scheduled. Al-

though non-deterministic models are sometimes useful, they can be more difficult to design

and test robustly.

3.2 Delayed Reconfiguration

One way of ensuring local synchrony in the presence of reconfiguration is to delay

reconfiguration until the next quiescent point of the toplevel model. Essentially, this results

in treating the above syntaxes asrequestsfor reconfiguration, rather than as immediate

operations. Delayed reconfiguration ensures that all parameters are constant over firings

the toplevel model, and hence over the firings of any actor. However, requirements that

parameters are constant must still be checked.

Delayed reconfiguration can be reasonably used in conjunction with any of the above

syntaxes. Heterochronous dataflow [34] combines delayed reconfiguration with modal

models and synchronous dataflow scheduling. Delayed reconfiguration combined with the

setVariable actor gives a more useful mechanism for reconfiguring parameters that affect

token rates since, in the absence of other reconfiguration, the model will be locally syn-

chronous. In order to encourage the construction of safe and deterministic models, the

default operating mode of thesetVariable actor in Ptolemy II actually performs delayed

reconfiguration.

The key disadvantage of delayed reconfiguration is that it results in models that are not

compositional. The behavior of an actor constructed using delayed reconfiguration depends

on the model in which it is placed. This situation is shown in Figure3.5, where thesetVari-

able actor performs delayed reconfiguration. The displayed sequence of tokens changes

depending on the rate of theDownSample actor. As a result, delayed reconfiguration can

be difficult to apply in reusable actor specifications.

3.3. Efficient Parameter Evaluation 32

Figure 3.5:An example of delayed reconfiguration illustrated with theset-

Variable actor. The model displays a sequence of natural numbers. Each

number is displayed a number of times given by the rate of theDownSam-

ple actor.

3.3 Efficient Parameter Evaluation

In models without reconfiguration, the computational complexity of determining para-

meter values is usually unimportant. Even given complex specifications in terms of other

parameters, parameter values can generally be determined at design time and this evalu-

ation does not affect run-time performance. In the presence of reconfiguration, however,

evaluation of parameter values does incur run-time overhead. Minimizing this overhead is

important for efficient system execution.

One general model for representing interdependent parameters is anattribute grammar

[25, 58], commonly used to model language compilers operating on Abstract Syntax Trees

(ASTs). In an attribute grammar, each terminal and non-terminal node in a syntax tree is

labeled withattributes, according to rules given in the attribute grammar. Each attribute

has an associated value, which may depend on the value of other attributes. The depen-

dence on other attributes is determined by theconstraint functionthat defines the attribute.

An attribute grammar isevaluatedby repeatedly selecting attributes which have not been

assigned a value and evaluating their constraint function.

3.4. Assumptions about Reconfiguration 33

In a general attribute grammar, several modifications can affect the value of attributes.

Attributes may be added or removed, dependencies between attributes may be added or re-

moved, and the value of an attribute with no dependencies can be modified. In the presence

of such modifications, incremental evaluation of attributes is desirable, since modifications

often affect only a small number of attributes. A standard algorithm to evaluate attribute

grammars [43] has been developed which guarantees that attribute values are evaluated

only when necessary. In this algorithm, attributes are associated with an additional flag that

keeps track of whether the attribute value isvalid. When modification to an attribute gram-

mar occurs, the flag is set for any attribute whose value may have been affected. Attribute

values are recomputed in a demand-driven manner when an attribute value is required and

the current value is not valid.

The common usage of parameters in actor-oriented models is somewhat simpler than ar-

bitrary attribute grammars. While attribute grammars are normally considered for context-

free languages with possibly unbounded syntax trees, hierarchical actor-oriented models

are typically bounded at design time. Furthermore, the structure of actor-oriented mod-

els and dependencies between parameters are often fixed at design time. Complex com-

putations are represented by actor interactions and parameter reconfiguration, rather than

through structural reconfiguration.

3.4 Assumptions about Reconfiguration

A crucial part of the design process is to ensure that assumptions about the use of

reconfiguration are met, implying that reconfiguration is used safely. Unfortunately, as-

sumptions about reconfiguration are difficult for a designer to consider, since the effects

of reconfiguration often cross levels of hierarchy in a model. Making the problem even

worse, assumptions about reconfiguration are often left implicit in a model, making it diffi-

cult to check these assumptions through inspection. This section describes some examples

of reconfiguration assumptions and the kinds of conflicts that can arise.

3.4. Assumptions about Reconfiguration 34

Figure 3.6:The ExpressionToToken actor, showing the parameter that de-

termines the type of the output.

3.4.1 Reconfiguration and Type Checking

One powerful mechanism for building generic components involves the use oftype

parameters. Type parameters can be interacted with just like other parameters, but their

value is used to perform type inference and static checking. Type correctness of the model

cannot be guaranteed if type parameters are reconfigured during execution.

As an example, consider theExpressionToToken actor, shown in Figure3.6. This actor

consumes a string, parses it as a parameter expression, and outputs the resulting value. For

an arbitrary string, this value may be of any type. In practice, however, the type produced is

known to a designer, but is not visible to the type checking mechanism. A type parameter

is used to declare the type of this output.

3.4.2 Reconfiguration and Structural Parameters

In many cases is it useful to build parameterized structures in actor-oriented models.

Such programmatically generated structures are calledhigher-order componentsto em-

phasize their similarity to higher-order functions in functional languages [86]. A parameter

which is used to determine the structure of a higher-order component is astructural para-

meter.

The MultiInstanceComposite actor in Ptolemy II is one example of a simple higher-

order component. Just before a model is executed, this actor replicates itself a number of

times determined by a structural parameter. This actor is often used in situations where a

model contains repetitive structures that are awkward to build by hand, or when the number

3.4. Assumptions about Reconfiguration 35

of repetitions is specified by a parameter.

Although not required from a purely behavioral perspective, implementations can often

benefit if structural parameters are not reconfigured. The structural parameters can be eval-

uated at design time to determine an equivalent actor-oriented model. The equivalent model

can then be statically analyzed and optimized as if constructed manually. Such optimiza-

tions are particularly important in the hardware design community, as when synthesizing

FPGAs from dataflow models [13, 28].

3.4.3 Reconfiguration and Model Correctness

In some cases, parameter reconfiguration violates the assumptions made in constructing

a model. Some models are no longer accurate if certain parameters are reconfigured. One

such case arises when applying the classic equation that associates the current and voltage

across a capacitor:

I (t) = C
dV(t)

dt

This equation can be discretized in time and implemented as a simple dataflow model,

shown in Figure3.7. It is common in models of physical systems, such as Micro Electro-

Mechanical Systems (MEMS) to have circuits with variable capacitances. Although it may

seem reasonable to represent such a circuit by reconfiguring the capacitance parameter in

the model, the original equation is not valid for variable capacitances. It is derived from

the definition of capacitance, which is the ratio of charge to voltage:

C =
Q
V

Rearranging and differentiating both sides gives the correct equation for describing a vari-

able capacitor:

I (t) =
dQ(t)

dt
= C(t)

dV(t)
dt

+ V(t)
dC(t)

dt

This equation reduces to the earlier equation, as long as the capacitance does not change.

Without explicitly representing the assumption that thecapacitance parameter is constant,

the model can be easily misused and the results misinterpreted.

3.4. Assumptions about Reconfiguration 36

Figure 3.7:An example of a model with implicit assumptions that parame-

ters do not change. In this model the capacitance parameterC should not

be reconfigured, since the model was created assuming that the capacitance

was constant. The parameterdelta gives the amount of time between input

samples of the current.

3.4.4 Reconfiguration and Dataflow Scheduling

As mentioned previously, scheduling analysis of synchronous dataflow models assumes

that the token rates of ports do not change. However, model reconfiguration has the poten-

tial to affect token rates, although in many cases it does not. Other scheduling models allow

token rates to change, as long as the changes occur only at certain points in the execution

of a model. Ensuring that a model satisfies these constraints is a critical part of validating

the correctness of models.

Unfortunately, understanding the dependencies between parameters that can be recon-

figured and token rates is often difficult. As an example, Figure3.8shows an actor that de-

scribes a finite-impulse response (FIR) filter capable of decimation and interpolation. With

the default parameter values shown, the actor performs no decimation or interpolation and

produces and consumes a single token. However, if thedecimation or interpolation para-

meters are given other values, then the actor will produce or consume multiple tokens each

firing. For given interpolation and decimation factors, synchronous dataflow scheduling

can be performed, but those parameter values must not be reconfigured. On the other hand,

the taps parameter can be reconfigured without affecting dataflow scheduling.

In most dataflow modeling systems, the relationship between scheduling and reconfig-

uration is solved by design. Most systems provide a combination of scheduling algorithm,

reconfiguration specification, and actor specification that is guaranteed to be safe. For

3.4. Assumptions about Reconfiguration 37

Figure 3.8:TheFIR actor, showing the parameters that determine dataflow

token rates. Because thedecimation andinterpolation parameters affect to-

ken rates, reconfiguration of this actor has the potential to violate scheduling

assumptions.

instance, parameterized synchronous dataflow combines parameterized dataflow schedul-

ing with reconfiguration ports and heterochronous dataflow combines modal models with

delayed reconfiguration and on-the-fly synchronous dataflow scheduling. In these cases,

assumptions about reconfiguration can remain implicit, since they are guaranteed by the

structure of models that are allowed. Unfortunately, in a dataflow modeling system that sup-

ports hierarchically heterogeneous models with multiple scheduling algorithms and more

that one way of specifying reconfiguration, the situation is more complex. Chapter4 will

present a unified formal framework aimed at explicitly specifying reconfiguration assump-

tions and verifying that these assumptions are satisfied in the presence of multiple sources

of reconfiguration.

38

Chapter 4

Reasoning About Reconfiguration

This chapter presents an abstract, unified formalization of parameterization and recon-

figuration in actor-oriented models. This formalization is abstract in the sense that it allows

reconfiguration at all levels of the hierarchy, without binding reconfiguration to specific

syntactic constructs. It represents static schedules, quasi-static schedules, token rates, type

parameters, structural parameters, and user-level configuration options in a unified fash-

ion. Dependencies between parameters are made explicit and may arise from a variety of

sources, such as an expression in a design environment that expresses the value of para-

meter in terms of another, a declaration of token rates in a library actor, or a scheduler

that synthesizes a schedule and corresponding token rates for the external ports of a model.

Since it can be used to decide safety properties concerning the use of reconfiguration in a

model, it is useful to think of this as abehavioral type theory for reconfiguration.

4.1 Parameterization Model

A hierarchical reconfiguration modelis represented by a finite tree of actors, called

the containment tree. Leaf elements of the tree are primitive, oratomicactors, and non-

leaf elements are calledcompositeactors. The root of the containment tree is thetoplevel

composite actor. The behavior of a composite actor is given by a dataflow model consisting

of the actors that are its direct children in the tree. The dataflow model associated with each

composite actor is assumed to referenceexternal portsthat communicate with the dataflow

4.1. Parameterization Model 39

model that contains the composite actor. The composite actor at the root of the containment

tree contains no external ports. We say that the all actors in a subtree arecontainedby the

root of the subtree. Similarly, a composite actorcontainsall actors in the subtree rooted by

the composite actor, including itself.

Formally, the set of actors in a model isA. The parent of an actor is given by a partial

function parent : A → A, which is defined for all actors that are not toplevel composite

actors. Recall that we can also considerparentto be a relation on actors, whereparent⊆
A ×A. By construction,parentis required to be irreflexive, corresponding to the constraint

that no actor is its own parent. Furthermore, the reflexive, transitive closureparent∗ is

required to be antisymmetric, corresponding to a constraint that no parent of an actor is

also contained by the actor.parent∗ can also be interpreted as a partial order on actors,

which will be called thecontainment orderwritten it E to emphasize the fact that it is a

partial order. The set of actors combined with the containment order is a tree,(A,D), called

thecontainment tree.

The set of parameters in a model isP. Each parameter is associated with a single actor,

given by the functionactor(p). For convenience, the subset of parameters associated with

an actora is written Pa. The value of each parameter at any point during execution of a

model is given by an element of the setV of token values. In practical models, the values

of parameters are often dependent on one another. This dependence might be specified

explicitly in the construction of a model, e.g., one parameter is given as an expression

of another, or implicitly, e.g., a dataflow scheduler synthesizes some parameter values.

However, these differences are largely unimportant from the point of view of describing

the constraints that parameter values must satisfy.

A valuation functionis a function inP → V that gives the value of each parameter

in a model. The value of a parameterp may depend on a finite, indexed set of parameters

domainp = {domainp
1, . . . , domainp

n}. We say that a parameterp is independentif domainp is

empty, anddependentotherwise. The value of each dependent parameterp is constrained

by a constraint functionconstraintp : Vn → V, wheren is the number of elements in

domainp. A consistent valuation functionis a valuation function where the value of every

dependent parameter satisfies the parameter’s constraint function.

Definition 1 Consistent valuation function:

4.1. Parameterization Model 40

W=1

Y=2 Z=W+Y

X=2*W

Figure 4.1:An example of parameters in a model. Actors are shaded nodes,

parameters are unshaded. Solid lines depict theparentandactor relations,

and dotted lines depict the relation.

A valuation functionv is consistent if and only if∀p ∈ P, p is dependent

=⇒ constraintp(v(domainp
1), . . . , v(domainp

n)) = v(p)

In a model, independent parameters in a model are allowed to be modified during recon-

figuration, while dependent parameters cannot be. As a result, as long as the hierarchical

structure of a model is fixed, the dependencies between parameters are fixed and can be

statically analyzed. This model is essentially a version of anattribute grammar[25, 58]

with fixed, finite structure.

Conceptually, if a parameterp is reconfigured, then all of the parameters that depend on

it must be re-evaluated, followed by any parameter that depends on any of those, etc. The

dependence relation, written ⊆ P × P, captures these dependencies. The dependence

relation is the least transitive relation between parameters, such that∀x ∈ domainp, x p.

In order for a model to be well-defined, the dependence relation is required to be irreflexive,

i.e., no parameter depends on itself. The set of parameters that are transitively modified by

a parameterp will be written

p = {x ∈ P, p x} and, for a set of parametersP,

P =

⋃
p∈P

p.

Generally speaking, a design tool will determine the values of parameters in the set

p based

on the value of a parameterp. Figure4.1shows the structure of the model graphically.

4.2. Reconfiguration Semantics 41

4.2 Reconfiguration Semantics

Formally, we write the set of all quiescent points of actora during an execution of a

model asQa. Hierarchical reactivity requires thatc D a =⇒ Qc ⊆ Qa. The setQ =
⋃
a∈A

Qa

is the set of all quiescent points of all actors. Theprecedence relationis a partial order

≤ ⊆ Q × Q that gives a time-ordering of quiescent points. The precedence relation is

constrained such that the quiescent pointsQa of an actora are totally ordered by≤. If

q1 ≤ q2 then the quiescent pointq1 always occurs beforeq2. If q1 6≤ q2 andq2 6≤ q1 then

there is freedom in the execution ofq1 andq2, possibly allowing for concurrent execution.

At each quiescent pointq in the execution of a model, a set of independent parameters

R(q) is selected for reconfiguration. Based on this initial set of parameters and reconfigured

values, reconfigured values for dependent parameters in

R(q) are determined based on their

individual constraint functions and those parameters are also reconfigured. In general, this

set of parameters

R(q) may be associated with actors anywhere in the model.

Although the setR(q) contains a complete description of reconfiguration at a particular

quiescent point, considering each quiescent point individually is generally unnecessary. It

is more interesting to consider aggregate properties of an entire execution. During what set

of quiescent points is a parameter reconfigured? Is a particular parameter reconfigured at

all? The following two definitions, related to the notion of aconstant parameter, describe

these properties for a particular execution. These properties can be seen as bounds on the

set of quiescent points during which a parameter is reconfigured. Two additional theorems

give intuition about constant parameters.

Definition 2 Constant parameter:

Parameterp is constantif and only if

∀a ∈ A,∀q ∈ Qa, p <

R(q).

Definition 3 Constant parameter over actor firings:

Parameterp is constant over firings of actorc if and only if

∀a ∈ A,∀q ∈ Qa, p ∈

R(q) =⇒ q ∈ Qc.

Theorem 1 p is constant impliesp is constant over firings of any actor.

Theorem 2 p is constant over firings ofc andc D a impliesp is constant over firings ofa.

4.3. Change Contexts 42

As described in Chapter3, actor-oriented models are often accompanied by reconfigu-

ration requirements that must be satisfied for the model to be correct. If these requirements

are not satisfied, then intrinsic assumptions of the model are violated and unexpected or

undefined behavior may result. In the same sense that a program istype safeif constraints

on the usage of data types are satisfied, an actor-oriented model is said to bereconfigura-

tion safeif all necessary requirements on the use of reconfiguration are satisfied. In large

actor-oriented models with many sources of reconfiguration and complex parameter depen-

dencies, compile-time checking of reconfiguration safety is an important form of system

verification.

Definition 4 Reconfiguration Requirement:

A reconfiguration requirementin a modelm is a statement of the form “p is constant,” or

“ p is constant over firings of actora,” wherep anda are in the model.

Definition 5 Reconfiguration Safe:

An execution of a model with a set of reconfiguration requirementsS is reconfiguration

safeif the execution satisfies each requirement inS.

It is straightforward to cast the informal assumptions about reconfiguration described

in 3 as formal requirements. Ifp is a type parameter used for static data type checking,

then p must be constant in order to guarantee type soundness. Similarly, parameters that

determine the structure of the model, such as the number of replications of a single actor,

and parameters used for synchronous dataflow scheduling must also be constant. The local

synchrony constraint for parameterized synchronous dataflow scheduling requires that pa-

rameters influencing the execution schedule of a composite actorc are constant over firings

of c.

4.3 Change Contexts

In general, it is undecidable to determine if a parameter is constant or constant over

firings of an actor on any particular execution, since the setQ is infinite andR(q) for q ∈ Q

might depend on data given to a model only at runtime. As a result, it is possible to detect

4.3. Change Contexts 43

violations of reconfiguration requirements at runtime but impossible to statically ensure

reconfiguration safety in bounded time. Fortunately, by simplifying the properties being

checked the problem can be made more tractable. Instead of analyzing the reconfiguration

in particular executions, we will concentrate on analyzingpossiblereconfigurations in all

executions.

To begin with, we assume that an actor-oriented model determines areconfiguration

setRa ⊆ P for every actora. The setRa is the smallest set that contains all independent

parameters that may be modified when actora is quiescent. During any execution of the

model,∀a ∈ A,∀q ∈ Qa,R(q) ⊆ Ra, and

R(q) ⊆

Ra. For convenience, we say that an actor

a is achange contextfor all parameters inRa, and that a parameter is inherently constant

(or inherently constant over actor firings) if its change contexts satisfy certain constraints.

Intuitively, a parameter is inherently constant (over actor firings) if it is guaranteed to be

constant (over actor firings) during any execution of the model.

Definition 6 Change context:

An actora is a change context of a parameterp, written a p p, if and only if p ∈

Ra.

Definition 7 Inherently constant parameter:

Parameterp is inherently constantif and only if

∀a ∈ A,a 6p p .

Definition 8 Inherently constant parameter over actor firings:

Parameterp is inherently constant over firings of actora if and only if ∀c ∈ A, c p p =⇒
c D a .

Theorem 3 p is inherently constant impliesp is constant during any execution.

Theorem 4 p is inherently constant over firings of actorc implies

p is constant over firings of actorc during any execution.

Given the setRa for each actor and the parameter dependenciesdomainp, definitions7

and8 can be used to check if a parameter is inherently constant. The definitions leave room

for several direct computational procedures. One approach, shown in Figure4.2, computes

4.3. Change Contexts 44

Given: A,P,Ra,domainp

for p ∈ P do
changeContexts(p) = φ
for a ∈ A do

if (p ∈ Ra)
then changeContexts(p) += a

fi
od

od
done= FALSE;
while (!done) do

done= TRUE;
for p ∈ P do

for p′ ∈ domainp do
if (changeContexts(p) * changeContexts(p′))

then changeContexts(p) += changeContexts(p′); done= FALSE;
fi

od
od

od

Figure 4.2:An algorithm for computing the set of change contexts. This set
can be used to check reconfiguration requirements.

theset of change contextsfor every parameterp, wherechangeContexts(p) = {a ∈ A : a p

 p}. This set is then used to directly check the set of constraintsC.

Although the above direct procedure for checking reconfiguration safety is decidable,

it is not necessarily the most efficient approach. The complexity of the direct computation

could be reduced after careful analysis of the problem, since the dependencies between

parameters are usually sparse and long dependence chains are uncommon. Unfortunately,

simple modifications of the algorithm in Figure4.2are fundamentally limited by the need

to compute sets, such as{a ∈ A : a p p}. It is also possible, however, to check reconfigu-

ration safety of a model indirectly. The indirect approach offers an efficient computational

algorithm for checking reconfiguration safety without directly dealing with set computa-

tions. In addition, it offers an intuitive conceptualization of reconfiguration requirements

as constraints that must be satisfied by a model.

4.4. The Least Change Context 45

4.4 The Least Change Context

This section presents an alternative formulation of reconfiguration that is better suited to

reasoning about reconfiguration. In particular, it leads to an efficient algorithm for checking

inherent reconfiguration safety. Underlying this alternative formulation is the realization

that the set{a ∈ A : a p p} of all change contexts of a parameterp can be usefully

approximated by the greatest lower bound of the set when checking reconfiguration safety.

This approximation arises primarily because the hierarchical structure of quiescent points

mirrors the hierarchical structure of a model.

The least change context is not computed in the setA, but instead in an artificially

constructed setA>⊥ that contains artificial elements⊥ and>. The element⊥ is less than

all other elements and guarantees thatA>⊥ with the appropriate ordering is a lattice. As a

result, the greatest lower bound of a set of actors always exists in the setA>⊥, even though

it may not in the setA. The element> serves to represent the greatest lower bound of an

empty set of actors. The> element allows constant parameters with no change contexts to

be distinguished from parameters that are constant over firings of the toplevel actor.

Formally, the setA>⊥ is defined to beA ∪ {>,⊥} where> and⊥ are artificial elements

not in A. The ordering relationD>⊥⊆ A>⊥ × A>⊥ is defined to be the transitive, reflexive,

antisymmetric ordering relation where∀a ∈ A,∀b ∈ A,a D b ⇐⇒ a D>⊥ b and∀a ∈
A>⊥,> D>⊥ a D>⊥ ⊥. With this construction,(A>⊥,D

>
⊥) is a lattice [23]. A basic property of a

lattice is that every set of elementsA in the lattice has a greatest lower bound in the lattice.

An example of a resulting lattice is shown in Figure4.3.

We define the functionb·c : P → A>⊥ as shown in Definition9 and say thatbpc is

the least change contextof the parameterp. The least change context of a parameterp is

essentially a conservative approximation of the set of all the change contexts ofp. If the

least change context of a parameterp is either> or an element ofA, then the set of change

contexts ofp is limited and reconfiguration ofp can only occur during the quiescent points

of certain actors. On the other hand, if the least change context is⊥ then the conservative

approximation gives no interesting information about reconfiguration, and no restrictions

on reconfiguration can be inferred. Theorems5 and6 prove the soundness of the least

change context approximation.

4.4. The Least Change Context 46

toplevel

AudioCapture

filter

FIR FIR2

AudioPlayback

Figure 4.3:An example of the lattice formed by augmenting the contain-

ment tree of the model in Figure2.2with artificial top and bottom elements.

Definition 9 Least change context of a parameter:

The least change context of a parameterp, bpc, is an element ofA>⊥ wherebpc = u{a ∈
A>⊥ : a ∈ A ∧ a p p}
Or equivalently,

bpc =

> if {a ∈ A : a p p} = ∅

u{a ∈ A : a p p} if {a ∈ A : a p p} , ∅ and

u{a ∈ A : a p p} exists

⊥ otherwise

Theorem 5 bpc = > impliesp is inherently constant.

Theorem 6 bpc ∈ A impliesp is inherently constant over firings ofbpc.

Approximate approaches to static analysis must always balance usefulness with utility

and avoid discarding interesting information about behavior. One source of approximation

in our theory arises from the inherently constant property, which requires that reconfigu-

ration of a parameter not occur duringanybehavior of the model. While it is possible to

construct models that specify reconfiguration that does not actually occur, such as a modal

model where the guards of transitions are always false, we accept that such models might

be rejected by by reconfiguration analysis. A second source of approximation arises from

the least change context approximation to the set of change contexts. Theorem7 shows

4.5. Conditional Reconfiguration 47

that for interesting reconfiguration requirements, such as the local synchrony constraint for

parameterized synchronous dataflow scheduling, the least change context approximation

does not discard information.

Theorem 7 p is inherently constant overactor(p) implies thatbpc , ⊥.

Based on the structure of a model, the least change context of a parameter must satisfy

two constraints over the lattice(A>⊥,D
>
⊥). The first constraint (Theorem8) requires that

the least change context of a parameterp cannot be any higher in the hierarchy than the

least change context of a parameter thatp depends on. The second constraint (Theorem

9) requires that if a parameter is reconfigured by an actor, then the actor must contain the

least change context of the parameter. In fact, these constraints will be satisfied by not only

the least change context but alsoany lower bound on the set of change contexts. Using the

greatest lower bound, however, gives the most information about the set of change contexts

for a parameter.

Theorem 8 p1 p2 impliesbp1c D>⊥ bp2c.

Theorem 9 p ∈ Rc impliesc D>⊥ bpc.

By using the above constraints, the least change context of a parameter can be computed

without direct computation of the set of change contexts for each parameter. One algorithm

for computing the solution is known to be linear time in the number of constraints [87].

The algorithm computesb·c by beginning with an initial guess where∀p ∈ P, bpc = >. The

initial guess is updated according to each constraint until all the constraints are satisfied.

4.5 Conditional Reconfiguration

Up to this point, we have considered unconditional specifications of reconfiguration.

However, in some cases reconfiguration is useful to consider reconfiguration to becondi-

tional. Depending on the structure of the model, or the values of other parameters, recon-

figuration might or might not actually occur. If reconfiguration does not occur, then this

fact is often important to expose to the behavioral type system in order to prevent models

4.5. Conditional Reconfiguration 48

Figure 4.4:An example of a component that exhibits conditional reconfig-

uration. Every time the modal model makes a state transition, the external

rates are reconfigured to the same value.

that are reconfiguration safe, but not inherently reconfiguration safe, from being consid-

ered invalid. As an example, the model in Figure4.4 shows one case in which it is useful

to consider conditional reconfiguration. This model is similar to the model in Figure3.3,

except that each refinement operates on the same number of tokens.

Can this component can be used in an SDF model? Since each state refinement has

the same input and output rates, one might think that it should be possible. However, the

formal framework above provides no way of considering this information in the setRc and

must conservatively assume that the rate parameters of the modal model are reconfigured.

Another example is shown in Figure4.5. It seems logical to consider the rate parameter

of the actor to be constant, since the reconfiguration port always receives the same value.

However, the formal framework again provides no mechanism for considering this infor-

mation.

Conditional reconfiguration also arise simply through parameter dependencies. If a

4.5. Conditional Reconfiguration 49

Figure 4.5: Another example of a partial model that exhibits conditional

reconfiguration. In this model, the value received from the bottom port

changes the number of tokens consumed by the top port. If the parameter

of theConst actor is not reconfigured, then the rate parameter of theinput

port obviously doesn’t change, even though it is reconfigured.

parametera depends on parametersx andy, then we assume that wheneverx or y changes,

thena changes. However, if the constraint function fora is

constrainta(x, y) =

0 if x < 0

y otherwise

andx is less than 0 and never reconfigured, thena does not change wheny changes. The

constraint in Theorem8 is safe, butconservative.

In order to accommodate conditional reconfiguration, the left-hand side of the con-

straints in Theorems8 and9 may be augmented to include aconditional functionf . A

conditional function takes the initial parameter valuationv0, and the least change context

functionb·c and returns a new lower bound on the least change context. The updated con-

straints are shown below, in terms of Definitions10 and11. The resulting solution to the

least change context can be used to check if parameters are constant, even if they are not

inherently constant.

Definition 10 Conditional Reconfiguration Function:

A conditional reconfiguration functionfa p : (P → V) × (P → A>⊥) → {a,>} for an

actora and a parameterp is monotonic function, wheref a(v0, b·c) = a if in any execution

beginning with parameter valuesv0, ∀q ∈ Qa, p ∈ R(q).

4.5. Conditional Reconfiguration 50

Definition 11 Conditional Dependence Function:

A conditional dependence functionfp1 p2 : (P → V) × (P → A>⊥) → A>⊥ for parameters

p1 andp2 is monotonic function, wherefp1 p2(v0, b·c) = bp1c if in any execution beginning

with parameter valuesv0, reconfiguration ofp1 requires evaluation ofconstraintp2

p ∈ Rc implies fa p(v0, b·c) D>⊥ bpc
p1 p2 implies fp1 p2(v0, b·c) D>⊥ bp2c
The modified constraints are somewhat more complicated, since the least change con-

text appears in a function on the left hand side of the inequality. As a result, iff is not

well behaved then the least change context may no longer be well defined or easily de-

termined computationally. To ensure that the algorithm in [87] operates, it is sufficient

to require thatf is a monotonic function, i.e., if l1 and l2 are functions inP → A>⊥, then

∀p ∈ P, l1(p) D>⊥ l2(p) implies f (v0, l1) D>⊥ f (v0, l2).

In general, it is important to notice that conditional reconfiguration can be difficult to

detect statically. For instance, it is generally undecidable whether a stream in a dataflow

model has a constant sequence of values, or not. However, the formal framework can be

extended to support any analysis to detect conditional reconfiguration, by incorporating

more model semantics intof a. Even fundamentally undecidable techniques such as model

checking could be used, although we expect that most design tools will follow a type-

based philosophy and accept that static safety analysis will flag some safe models as errors.

Ultimately, it is the responsibility of individual design tools to provide analysis which is

appropriate to support a designers intuition of which models should be valid.

51

Chapter 5

Design Examples

This chapter presents some significant designs in Ptolemy II which illustrate the design

issues that reconfiguration analysis addresses.

5.1 Blind Communication Receiver

Figure5.1 shows an example signal processing model that describes ablind commu-

nication receiver. This system is designed to analyze and process a received signal with

unknown characteristics to determine the carrier frequency, baud rate, and number of phase

shifts of a digital Phase Shift Keyed (PSK) signal. The toplevel model is executed in the

style of a Kahn-MacQueen process network [48, 69], where each actor is associated with an

operating system thread and actor threads block until communication queues have enough

data. Most of the actors in the process network are defined hierarchical using statically

scheduled dataflow models, resulting in a hierarchically heterogeneous composition.

The Demodulator and BaudRateEstimator actors are implemented by synchronous

dataflow models that process2order input samples and compute estimates of the carrier fre-

quency and symbol rate of the input signal. Additionally, theDemodulator block synthe-

sizes a carrier signal of the appropriate frequency and outputs a baseband version of the

input signal. TheResampler actor samples the baseband signal at the estimated baud rate

and outputs a data-dependent number of complex samples. ThePhaseStatesEstimator

processes the resampled data to estimate the number of different phases used in the PSK

5.1. Blind Communication Receiver 52

transmission.

A hierarchical model implementing thePhaseStatesEstimator using a dynamically

scheduled dataflow model is shown in detail in Figure5.1. This model relies on theCom-

puteHistogram actor, which computes an array representing a histogram of input data.

The number of samples used to compute the histogram is specified as an actor parameter

reconfigured by theinputCount reconfiguration port. The model is constructed so that a

histogram is computed of all the resampled data.

Overall, the data-dependent nature of the resampling operation prevents the toplevel

model from being statically scheduled, since the number of resampled data tokens is not

available to a scheduler. However, in order to avoid the overhead of runtime scheduling, a

static or quasi-static schedule for thePhaseStatesEstimator would be preferred. Attempts

to apply synchronous dataflow scheduling analysis to the model results in constraints that

cannot be satisfied, since the parameter that determines the number of tokens consumed by

the histogram is reconfigured. Direct application of parameterized synchronous dataflow

scheduling to the model also fails, since thePhaseStatesEstimator actor is not locally syn-

chronous. The inconsistent constraints derived from sources of reconfiguration, parameter

dependencies, and reconfiguration requirements for such models are shown in Figure5.2.

One design solution is to modify the model as shown in Figure5.3. In this model,

reconfiguration has been moved up one level in the model, resulting in reconfiguration

just before thePhaseStatesEstimator is fired. The value of theinputCount parameter is

equal to value of thecount parameter, which is reconfigured by a reconfiguration port.

In this model, thePhaseStatesEstimator model is locally synchronous, as indicated by

the reconfiguration constraints in Figure5.4. The resulting execution schedule is quasi-

static and depends on the current rate parameter of theComputeHistogram actor, which is

reconfigured by thecount reconfiguration port.

5.1. Blind Communication Receiver 53

Figure 5.1:A process network design example where each actor is an inde-

pendent thread that blocks waiting for input data.

ComputeHistogram D>⊥ bComputeHistogram.inputCountc
D>⊥ bComputeHistogram.input.tokenConsumptionRatec
D>⊥ >

(a) Inconsistent SDF Scheduling Constraints

ComputeHistogram D>⊥ bComputeHistogram.inputCountc
D>⊥ bComputeHistogram.input.tokenConsumptionRatec
D>⊥ bComputeHistogram.PSDFschedulec
D>⊥ PhaseStateEstimator

(b) Inconsistent PSDF Scheduling Constraints

Figure 5.2: Reconfiguration constraints associated with different types of

dataflow scheduling analysis of the model in Figure5.1. The constraints

in (a) indicate that the model is not a valid SDF model. The constraints

in (b) indicate that the model is not locally synchronous, and hence not a

valid PSDF model either. In each case, the final constraint corresponds to a

reconfiguration requirement that is violated.

5.1. Blind Communication Receiver 54

Figure 5.3: An improved design that allows more opportunities for static

dataflow scheduling. Thecount port has been converted from a dataflow

port to a reconfiguration port, and thePhaseStatesEstimator model has

been changed to use a parameterized synchronous dataflow scheduler.

PhaseStateEstimator D>⊥ bComputeHistogram.inputCountc
D>⊥ bComputeHistogram.input.tokenConsumptionRatec
D>⊥ bComputeHistogram.PSDFschedulec
D>⊥ PhaseStateEstimator

Figure 5.4:Consistent reconfiguration constraints associated with the model

in Figure 5.3. Again, the final constraint is implied by a reconfiguration

requirement that must be satisfied. These constraints, along with others not

shown, indicate that the model is locally synchronous and can be scheduled

using parameter synchronous dataflow techniques.

5.2. Rijndael Encryption 55

5.2 Rijndael Encryption

A second example of reconfiguration is shown in Figure5.5, which performs the AES-

standard Rijndael encryption algorithm [22]. This algorithm performs a sequence of 10

encryption rounds on blocks of 16 bytes. In this model, each block of data is communi-

cated in sequence between each actor. The encryption operations are all performed by the

RoundSequence component, where data is fed back to the input as needed for future en-

cryption rounds. TheRoundKeyGenerator generates a pseudo-random sequence from the

user’s 16-byte key, an operation calledkey expansion. Since each encryption round uses

a fresh portion of the pseudo-random sequence generated byRoundKeyGenerator, this

architecture makes distribution of round keys relatively simple.

At the top level, theRijndael model operates on blocks of 16 bytes at a time. The

sequence of rounds is governed by theRoundSequence modal model. In the first round,

the incoming block of tokens is read and XOR’d with round key. The resulting 16 bytes

are produced on theintermediate cipher port and fed back to the modal model. The main

encryption rounds operate entirely on intermediate cipher values returned to thelast ci-

pher port, and no further tokens are read from thetext input. In the last encryption round,

16 bytes representing the final encrypted text is produced on thecipher port, completing

the encryption process. TheSbox, ShiftRow, andMixColumn actors implement the corre-

sponding operations in the Rijndael specification.

Given understanding of the model, it is not too hard in this case to determine the data-

flow behavior of theRijndael actor. Using robust run-time scheduling of dynamic dataflow

graphs [7, 69, 83], the operations do not deadlock and execute forever in a bounded amount

of memory for communication. However, this fact cannot be proven using either synchro-

nous dataflow or parameterized synchronous dataflow analysis, since the rate parameters

of theRoundSequence model are reconfigured during each state transition. The fact that

these assumptions are not satisfied is indicated by inconsistent reconfiguration constraints,

as shown in Figure5.2.

One approach to recovering the robustness of static scheduling is to modify the model

to include “dummy” communication that makes data rates constant, as shown in Figure

5.6. In this model, every state of theRoundSequence actor produces and consumes 16

5.2. Rijndael Encryption 56

Figure 5.5:A model of the Rijndael Encryption algorithm.

5.2. Rijndael Encryption 57

Figure 5.6:A synchronous dataflow model of the Rijndael Encryption algo-

rithm.

bytes of data in sequence. Unneeded data is read and discarded. The external behavior

of the model is identical to the model in Figure5.5 due to “dummy” data produced by

upsampling the incoming data and by theSampleDelay. Intermediate outputs are discarded

by downsampling the output to leave just the final result.

In this model, the reconfiguration constraints of synchronous dataflow scheduling can

be guaranteed, as shown in Figure5.7. Note that these constraints use a conditional recon-

figuration function to assert that rate parameters of the modal model are not reconfigured

5.2. Rijndael Encryption 58

fRoundSequence tokenConsumptionRate(v0, b·c) =

> if

v0(init.text.tokenConsumptionRate) =

v0(regular.text.tokenConsumptionRate) =

v0(final.text.tokenConsumptionRate)

and

binit.text.tokenConsumptionRatec =

bregular.text.tokenConsumptionRatec =

bfinal.text.tokenConsumptionRatec = >
RoundSequence otherwise

fRoundSequence tokenConsumptionRate(v0, b·c) D>⊥ bRoundSequence.text.tokenConsumptionRatec
D>⊥ bRijndael.SDFschedulec
D>⊥ >

Figure 5.7:Reconfiguration constraints associated with synchronous data-

flow scheduling analysis of the model in Figure5.6. The constraints indicate

that the model can be scheduled using synchronous dataflow techniques, as

long as the rate parameters of the modal model are conditionally reconfig-

ured.

if the initial values of the refinement rate parameter in each mode are equal and inher-

ently constant. Execution of the resulting static schedule is guaranteed to execute forever

in bounded memory without deadlock. The disadvantage of this model is that, depending

on the desired implementation architecture, the dummy communication may result in un-

desirable overhead. Because of this overhead, it may be desirable to refactor the model

further to leverage less constrained scheduling analysis, such as cyclo-static dataflow [12]

or cyclo-dynamic dataflow [98].

59

Chapter 6

Actor-Oriented Metaprogramming

System

This chapter describes a system for software design based on actor-oriented metapro-

gramming. The system consists of two primary portions: Ptolemy II and Copernicus.

Ptolemy II is a design environment targeted primarily at capturing abstract system behav-

ior using highly reusable and reconfigurable components and models. Although Ptolemy

II models are directly executable, the inherent overhead in the framework is generally

unacceptable for models constructed from fine-grained reusable components. Models of

software systems are generally larger, consume more memory, and execute slower than

optimized hand-written code.

Copernicus attempts to reduce this execution penalty by automatically eliminating generic

aspects of components in a model through actor specialization. The process leverages

significant portions of the functional descriptions of actors and data types in Ptolemy II

through generalized partial-evaluation techniques. For portions of the framework where a

wider variety of implementation possibilities are desired or where partial-evaluation tech-

niques perform poorly, explicit specifications of generated code can be used instead. The

resulting Java code is much closer to what a designer might write by hand, while still lever-

aging actor-oriented design techniques.

The presentation here is not intended to be a comprehensive description of Ptolemy II,

or Copernicus. Instead, we will focus on how actor-oriented models are represented, with

6.1. Ptolemy II 60

an emphasis on data, type, and component abstractions.

6.1 Ptolemy II

Ptolemy II [44] is a design tool supporting the actor-oriented design of systems. It

is implemented as a Java class library that models actor-oriented syntax and semantics.

Ptolemy II provides a variety of extension points for adding new actors, new data types,

and new models of computation within the basic framework. Theptolemy.actor package

is the basis for actor-oriented models in Ptolemy II.

The actor package implements an object-oriented framework for modeling actor-oriented

systems. It includes structures for representing actors (theTypedAtomicActor class), ports

and parameters (theTypedIOPort andParameter classes), and for describing compositions

of actors in a model (theTypedCompositeActor class). In a model, connections between

ports are represented by relations (theTypedIORelation class), while the model of com-

putation is determined by a director (theDirector base class). The director is responsible

for creating receivers (theReceiver interface) of the appropriate type to manage commu-

nication and for driving the execution of individual actors. Models are also associated

with a single writer, multiple reader locking mechanism, implemented by theWorkspace

class. This locking mechanism allows the structure of models to be modified safely in a

multi-threaded environment.

Ptolemy II supports a rich syntax for actor-oriented models. Ports may bemultiports

and connected to multiple relations. Relations may have an associatedwidth, allowing them

to represent multiple communication channels with a single connection. The number of

independently addressable communication channels for a port is inferred from the number

and width of relations connected to it. Syntactically, multiple ports can also be connected

to a single relation, allowingfan-outor mergingof communication channels when such

structures are allowed in a particular model of computation.

Parameterization is represented in Ptolemy II by instances of theParameter class. Pa-

rameters are associated with a stringexpression, which is evaluated to determine thevalue

of the parameter, represented by a data token. Expressions may reference the values of

other parameters, allowing parameter values to depend on one another. Expressions are

6.1. Ptolemy II 61

NamedObj

Entity

ComponentEntity CompositeEntity

AtomicActor CompositeActor

TypedAtomicActor TypedCompositeActor

Port

ComponentPort

IOPort

TypedIOPort

Relation

ComponentRelation

IORelation

TypedIORelation

connects

Workspace
synchronizes

Director Receivercreates

Parameter

Figure 6.1:A UML diagram for Ptolemy II’sptolemy.actor package, show-

ing various supporting classes

assumed to befunctional, indicating that evaluation of a parameter expression may not

change the state of the system. This property allows significant implementation freedom,

since the value may either be cached or repeatedly recomputed when needed.

Ptolemy II emphasizes the construction of highly reusable actor specifications, which

may be instantiated in a context and given parameter values and connections appropriate

to that context. Fundamentally actors are components that can be generally connected

and reconnected to other actors. Actors can be parameterized and reconfigured during

execution, as described in Section3. Additionally, actors in Ptolemy II are designed to be

type-polymorphic(able to operate on data of different types) anddomain-polymorphic(able

to operate under different models of computation). Type polymorphism is largely supported

by theptolemy.data package, which hides arbitrary data objects behind an object-oriented

6.1. Ptolemy II 62

:Foo

foo()

:Bar

bar()

Figure 6.2:A simple indirection diagram showing invocation of thebar()

method of an instance of theBar class from thefoo()method of an instance

of theFoo class. The instance of theBar class is obtained by indexing into

the array referenced by the instance of theFoo class.

abstract data type. Domain polymorphism is supported by theActor interface, which is

implemented by all actors and directors. Parameters, type-polymorphism, connections,

and domain-polymorphism are the primarygeneric aspectsof actor-oriented design.

6.1.1 Indirection in Object-oriented Frameworks

As in typical object-oriented frameworks, Ptolemy II implements generic aspects of

actors through interfaces and indirection. This indirection is not visible in the UML static

structure diagrams of the previous page. The indirection in the implementation of each

method will be described using anindirection diagram, an example of which is shown in

Figure6.2.

An indirection diagram has the general structure of a UML object diagram, where each

box represents an instance of a Java class. An object with a dotted outline represents an

instance of an unknown subclass of the class or interface. References between the objects

are represented by a solid arrow between the objects, or by a solid line for references nav-

igable in both directions. Methods are shown in the body of an object in a similar manner

to a UML class diagram. Method invocations are represented by dotted arrows from one

method to another, with multiplicities representing the possibility of multiple invocations.

For convenience, entry point invocations are shown as an arrow with no source.

Indirection diagrams are similar in many ways to a UML collaboration diagram, since

they describe method invocations between different objects. However, unlike a collabo-

6.1. Ptolemy II 63

ration diagram which emphasizes the sequencing of method calls, an indirection diagram

emphasizes the implementation of particular methods. An indirection diagram is primarily

used in the examples below to show the approximate complexity of various methods in the

Ptolemy II framework.

6.1.2 Data and Data Types

In order to maximize reuse of actors in a model, Ptolemy II provides base classes for

representing data types in a uniform way through theptolemy.data package. Various sub-

classes of theToken base class encapsulate both Java primitive types and composite types

such as arrays and records. By programming using theToken class as an abstract data type,

type polymorphic Java code can be written.

Data types are explicitly represented in Ptolemy II through theptolemy.data.type pack-

age. Various subclasses of theType base class represent classes of token values. For most

Token subclasses encapsulating Java primitive types, such as theIntToken class that repre-

sents operations on signed integers, there is a correspondingType subclass and a singleton

instance of that subclass. For other tokens, such as theArrayToken class, which encapsu-

lates an array of other tokens, multiple instances of a singleType subclass are instantiated

to represent different contained token types. Conceptually, data types represent subsets of

the setV of all token values. Every valuev ∈ V has a uniqueexact typegiven byType(v),

whereType: V → T. The setVτ = {v ∈ V : Type(v) = τ} is the set of all tokens with type

τ.

Data types are related in a lattice, as shown in Figure6.3, where automatic conversion

is allowed from one type to another. This conversion happens during operations between

tokens and during communication from one actor to another. Ifτ ≤ τ′ in the type lattice

then automatic type conversion is allowed from values with typeτ to values with typeτ′.

Theautomatic conversion functionConvertτ is a partial function whereConvertτ : V → Vτ

returns the result of converting an arbitrary value to a value of typeτ. The conversion

function satisfies two primary constraints: conversion to a lesser type is not possible, and

conversion of a value of one type to the same type is an identity operation.

This lattice includes both exact types (shown unshaded) andabstract types (shown

6.1. Ptolemy II 64

boolean

unknown

unsignedByte

complex

double

intfixedpoint

long

string

scalar arrays...

general

Figure 6.3:An abbreviated version of the Ptolemy II data type lattice.

shaded). Generally speaking, exact types represent disjoint sets of tokens and automatic

conversion to an exact type results in a different token. On the other hand, abstract types

represent the union of all lesser data types and conversion to an abstract type does not result

in a new value. The typegeneral corresponds to theToken base class and includes every

token value. The typeunknown is an artificial type that is only used in type checking.

Although the interface defined in theToken base class make it easy for a designer to

describe type-polymorphic operations, there is additional overhead to support these opera-

tions as shown in Figure6.4. Data types must be compared during each operation in order

to ensure that operations are value and to allow for automatic type checking. In addition, in

order to guarantee that tokens are immutable values, operations on tokens typically allocate

a new token to represent the returned value.

6.1. Ptolemy II 65

IntToken

add(t:Token):Token

DoubleToken

addReverse(t:Token):Token

doubleValue():double

DoubleType

convert(t:Token):Token

TypeLattice

compare(t1:Type, t2:Type)

IntType

convert(t:Token):Token

Figure 6.4:Typical indirection diagram for thedata package. This diagram

shows the indirection in an invocation of theadd() method on anIntToken

with a DoubleToken argument.

6.1.3 Type Checking

In addition to token operations, type conversions are also performed automatically dur-

ing communication from one port to another. Ptolemy II includes a static type inference

and checking system [78, 88, 103] that infers the types of ports and parameters to deter-

mine when type conversion should occur and statically ensures type safety in the presence

of automatic type conversions.

This type system is based on type constraints expressed as inequality constraints on the

lattice in Figure6.3. These type constraints are implied by connections between ports, and

by the operations implemented by actors. Type constraints in dataflow models typically

take the form shown in Figure6.5, where the type constraints for connections represent the

presence of automatic type conversion and the type constraint for an actor gives the type of

output ports in terms of the types of input ports and parameters.

Type checking is performed by collecting type constraints from the model and solving

them for the least solution. A type error is reported if no solution to the type constraints

exists, or ports are parameters are assigned the artificial typeunknown. For type constraints

of the form shown in Figure6.5, a unique least solution to the constraints can be found

efficiently as long asFA is a monotonic function [87]. Figure6.6shows the application of

type inference to a simple model.

6.1. Ptolemy II 66

Type(output)≤ Type(input) FA(Type(input))≤ Type(output)

Figure 6.5:Type constraints in dataflow models. In general,FA gives the

types of output ports in terms of the types of input ports and parameters.

Figure 6.6:Type inference in a dataflow model. In this model, the value

produced byConst would be automatically converted from and integer to a

double before being received byinput.

6.1.4 Parameters and Expressions

Configuration parameters in Ptolemy II models are represented by instances of thePa-

rameter class. This class provides mechanisms for evaluation of parameter expressions

and for caching and reevaluating the expression when necessary using a lazy evaluation

strategy [43]. When a parameter is reconfigured, other dependent parameters are notified

and a flag is set to indicate that the value must be recomputed. When the value is recom-

puted, theattributeChanged() method of the parameter’s container is called and the

flag is cleared. TheattributeChanged() method is often used in actor classes to check

for consistency between the values of different parameters.

Evaluation of expressions is performed by parsing the expression into an AST and

traversing the AST to evaluate a token value for the root node. The Java code to perform

the evaluation is architected using a Visitor design pattern [32]. Evaluating each node in

the parse tree results in two virtual method invocations, in addition to other method calls to

6.1. Ptolemy II 67

:ASTPtSumNode

visit(v:ParseTreeVisitor)

isConstant():boolean

isEvaluated():boolean

getToken():Token

jjtGetChild(int):ASTPtRootNode

jjtGetNumChildren():int

ParseTreeVisitor

visitSumNode(n:ASTPtSumNode)

:ParseTreeEvaluator

evaluateParseTree(n:ASTPtRootNode):Token

visitSumNode(n:ASTPtSumNode)

visitLeafNode(n:ASTPtLeafNode)

one:ASTPtLeafNode

visit(v:ParseTreeVisitor)

isConstant():boolean

isEvaluated():boolean

getToken():Token

ASTPtRootNode

Figure 6.7:Indirection in parse tree evaluation for evaluating a expression

containing a sum.

traverse the AST. An indirection diagram for this evaluation is shown in Figure6.7.

6.1.5 Ports and Communication

The communication interface of an actor is represented by instances of theTypedIO-

Port class. The connections between these ports in a model are represented by instances

of theTypedIORelation class. Each connection between an output port and an input port

forms a communication channel, represented by an instance of a domain-specific class im-

plementing theReceiver interface. Since modifications to the structure of a model are

unusual, the receivers reachable from an port are cached to make data transport more effi-

cient. As a result, sending or receiving data does not deal with relations, but only with the

communication channels.

However, there is still a significant amount of processing that must be performed to

transmit a single data value from one actor to another, as illustrated in Figure6.8. Read

access to the workspace is obtained, in order to ensure that run-time modifications to the

model are not made. Run-time type checking in the_checkType() method ensures that

actors respect type declarations. If necessary, run-time type conversion is performed by

invoking theconvert() method of the destination port. Lastly, the converted token is

6.1. Ptolemy II 68

Receiver

put(t:Token)

Type

convert(t:Token):Token

TypedIOPort

send(channel:int, t:Token)

_checkType(t:Token)

<<output>>

TypedIOPort

convert(t:Token):Token

<<input>>

Workspace

getReadAccess()

doneReading()

remoteReceivers

0..k

channel

0..k

Figure 6.8:Indirection in sending data.

placed in the appropriate receiver via theput() method. The end result is a minimum

of four class field access, two indexes into an array, and six method calls, in addition

to domain-specific and type-specific code of unknown complexity. Similar overhead is

incurred to retrieve the token using theget() method of the input port.

In Figure6.8, notice that each indirection is present to support particular features in

the Ptolemy II system. TheReceiver interface is present to support domain-polymorphic

actors, while theconvert() and_checkType() methods support automatic type conver-

sions. The arrays of receivers support addressing individual channels on each port through

the first argument of theget() andsend() methods and the broadcast of data to multi-

ple input ports. Workspace synchronization enables modifications to models in a multi-

threaded environment.

It is important to recognize that almost no model uses all of these features on every

connection. In most models, output ports are connected to a single input port of the same

type. Most models are not structurally reconfigured while executing. However, in some

models these features allow for simpler models and more convenient specification. Unfor-

tunately, to support these features in any model, all models must incur the same indirection

overhead.

6.1. Ptolemy II 69

public classConst extendsSource {
public Const(CompositeEntity container, String name)

throws NameDuplicationException, IllegalActionException {
// The super class declares the output port.
super(container, name);
// Declare the value parameter
value = newParameter(this, "value");
// and its default value.
value.setExpression("1");
// Set the type constraint of the output port.
output.setTypeAtLeast(value);
// Declare the graphical representation.
_attachText("_iconDescription", "<svg>\n�<rect�x=\"0\"�y=\"0\"�"

+ "width=\"60\"�height=\"20\"�style=\"fill:white \"/>\n"
+ "</svg>\n");

}
public Parameter value;
public void fire() throws IllegalActionException {

super.fire();
output.send(0, value.getToken());

}
}

Figure 6.9:CompleteConst actor class.

6.1.6 Actor Specifications

Specifications of actor behavior in Ptolemy II are given by subclasses of theTypedAtom-

icActor andTypedCompositeActor base classes. These subclasses, calledactor classes,

use the programming interfaces (APIs) provided by Ptolemy II to model actor behavior.

These APIs provide an actor-oriented abstraction as long as actor classes respect a stylized

form of Java.

A typical actor specification in shown in Figure6.9. This class derives from theSource

base class, which creates a port namedoutput and provides default implementations of all

actor methods. The constructor consists primarily of method invocations that create objects

to represent the fixed interface of an actor. Although these objects are created only when

an object is constructed, it is useful to think of the constructor code as declarations of actor

structure. The call to the_attachText() method declares the representation of the actor

in a visual editor. Thefire() method implements the interesting behavior of this actor,

which sends the value of thevalue parameter to the output port.

6.2. Copernicus 70

In general, actor classes can be written without any assumptions on the structure of a

model by using the appropriate Ptolemy II APIs to dynamically discover ports and connec-

tions. Most actors, however, are written the style of theConst actor, where the ports and

parameters of the actor are declared by the actor when the actor is created. As a result, only

a relatively small number of methods defined by the Ptolemy II API need to be considered

in actor classes. For example, Figure6.10 shows the methods that are particular to the

TypedIOPort class. However, only a small number are commonly used in actor classes.

When used correctly, the Ptolemy II APIs provide a robust actor-oriented semantics.

One basic restriction is that actor classes interact with other actor classes only through

the Ptolemy II APIs. Actor classes are expected to not declarestatic fields or methods

for communicating with other actors. Additionally, although the Ptolemy II API provides

mechanisms for retrieving actors in a model by name and manually traversing relations to

other actors, actor classes are expected to be self-contained and not invoke these methods.

Instead, actor classes declare public fields for keeping track of ports and parameters that

form the actor’s interface.

6.1.7 Model Specifications

In most cases, Ptolemy II models are not specified by manually writing Java code,

but indirectly by constructing a model in a graphical editor or by writing an XML-style

specification of a model using the Modeling Markup Language (MoML) [68]. Processing a

MoML file results in the instantiation of the correct actor classes for each actor in the model

and the invocation of other methods to create hierarchy and connections in the model. In

effect, actor classes implement reusable software components which can be instantiated

and composed in many different models.

6.2 Copernicus

Copernicus is a tool that generates Java code from a Ptolemy II model. The generated

code has the same functional behavior as the original model, with the possibility of greatly

improved performance. The construction of Copernicus was motivated primarily by the

6.2. Copernicus 71

booleanisDeeplyConnected(ComponentPort)
booleanisInput()
booleanisInsideLinked(Relation)
booleanisLinked(Relation)
booleanisMultiport()
booleanisOpaque()
booleanisOutput()
List insidePortList()
List insideRelationList()
List insideSinkPortList()
List insideSourcePortList()
int getWidth()
int getWidthInside()
int numInsideLinks()
int numLinks()
int numberOfSinks()
int numberOfSources()

Enumeration connectedPorts()
Enumeration deepConnectedInPorts()
Enumeration deepConnectedOutPorts()
Enumeration deepConnectedPorts()
Enumeration deepInsidePorts()
Enumeration insidePorts()
Enumeration insideRelations()
Enumeration linkedRelations()
List connectedPortList()
List deepConnectedInPortList()
List deepConnectedOutPortList()
List deepConnectedPortList()
List deepInsidePortList()
List linkedRelationList()
List sinkPortList()
List sourcePortList()
NamedObj getContainer()

(a) Query Structure

int moveToFirst()
int moveToLast()
int moveUp()
int moveDown()
int moveToIndex(int index)
void insertInsideLink(int , Relation)
void insertLink(int , Relation)
void liberalLink(ComponentRelation)
void link(Relation relation)

void setContainer(Entity)
void setInput(boolean)
void setMultiport(boolean)
void setName(String)
void setOutput(boolean)
void unlink(Relation)
void unlink(int)
void unlinkAll()
void unlinkAllInside()
void unlinkInside(Relation)
void unlinkInside(int)

(b) Modify Structure

InequalityTerm getTypeTerm()
List typeConstraintList()
Type getType()
booleanisTypeAcceptable()
void addTypeListener(TypeListener)
void removeTypeListener(TypeListener)

void setTypeAtLeast(InequalityTerm)
void setTypeAtLeast(Typeable)
void setTypeAtMost(Type)
void setTypeEquals(Type)
void setTypeSameAs(Typeable)

(c) Type System

Figure 6.10:Methods that can be invoked on theTypedIOPort class.

6.2. Copernicus 72

void broadcastClear()
Token get(int)
Token getInside(int)
Token[] get(int , int)
booleanhasRoom(int)
booleanhasRoomInside(int)
booleanhasToken(int)
booleanhasToken(int , int)
booleanhasTokenInside(int)

void broadcast(Token)
void broadcast(Token[], int)
booleanisKnown()
booleanisKnown(int)
booleanisKnownInside(int)
void send(int , Token)
void send(int , Token[], int)
void sendClear(int)
void sendClearInside(int)
void sendInside(int , Token)

(d) Actor Communication

void attributeChanged(Attribute)
Token convert(Token)
doublegetCurrentTime(int)
String toString()
booleantransferInputs()
booleantransferOutputs()

List sourcePortList(Receiver)
Receiver[][] deepGetReceivers()
Receiver[][] getInsideReceivers()
Receiver[][] getReceivers()
Receiver[][] getReceivers(IORelation)
Receiver[][] getReceivers(IORelation, int)
Receiver[][] getRemoteReceivers()
Receiver[][] getRemoteReceivers(IORelation)

(e) Miscellaneous

Figure 6.10:Methods that can be invoked on theTypedIOPort class.

desire to execute models of embedded software constructed using Ptolemy II in embedded

Java environments. The Ptolemy II libraries alone consume several Megabytes of.class

files, and require significant run-time memory allocation. Large memory allocation adds

load to the garbage collector, reducing overall execution speed. Indirection adds overhead

to each operations, further reducing execution speed. As a result, using Ptolemy II models

directly in an embedded system in resource-constrained embedded systems.

Copernicus leverages the fact that the memory and processing requirements of Ptolemy

II models are in most cases dominated by the organizational complexity assocated with

generic and reusable actors. This complexity is an intrinsic part of Ptolemy II actors, even

if the generic aspects of a component are not exercised through reconfiguration. Even in

models that do perform reconfiguration, it is typically limited to a relatively small portion

of most models. Copernicus specializes actors [81] using a combination of partial evalu-

ation and generative programming to transform a model with Ptolemy II abstractions into

self-contained Java code. Actor specialization allows access to design benefits of generic

6.2. Copernicus 73

mechanisms, while incurring performance overhead only with these mechanisms are actu-

ally used in a model.

6.2.1 Code Generation from a Model

The code generator begins by generating a model suitable for specialization. Each actor

class instantiated in the model is duplicated in order to specialize each actor independently.

A new Java class is automatically generated for each hierarchical model. Constructor meth-

ods are automatically generated for each class that instantiate objects to represent ports and

parameters contained by each actor and model. The resulting Java code can be executed

using the Ptolemy libraries in much the same fashion as a model dynamically instantiated

from a MoML description.

The bulk of the complexity in Copernicus arises from specialization transformations

applied to the generated code. These transformations generate code that replaces method

invocations of methods in the Ptolemy II APIs with specialized implementations. Meth-

ods on ports, parameters, and actors that are used to query the structure of the model are

replaced with direct references to the correct object instances. Methods on ports that com-

municate data are replaced with domain-specific code for communication.Token objects

are replaced with primitive Java code that is behaviorally identical but does not require

object allocation. The resulting specialized code is entirely self-contained and does not

depend on the Ptolemy II libraries.

6.2.2 Transformation Rules

We present the transformations applied in Copernicus in the style of rewrite rules. The

left side of the rule is repeatedly matched against the code, and each match is replaced with

the right side of the rule. In actuality, the transformations are implemented as transforma-

tions on abstract syntax trees, and we can generally interpret the rules below as tree rewrite

rules. For conciseness, these rules have been written with a mixture ofsyntactic coderep-

resenting Java syntax trees (intypewriter font) andrewrite coderepresenting operations

applied during code generation (inboldface). For convenience, we will assume that rewrite

code for an object reference, such aso, corresponds to a reference to a uniquely identifi-

6.3. Actor Specialization 74

able Java object that can be statically determined. Put another way,o.toString() is the

Java syntax tree corresponding to a method invocation on an unknown object, whereas

o.toString() is the string resulting from invoking thetoString() method on a particular

objecto. For Java primitive types, the automatically generated code should be obvious (nu-

merical constants, String constants). Transformations have access to the functions listed

below that generate appropriate syntax trees.

The following functions are available as compile-time operations:

• objectReference:NamedObj→ AST (Returns an Abstract Syntax Tree that retrieves

a runtime reference to the given input object.)

• stringConstant:String→ AST (Returns an Abstract Syntax Tree for the give input

string)

• typeConstant:Type→ AST (Returns an Abstract Syntax Tree that creates a Type

object that is equivalent to the given input type.

6.3 Actor Specialization

As mentioned previously, Java specifications of Ptolemy II actors define actor behavior

in a generic way. In order to generate an efficient implementation from a specification,

it is transformed into a new actor specification that is specialized to a particularcontext.

Such a context includes, for instance, assignments of values to parameters and assignments

of types to ports and parameters. While such a context could be specified explicitly, it is

usually more convenient to use the concentrate on using the implicit context that actors

acquire when composed in a model. In particular, the implicit context of an actor includes

information about data types and constant parameters in a model that can be automatically

inferred from a model.

This report considers four types of actor specialization: structural specialization, pa-

rameter specialization, type specialization, and domain specialization. The following sec-

tions describe, for each type of specialization, the possibilities for determining whether or

not the appropriate context of an actor can change. In each case, an actor specification can

6.3. Actor Specialization 75

a = o.getContainer(s); ::= a = objectReference(o.getContainer(s));

a = o.getAttribute(s); ::= a = objectReference(o.getAttribute(s));

e = e.getEntity(s); ::= e = objectReference(e.getEntity(s));

p = e.getPort(s); ::= p = objectReference(e.getPort(s));

r = e.getRelation(s); ::= r = objectReference(e.getRelation(s));

Figure 6.11:Transformations applied during structural specialization.

be specialized if the appropriate context does not change. Additionally, parameter special-

ization can be performed even if parameter values are dynamically reconfigured by a modal

model. In all cases, it is assumed that the model is not dynamically reconfigured by any

means external to the model.

Note that we do not consider specialization of data generality from actors. In most

cases, actors used in models of embedded systems operate on unknown data, since they

are constantly receiving unknown data from sensors in the physical world. Hence, data

generality seems crucial to the notion of an embedded system. However, in some cases it is

useful to have actors internal to a model that produce sequences of constant or deterministic

data. In such cases it seems possible that classical compiler optimizations, such as constant

propagation and constant expression elimination [79] could be applied at the model level.

Although they are not described here, these specializations seem straightforward to apply.

6.3.1 Structural Specialization

Structural specialization of a model replaces methods that are normally used to traverse

hierarchy in a Ptolemy II model. The Ptolemy II base classes implement many of these

methods using dynamic data structures, such as lists. Since the structure of a model is

assumed to not change, then these data structures can be replaced with field references for

each contained or containing object.

Basic structural specialization transformations dealing with methods for traversing the

model hierarchy are shown in Figure6.11. Structural specialization also replaces the meth-

ods shown in Figure(a) that query the structure between ports. Transformations for the

most common methods are shown in Figure6.12.

6.3. Actor Specialization 76

i = p.getWidth(); ::= i = p.getWidth()

i = p.numberOfSinks(); ::= i = p.numberOfSinks();

i = p.numberOfSources(); ::= i = p.numberOfSources();

b = p.isInput(); ::= b = p.isInput();

b = p.isOutput(); ::= b = p.isOutput();

b = p.isMultiport(); ::= b = p.isMultiport();

Figure 6.12:Domain-independent transformations for specializing connec-

tions.

Port input1, input2, input3, output;
public void fire() {

for (i = 0; i < input1.getWidth(); i++) {
if (input1.hasToken(i)) {

output.send(0, input1.get(i));
}

}
for (i = 0; i < input2.getWidth(); i++) {

if (input2.hasToken(i)) {
output.send(0, input2.get(i));

}
}
for (i = 0; i < input3.getWidth(); i++) {

if (input3.hasToken(i)) {
output.send(0, input3.get(i));

}
}

}

Figure 6.13:A merge actor.

The transformations above can result in significant code simplification for some actor

specifications. As an example, Figure6.13 shows an actor that transmits data received

from any input port to its output port. This actor is specified in such a way that each of

the three input ports may or may not be connected. If any of the inputs are not connected,

then the corresponding loop will never actually consume any data. The above transforma-

tions enable the loop conditions to be statically evaluated, allowing for loop unrolling and

elimination of any loops corresponding to ports with zero width.

6.3. Actor Specialization 77

6.3.2 Parameter Specialization

Parameter specializationtransforms an actor specification with unspecified parame-

ter expressions into a specification where parameter expressions are fixed. Two different

specializations are possible, depending on whether parameters are constant or not. If a

parameter value is constant, then its value is fixed throughout execution of a model and

queries for the value of constant parameters can be replaced with the constant value of the

parameter. If a parameter is not constant then code can be generated from the expression

that allows the parameter value to be evaluated without the overhead of traversing a parse

tree at execution time.

In the context of this chapter, the reconfiguration analysis in Chapter4 determines the

binding times of parameters in the sense of a partial evaluator. Constant parameters are

similar to variables with static binding time, while parameters that are not constant are

similar to variables with dynamic binding time. In addition to identification of inherently

constant parameters, reconfiguration analysis also provides information about when para-

meters are reconfigured. This information can be used to further specialize the evaluation

of not-constant parameters.

Replacing Parameters

Objects representing parameters can be specialized using the transformation rules in

Figure6.14. These rules implement alazy evaluation strategy [43], which is essentially

identical to the algorithm implemented by theParameter class. The generated code, how-

ever, is specialized to a particular parameter expression and dependencies between parame-

ters. Prior to applying these transformations, fields are added to the actor class to represent

the value of the parameter and whether or not the value is valid. These fields are returned

by thetokenField and isValidField methods, which are functions that return an AST for

querying the correct field for any parameters.

The lazy evaluation strategy, however, has several drawbacks. Every parameter requires

an additional field that represents the validity of the value which must be checked when-

ever the parameter is queried. For frequently changing parameters, the validity check will

usually returnsTRUE, while for infrequently changing parameters, this check usually return

6.3. Actor Specialization 78

s = p.getName(); ::= s = stringConstant(p.getName());

s = p.getFullName(); ::= s = stringConstant(p.getFullName());

s = p.getType(); ::= s = typeConstant(p.getType());

s = p.getExpression(); ::= p.getToken().toString();

p.setExpression(s); ::= error

t = p.getToken(); ::= if(!objectReference(p.getContainer()).isValidField(p)) {

objectReference(p.getContainer()).evaluateMethod(p)

attributeChanged(p)

objectReference(p.getContainer()).isValidField(p) = TRUE;

}

t = objectReference(p.getContainer()).tokenField(p);

p.setToken(t); ::= objectReference(p.getContainer()).tokenField(p) =

(tokenField(p).type)typeConstant(p.getType()).convert(t);

foreach x in sort(dependents(p)){

objectReference(x.getContainer()).isValidField(x) = false;

}

attributeChanged(p);

Figure 6.14:Transformations applied during dynamic parameter specializa-

tion.

FALSE. Although many processor architectures include branch prediction hardware that can

adapt to the frequency branches are taken, it is still preferable to produce code where such

prediction is not necessary.

Fortunately, reconfiguration analysis provides exactly the information necessary to spe-

cialize actors more effectively. Parameters which are constant or constant over firings of

an actor can be replaced with simpler code than the generic lazy evaluation strategy. These

transformations are shown in the following sections.

Replacing Constant Parameters

Objects representing constant parameters can be more effectively specialized by com-

puting the constant value at compile time and replacing accesses to the parameter with

the constant value. Primarily, this results in the replacement of invocations of the parame-

ter’sgetToken() method, with a reference to a token object. Since tokens are immutable

6.3. Actor Specialization 79

t = p.getToken(); ::= t = objectReference(p.getContainer()).tokenField(p);

p.setToken(t); ::= objectReference(p.getContainer()).tokenField(p) =

(tokenField(p).type)typeConstant(p.getType()).convert(t);

attributeChanged(p);

Figure 6.15:Transformations applied during parameter specialization.

public TypedIOPort input, output;
public Parameter arrayLength;
public void fire() {

int length = ((IntToken)arrayLength.getToken()).intValue();
Token[] valueArray = input.get(0, length);
output.send(0, newArrayToken(valueArray));

}

Figure 6.16:Original code fromSequenceToArray.

objects, the expense of runtime allocation is reduced by creating the tokens during initial-

ization and storing a reference to the token in an automatically created field. The field is

initialized through an invocation of thesetToken() method when the model is initialized.

The transformations are shown in Figure6.15. Note that no field is necessary to record the

validity of the parameter value.

As an example, consider theSequenceToArray actor specification shown in Figure

6.16. This actor consumes a number of tokens determined by the value of thearrayLength

parameter and aggregates them into a single array token. This specification, specialized to

a constantarrayLength parameter value of 8, is shown in Figure6.17.

Since tokens represent immutable values, some method invocations, such as the

intValue() method call in Figure6.17, can also be replaced using constant propagation.

The result is shown in Figure6.18. In this case, since the parameter is not used elsewhere

in the actor specification, the field and token creation are dead and can also be removed

(see Section6.5.3).

6.3. Actor Specialization 80

public TypedIOPort input, output;
public IntToken arrayLength_value = newIntToken(8);
public void fire() {

int length = arrayLength_value.intValue();
Token[] valueArray = input.get(0, length);
output.send(0, newArrayToken(valueArray));

}

Figure 6.17: The SequenceToArray actor after specialization withar-

rayLength = 8.

Port input, output;
public void fire() {

int length = 8;
Token[] valueArray = input.get(0, length);
output.send(0, newArrayToken(valueArray));

}

Figure 6.18: The SequenceToArray actor after additional specialization

with arrayLength = 8.

6.3. Actor Specialization 81

t = p.getToken(); ::= t = objectReference(p.getContainer()).tokenField(p);

p.setToken(t); ::= objectReference(p.getContainer()).tokenField(p) =

(tokenField(p).type)typeConstant(p.getType()).convert(t);

attributeChanged(p);

After reconfiguration at quiescent points of actor A ::=

P = {p : bpc = a}
foreach p in sort(P) {

objectReference(p.getContainer()).evaluateMethod(p)

}

Figure 6.19:Transformations for parameter specialization using the Least

Change Context evaluation strategy.

Replacing Other Parameters

Parameters which are constant over the firings of an actor are guaranteed to not be

reconfigured during those firings. As a result, it is sufficient to guarantee the validity of a

parameter that is constant over firings of an actora only at the quiescent points of actor

a. This evaluation strategy will be called aleast change contextevaluation strategy. The

corresponding transformations are shown in Figure6.19.

Although the least-change context evaluation strategy alone is not optimal, since it may

re-evaluate parameter values even when no reconfiguration has been performed, it does not

require separate checks for validity. Ahybrid lazy/least-change context strategy is also

possible, where validity checks are inserted after reconfiguration occurs. Due to reconfig-

uration analysis, fewer validity checks are usually required in such a strategy than in the

purely lazy evaluation strategy, although code to set validity flags during reconfiguration is

still necessary. Depending on how often parameter values are reconfigured and the com-

plexity of computing new parameter values, either the least-change context evaluation or

hybrid strategies may be preferable.

6.3. Actor Specialization 82

t = p.getToken(); ::= t = objectReference(p.getContainer()).tokenField(p);

p.setToken(t); ::= objectReference(p.getContainer()).tokenField(p) =

(tokenField(p).type)typeConstant(p.getType()).convert(t);

attributeChanged(p);

Figure 6.20:Transformations applied during dynamic parameter specializa-

tion.

6.3.3 Type Specialization

Actor specifications in Ptolemy II are often type polymorphic, allowing them to oper-

ate equally well on integers, doubles, or more complex structured data types. This poly-

morphism is abstracted by theptolemy.data package, which represents a set of common

type-independent operations. Although actors are generically typed, in most models actors

only ever receive or produce data of a single exact token type. By applying type-inference

applied to actor classes, exact types can usually be inferred where they are not completely

specified. Type specializationtransforms a type-polymorphic specification to a specifi-

cation that only operates on a single type. When combined with token unboxing, type

specialization removes the indirection caused by using theptolemy.data package.

Inferring Token Types in Java Actor Specifications

In a model, the Ptolemy II type system infers the types of ports using type constraints for

actors that are specified by actor writers and assumed to be correct. Types assigned to ports

and parameters determine where in a model automatic type conversions occur. Propagating

these types through Java code requires a different type inference procedure for several

reasons. Most importantly, type conversions cannot always be inserted into an actor class

while preserving the behavior of the actor code. Additionally, although tokens represent

immutable values, some data structures used in actor code, such as arrays of tokens, are

mutable. Inference of the types of such structures must consider the possibility of aliased

references. Lastly, Java allows for local variables and fields to reference different token

types in different control paths. To recover exact types, such cases must be eliminated.

6.3. Actor Specialization 83

boolean

unknown

unsignedByte complex double fixedpoint int long

string arrays... scalar

general

Figure 6.21:The type lattice used for inferring token types in Java code.

Basic Type Inference

Since automatic type conversions cannot be inserted into Java code, the type lattice

in Figure6.3 does not represent the correct relationship between types. Type inference

for Java code is performed using the type lattice shown in Figure6.21. This lattice is

similar to the automatic conversion type lattice, except that exact types are considered to

be incomparable.

The primary token type inference algorithm computes a type for each local variable and

class field that refers to a token object, including arrays of tokens. The types of ports and

parameters of the actor are fixed based on types inferred from the model, as are the types

of newly created tokens. Assignments require that types on both sides of the assignment

are equal, in order to capture constraints between aliased objects. The type inference rules

are shown in Figure6.22.

Types and Control Flow

It is important to note that, unlike the type checking systems applied to Java source

code or Java bytecode, this system requires variables to have the same type at all points

in a method. If a variable references different token types at different points in a method,

then no solution will be found to the constraints above. In contrast, the type system applied

to Java source code during compilation allows variables to refer to objects of different

classes, as long as they are all subclasses of the declared type. The type system applied to

Java bytecode is also more lenient, since it allows a variable to be assigned different exact

6.3. Actor Specialization 84

A = B; =⇒ Type(A) = Type(B)

A = (foo)B; =⇒ Type(A) = Type(B)

A[i] = B; =⇒ Type(A) = Type(B)

A = B[i]; =⇒ Type(A) = Type(B)

A[i] = B[i]; =⇒ Type(A) = Type(B)

A = P.getToken(); =⇒ Type(A) = Type(P)

A = P.get(i); =⇒ Type(A) = Type(P)

T = P.getType(); =⇒ T = Type(P)

A = T.convert(B); =⇒ Type(A) = T

Figure 6.22:Rules for inferring token type constraints in Java code.

types at different points in a program. The type system used here emphasizes the discovery

of exact types in the presence of type declarations and considers code that assigns multiple

token types to a single variable to be illegal.

As an example, consider the specification of the Ramp actor in Figure6.23, where the

value of theinit parameter is anIntToken, and thestep parameter contains aDouble-

Token. Based on the type constraints declared by this actor, the type of the output port is

double. On the first firing, the field_state refers to anIntToken, which is the value of

theinit parameter. Since the output port has type double, theIntToken is converted to a

DoubleToken in the process of being sent. After thepostfire() method is invoked, the

_state field refers to aDoubleToken, which results from adding the initialIntToken to the

value of thestep parameter (aDoubleToken). The token type inference system will flag

this as a type error, although it is valid Java code and executes without error in simulation.

There are different ways of modifying theRamp actor class to obtain code with exact

token types. One solution is to strengthen the type constraints on the actor, declaring that

the types of the parameters and the types of the output port must all be the same. In this

case, the value of theinit parameter will be automatically converted into aDoubleToken

before being queried, and exact types are present. Another solution, shown in Figure6.24,

is to manually insert code into theinitialize() method to convert the value of the initial

token to the type of the output port. Note that neither of these solutions can be applied

automatically, since they have the potential to change the behavior of the program.

6.3. Actor Specialization 85

TypedIOPort output;
Parameter init;
Parameter step;
private Token _state;
public void initialize() {

_state = init.getToken();
}
public void fire() {

output.send(0, _state);
}
public void postfire() {

_state = _state.add(step.getToken());
}

(a)

Type(output) = double

Type(init) = int

Type(step) = double

Type(_state) = Type(init)

Type(output) = Type(_state)

Type(_state) =

Fadd(Type(_state),Type(step))

(b)

Figure 6.23: A Ramp actor specification(a) which does not have exact

token types, as shown by the inconsistent type constraints in(b).

TypedIOPort output; // double
Parameter init; // int
Parameter step; // double
private Token _state; // double
public void initialize() {

_state = step.getType().convert(
init.getToken());

}
public void fire() {

output.send(0, _state);
}
public void postfire() {

_state = _state.add(step.getToken());
}

(a)

Type(output) = double

Type(init) = int

Type(step) = double

Type(_state) = Type(step)

Type(output) = Type(_state)

Type(_state) =

Fadd(Type(_state),Type(step))

(b)

Figure 6.24: A Ramp actor specification(a) with exact token types, as

shown by the consistent type constraints in(b).

6.3. Actor Specialization 86

public TypedIOPort input1, input2, output;
public void fire() {

super.fire();
if ((input1.getType() instanceofArrayType) &&

(input2.getType() instanceofArrayType)) {
_arrayFire();

} else if((input1.getType() instanceofUnsizedMatrixType) &&
(input2.getType() instanceofUnsizedMatrixType)) {

_matrixFire();
} else{

throw new IllegalActionException("Invalid�types");
}

}

Figure 6.25:Code from theDotProduct actor.

Type-controlled Conditionals and Recursion

In Figure6.23, the code cannot be specialized since no solution to the type equations

can be found. However, the lack of a solution does not necessarily indicate that special-

ization is impossible. For instance, in actors where code is only conditionally executed,

no solution may exist due to type constraints from code that is never executed. This sec-

tion presents a more detailed type analysis that can be used to identify dead code, with the

goal of obtaining code which can be type specialized. The more detailed analysis differs

primarily in that it computes the type of variables at every statement.

For example, consider the code in Figure6.25taken from theDotProduct actor. This

code performs two completely different operations, depending on the types of the input

ports. The type of data received is determined at run time, using Java’sinstanceof opera-

tor. However, the type of the input ports can be statically determined through type inference

on the model. By propagating this information through the actor class, theinstanceof

operations can be evaluated as constant expressions and the unexecuted branch eliminated.

A more complex example is the actor specification shown in Figure6.26. This actor

takes an input, which can be either anArrayToken or numeric token, and multiplies it by the

parameterfactor. If the input is anArrayToken, then the output is also anArrayToken.

In this case, the_scaleOnLeft() is called recursively on each element of the array, if

necessary.

6.3. Actor Specialization 87

TypedIOPort input,output; // array(double)
Parameter factor; // double
public void fire() {

if (input.hasToken(0)) {
Token in = input.get(0);
Token factorToken = factor.getToken();
Token result = _scaleOnLeft(in, factorToken);
output.send(0, result);

}
}

private Token _scaleOnLeft(Token input, Token factor) {
if (input instanceofArrayToken) {

Token[] argArray = ((ArrayToken)input).arrayValue();
Token[] result = newToken[argArray.length];
for (int i = 0; i < argArray.length; i++) {

result[i] = _scaleOnLeft(argArray[i], factor);
}
return new ArrayToken(result);

} else{
return factor.multiply(input);

}
}

Figure 6.26:An actor that scales its input.

In object-oriented partial evaluation systems, this situation is often addressed by dupli-

cating the method for each possible input type, a technique known aspolyvariant special-

ization. However, this technique generally requires complex inter-procedural analysis that

crosses method calls, in order to discover the required types. Rather than building such an

analysis, Copernicus inlines non-recursive method invocations that haveToken classes as

arguments or return types. This approach is simpler, although slightly less robust since it

assumes that recursion is governed according to the argument type (as in theScale actor)

and inlining code can potentially increase code size.

Type Specialization Transformations

Inference of token types within Java code leads to several automatic transformations.

Primarily, Java fields which maintain the state of the actor, such as the field_state in Fig-

ure6.24, can be given new Java types that more accurately reflect the data they reference.

6.4. Domain Specialization 88

Similar transformations can be performed on Java arrays of tokens. These transformations

often require the insertion of Java casts to ensure that the specification is still properly typed

under the Java type system. Although these transformations do not significantly modify the

behavior of the code, they enable the unboxing of tokens, described in Section6.4.3.

6.4 Domain Specialization

Domain specializationtransforms an actor specification that is constructed using the

domain-polymorphic interfaces into a new actor specification that is fixed to a particu-

lar model of computation. Unlike other forms of actor generality, domain polymorphism

seems unique in that it does not enable useful dynamic reconfiguration of a model. That

is, we have not seen instances where is it useful to change the model of computation of a

model while the model is executing. Hence, we assume that the context of an actor specifies

a single, fixed model of computation.

Domain specialization effectively replaces the director and receiver objects in a model.

This results in more efficient execution since the code in theDirector andReceiver classes

can be specialized to the structure of a particular model. Additionally, the communica-

tion methods of thePort class can be replaced with domain specific code, eliminating an

unnecessary level of indirection.

Copernicus implements domain specialization using specialized code generators for

each model of computation. Given the complexity of code, particularly inside theDirector

class for a model of computation, specialized code generators provide a pragmatic path to

more efficient code at the expense of duplicating some of the logic that already exists in

the domain-specific classes. Additionally, the use of specialized code generators allows for

implementation-specific communication libraries to be used, where possible.

6.4.1 Dataflow Scheduling is Model Specialization

Copernicus primarily supports domain specialization for sequentialized execution of

synchronous dataflow(SDF) models. We concentrate on these models to get a sense of the

performance limits of the specialization approach, since SDF models can be implemented

6.4. Domain Specialization 89

efficiently. In a practical design flow, sequentialized execution of SDF models would likely

be combined with concurrent execution and other timed and untimed models of computa-

tion. Copernicus is architected to allow exactly such a scenario.

Part of the efficiency of SDF models can be seen easily by considering SDF as a special-

ization of generic, dynamically scheduled dataflow models. Figure6.27shows a generic

algorithmic framework for run-time scheduling of dataflow models. The scheduling logic

is encapsulated in theselectNextActor function, which returns the next actor to execute.

The code for executing a particular finite-length dataflow schedule can be derived from this

algorithm by generalized partial evaluation, including loop unrolling and function inlining

[46].

The key constraint on SDF models is that theconsumption andproduction functions

are no longer functions of state, enabling the elimination of theconsumes function, which

never changes. This allows theselectNextActor function to be partially evaluated with

respect to theconsumes function, resulting in a function of only the number of tokens

in each channel. The loops can be unrolled, taking care to unroll the while loop only as

necessary. At this point, all functions have only constant arguments and can be evaluated

at compile time, resulting in the code in Figure6.28. This specialization could be per-

formed automatically by a generalized partial evaluator, given suitable formulation of the

selectNextActor function.

6.4. Domain Specialization 90

Given: A,S,C,
consumption : S→ A → C→ N,
production : S→ A → C→ N,
initialState : A → S,
fire : A → S→ S,
selectNextActor : (C→ N)→ (A → C→ N)→ A → B

for c ∈ C do
tokens(c) = 0

od
for a ∈ A do

state(a) = initialState(a)
od
for a ∈ A do

consumes(a) = consumption(state(a),a)
od
(a,done) = selectNextActor(tokens, consumes)
while (!done) do

for c ∈ C do
tokens(c) = tokens(c) − consumption(state(a),a) + production(state(a),a)

od
state(a) = fire(a, state(a))
consumes(a) = consumption(state(a),a)
(a,done) = selectNextActor(tokens, consumes)

od

Figure 6.27:An algorithm for sequential execution of dataflow models.

Given: A,S, fire : A → S→ S

while (TRUE) do
state(FIR) = fire(FIR, state(FIR))
state(FIR2) = fire(FIR2, state(FIR2))
state(FIR2) = fire(FIR2, state(FIR2))
state(FIR2) = fire(FIR2, state(FIR2))

od

Figure 6.28:Specialized execution code for the model in Figure2.5, derived

from the code in Figure6.27by specialization.

6.4. Domain Specialization 91

6.4.2 Domain Specialization Transformations

In an SDF model, all execution and communication can be statically scheduled [11].

Appropriate code is generated directly from the Synchronous Dataflow schedule to exe-

cute the fire method of each actor and communication between ports is implemented using

fixed length arrays and circular addressing. To reduce the buffering requirements, the com-

munication buffers are shared in cases where data is broadcast to multiple receiving ports.

Invocations of theget() andsend() are replaced with array reads and writes and circu-

lar buffer addressing. The length of each array is statically computed by simulating the

execution of the schedule. The corresponding transformations are shown in Figure6.29.

The bufferArrayField function returns an AST that references an array of communica-

tion buffers for a particular port, while theindexArrayField function returns an AST that

references an array of the circular addressing indexes used to index into that buffer.

Note that if the channel argument to theget() or send() method can be statically de-

termined, then indexing into the array of buffers for each port is not required. In such cases,

Copernicus creates an additional field for each communication channel that points directly

to the correct buffer, eliminating an array index operation. An additional optimization can

be performed if the length of the buffer for a particular operation is known to be one. In

such a case, the circular addressing operation is trivial and can be eliminated entirely.

The code in Figure6.30 illustrates the resulting transformed code for theSequence-

ToArray actor in the example model. This code contains references to the arrays of tokens

for the input and output buffers. It also contains a reference to the array of indices into

the input buffer which is updated as data is read from the buffer. Note that the channel

indexes are known statically, eliminating the need for an array of buffers, and that no array

of indices is created for the output buffer, which contains only a single location.

6.4.3 Token Unboxing

The boxing and unboxing of data is a well-known technique used in the implementation

of functional languages, such as ML [70]. In functional languages, the goal of unboxing is

to be able to pass numeric types to type-polymorphic functions. The functions themselves

are written to handle arbitrary objects, but are unable to handle numeric values.Boxing

6.4. Domain Specialization 92

b = p.hasToken(); ::= b = true;

b = p.hasRoom(); ::= b = true;

p.send(c,t); ::= a = objectReference(p.getContainer());

index = a.indexArrayField(p) [c];

buffer = a.bufferArrayField(p) [c];

buffer[index] = t;

a.indexArrayField(p) [c] = (index + 1) % buffer.length;

p.broadcast(t); ::= foreach c between 0 and p.getWidth(){

a = objectReference(p.getContainer());

index = a.indexArrayField(p) [c];

buffer = a.bufferArrayField(p) [c];

buffer[index] = t;

a.indexArrayField(p) [c] = (index + 1) %

buffer.length;

}

t = p.get(c); ::= a = objectReference(p.getContainer());

index = a.indexArrayField(p) [c];

buffer = a.bufferArrayField(p) [c];

t = buffer[index];

a.indexArrayField(p) [c] = (index + 1) % buffer.length;

Figure 6.29:Domain specialization transformations for actors in SDF mod-

els. ThesendInside() andgetInside() methods are replaced similarly

to thesend() andget() methods.

6.4. Domain Specialization 93

// The buffer for the input port.
DoubleToken[] _relation_0_double;
// The current read index for the input port.
int [] _index_input;
// The buffer for the output port.
ArrayToken[] _relation3_0__double_;
public void fire() {

// Code replacing the input.get() method
DoubleToken[] doubletokens = _relation_0_double;
int index = _index_input[0];
Token[] tokens = newToken[8];
for (int i = 0; i < 8; i++) {

tokens[i] = doubletokens[i];
index = ++index % 8;

}
_index_input[0] = index;
ArrayToken arraytoken = newArrayToken(tokens);
// Code replacing the output.send() method
ArrayToken[] arraytokens = _relation3_0__double_;
arraytokens[0] = arraytoken;

}

Figure 6.30:TheSequenceToArray actor, with optimized communication.

6.4. Domain Specialization 94

refers to the process of automatically encapsulating a numeric value in a wrapper object so

that it can be passed to such a type-polymorphic method. When the number is eventually

passed to another method that requires the numeric value, it is automatically removed from

its wrapper throughunboxing. This transformation happens within the execution engine

for the language and is totally transparent to the programmer.

Copernicus performs a transformation similar to unboxing: it replaces token objects

(an abstract wrapper for a data object) with the value that the token contains. Similarly,

operations on the token (i.e., method calls) are replaced with native numeric operations.

For instance, theIntToken.add() method, which adds the values contained in two integer

wrapper objects, is replaced with a simple integer addition. In most Java implementations,

this greatly reduces the overhead involved in the operation. More importantly, the overhead

of allocating and garbage collecting the wrapper object for the result is also eliminated.

It is important to notice that token unboxing is not possible in the presence of type-

polymorphic actor specifications. Token unboxing is possible during code generation be-

cause the Ptolemy II type system emphasizes models where types are exactly determined

and type-polymorphic actor specifications have been specialized to those exact types.

So, for a particular type of token, which native numerical type and operations should

it replaced with? One possibility is to use a fixed and hardcoded replacement relation

between a type of token and a native numerical type [95]. Unfortunately, this limits the

ability to add new data types to the Ptolemy II framework, as the operations for each token

must be essentially reimplemented in the code generation framework. We must also have

some way of transforming structured token types that are not directly replaced with native

types. This is not easily handled by a small set of hand-written rules.

We have implemented a technique for transforming tokens that does not rely on hand-

written replacement rules. Instead of reimplementing each token operation, we make use

of the specification of each token operation that already exists in the corresponding token

class. Wherever a method is invoked on a token class, this method is inlined from the

correct token class. Each token variable and field that refers to a token is replaced with

variables and fields corresponding to the fields of the token class. Arrays of tokens are

replaced with multiple arrays for each field of the token class. Additionally, a boolean field

is created that tracks whether the original token reference isnull. This flag is used to

6.5. Application Extraction 95

properly replace comparisons between the token andnull. Note that because objects and

arrays in Java have a 16 byte overhead for the object header, token unboxing applied to

short arrays of tokens can result in the instantiation of more objects and a small increase in

memory usage.

Token unboxing is similar to object inlining transformations [26, 27]. These transfor-

mations are based on analysis to detectone-to-one containedobjects. The data represen-

tation for such objects can be optimized to eliminate an object indirection. As noted by

Laud [60], object inlining can be easily applied when objects areconstantand cannot be

modified after creation, since aliasing and side effects can generally be ignored. Token un-

boxing can be safely applied to token classes, since these classes are constant to reflect the

abstraction of immutable tokens. The relationship between immutable objects and aliasing

is also leveraged by Guava [6] to optimize object allocation forvalue objectsthat are copied

on assignment. If a value object is immutable, then copying need not be performed, since

aliasing cannot cause side effects.

Token unboxing is generally effective for all numeric token types. Furthermore, it does

not preclude optimized transformations for specific numeric types, such as those for fixed-

point types [52], or for record types. It is also applicable for structured types as well,

such as arrays and records. For instance, theArrayToken class aggregates a set of other

tokens and indexes them using integers. Since one field of the class contains an array of

other tokens, unboxing the array token replaces it with an array of tokens. These tokens

(regardless of their type) can then be unboxed by applying the above procedure recursively.

6.5 Application Extraction

Copernicus includes several Java-level static analyses for optimizing the resulting gen-

erated code. These analyses and the transformations that use them resemble those used in

applications extraction [94]. The analyses and transformations presented here all rely on

the fact that Java code generated by Copernicus is self contained and unknown libraries

are not loaded dynamically. The first static analysis detects invocations of methods whose

return value is not used and can be guaranteed to have no side effects. Such method invo-

cations often arise from accessor methods whose return values are no longer needed after

6.5. Application Extraction 96

specialization. The second static analysis estimates the set of reachable methods which

can be invoked during execution of the code. This analysis is used to automatically prune

classes with no reachable methods and to remove unreachable methods from classes that

cannot be pruned. Based on the reachable classes, Copernicus creates a self-contained

.jar archive for the generated code.

6.5.1 Reachable Method Analysis

A Java method isreachableif can be invoked through a sequence of method calls from

program’smain() method. Specialization often results in many unreachable methods and

removing such methods can greatly reduce the size of generated code. Reachable method

analysis computes a functionisReachable: methods→ B. This function is defined by the

least solution to the following set of constraints, computed on the lattice of boolean values

B whereFALSE ≤ TRUE:

• m1 invokesm2 =⇒ isReachable(m1) ≤ isReachable(m2)

• m is a program entry point=⇒ TRUE ≤ isReachable(m)

In practice, the implementation of reachable method analysis is slightly simplified to

give good results in a reasonable amount of time. Primarily, method invocation through re-

flection can enable invocations of any method in a program, often resulting in every method

in a program being reachable. Copernicus assumes that reflection only occurs within the

standard Java libraries and that methods in generated code are not invoked through reflec-

tion (other than the standardpublic void main() entry point). Secondarily, since ana-

lyzing the standard Java libraries can be expensive, Copernicus assumes that every standard

Java method is reachable. Reachability constraints from method invocations originating

from the standard libraries are captured by assuming that methods that implement standard

Java interfaces are program entry points.

Copernicus uses reachable method analysis to remove any methodsm that are not

reachable, i.e.,isReachable(m)= FALSE. This transformation is safe because the gen-

erated Java code is known to be self-contained and Java’s dynamic class loading and reflec-

tion facilities are not used in the generated code.

6.5. Application Extraction 97

6.5.2 Side-Effecting Method Analysis

A Java method hasside effectsif it is capable of performing one of the following prim-

itive operations:

• Store a value in a field of an object.

• Store a value in a static field of a class.

• Store a value into an array.

• Perform thread synchronization. (i.e., the method is declaredsynchronized, or

contains asynchronized block)

Additionally, a method has side effects if it invokes any method that has side effects.

Side effect analysis computes a functionhasSideEffects : methods→ B. This function

is defined by the least solution to the following set of constraints, again computed on the

lattice of boolean valuesB whereFALSE ≤ TRUE:

• m1 can be invoked bym2 =⇒ hasSideEffects(m1) ≤ hasSideEffects(m2)

• mcan perform a primitive side effecting operation=⇒ TRUE ≤ hasSideEffects(m)

The practical implementation of side-effect analysis makes use of two simplifications.

Primarily, only reachable methods need to be considered in the analysis, which limits the

domain for which thehasSideEffects() function needs to be computed and reduces the

set of methods that can be invoked at any invocation site. Secondarily, native methods

and methods in the standard Java libraries are assumed to always have side effects. This

restriction avoids analyzing the code of such methods to determine what methods can be

invoked, which is difficult for native methods and expensive for Java library methods given

the large number of reachable methods. Note that this treatment of Java library methods

also assumes that any method invocation through the Java reflection API is assumed to

invoke a method that has side effects.

Copernicus uses side-effect analysis to remove method invocations that target methods

without side-effects, i.e.,hasSideEffects(m)= FALSE. Additionally, for methods invoca-

tions that return a value, that return value cannot be used. Such invocations often occur due

to accessor methods in object-oriented frameworks, such as Ptolemy II.

6.6. Performance 98

The side effect analysis presented here is rather simple form of side-effect analysis tar-

geted for elimination of dead-code method invocations. In particular, the analysis does

not consider the presence of data reads and analyzes methods instead of individual state-

ments within the method. This additional information could be used to perform additional

optimizations, such as loop-invariant code motion, as described in [18].

6.5.3 Dead Field Analysis

A Java field isdeadif its value is set, but never read. Dead field analysis computes a

functionisDead: fields→ B. This function is defined by the least solution to the following

constraints, computed on the lattice of boolean valuesB whereTRUE ≤ FALSE:

• Methodm reads the value of fieldf =⇒ FALSE ≤ isDead(f)

Static and non-static fields that are dead (isDead(f) = TRUE) can be removed, along with

any instructions that store to the field. As with other application extraction analyses, the

implementation of dead field analysis is simplified by assuming that the public fields of

generated code are not accessed by the standard Java libraries.

6.5.4 Obfuscation

Another optimization that occurs in step five isobfuscationof the generated code. Ob-

fuscation replaces the names of all methods with shorter strings. This is important since,

in Java bytecode, methods are referred to by the complete signature of the method. Hence,

unlike statically linked C or C++ executables, the names of methods often have a signifi-

cant impact on the size of compiled Java classes. Copernicus applies the obfuscator in Jode

[41], an open source decompilation tool.

6.6 Performance

To analyze the performance of Copernicus, it was applied to 184 synchronous dataflow

models. These models were originally created as tests for various features of Ptolemy II

and utilize a wide variety of data types and library actors. Code was successfully generated

6.6. Performance 99

for 130 models. The remaining 54 models use features of Ptolemy II that are not currently

supported by Copernicus, such as record data types and programmatic traversal of a model.

In most cases, the models were executed for 100000 iterations, corresponding to several

seconds of simulation for the original Ptolemy II models on a 1.8 GHz Pentium M processor

using Sun’s JDK1.4.2_06. Due to large execution times, some models were executed for

fewer iterations. Four models were not scalable to a reasonable execution time due to the

design of the model or available input data and are not included in the performance data.

Figure6.31shows the speedup achieved Copernicus, comparing the execution time of

generated code relative to the original simulation time. Models with low speedup generally

use actors that limit the execution rate of the model, such as theSleep actor. Other models

with low speedup use coarse-grained actors, type-specific actors with relatively little com-

munication (such as theFFT andRecursiveLattice actors). On the other hand, applying

Copernicus to models with fine-grained actors, especially theExpression actor resulted

in significant speedups. This data was collected with a large initial heap size in order to

emphasize the speedup from reduced method indirection in the generated code, rather than

the speedup from reduced load on the garbage collector.

Figures6.32and6.33shows the improvement in memory usage achieved using Coper-

nicus. Figure6.32shows thestaticmemory usage, consisting of memory allocated during

execution of the model that cannot be garbage collected after execution. Static memory

usage is a rough measure of object allocated during initialization, along with values that

are computed and cached during execution. Figure6.33shows thedynamicmemory usage,

consisting of memory that is allocated and later freed by the Java garbage collector. Note

that in some models that make use of arrays, it is possible for memory usage to increase (see

section6.4.3. In both cases, this data was collected by instrumenting the garbage collector

using the-Xloggc command-line flag.

Figure6.34shows the size of the generated self-contained.jar file for each profiled

model. The generated.jar file depends only on the standard Java libraries for execu-

tion. For comparison purposes, code generation with instrumentation for a minimal model

requires 5156 bytes or 2734 bytes with obfuscation. Minimal.jar files for the origi-

nal models were also created bytreeshakingthe models. Treeshaking involves executing

the models using the-verbose:class command-line flag to report loaded classes and

6.6. Performance 100

discarding any others. The minimal.jar files ranged from 710 to 770 Kilobytes. Note

that theMatrix1 model, whose generated code requires over 700 Kilobytes, illustrates a

case where residual dependencies on the Ptolemy II framework have not been removed

by Copernicus. In this case, a method of theSDFDirector class is invoked directly by an

actor in the model and not correctly removed by Copernicus, despite the fact that the code

executes without error.

6.6.1 FIR Filter

A more in-depth example of specialized code generated by Copernicus is shown in

Figure6.35, which shows a simple model that applies a symmetric 31-tap filter to a simple

generated signal. Ideally, execution of this model would roughly correspond to the hand-

written code in Figure6.36.

The main loop of the source code used for theFIR filter in Figure6.37. The correspond-

ing code generated from Copernicus is shown in Figure6.38. This code was generated by

decompiling Java bytecode generated by Copernicus using Jode [41], a Java decompiling

utility. Although this code appears complex, the innerfor loop is very similar to the hand-

written inner loop. Much of the apparent complexity arises from the fact that a single Java

statement can compile into several bytecode instructions and this structure cannot be easily

recovered from the resulting code. Additionally, token unboxing results in many boolean

flags representing whether variables reference an object ornull. In this code, the flags

happen to always beTRUE and are unnecessary, but this fact is not yet being leveraged by

Copernicus. The performance of the generated code is shown in Figure6.39.

For comparison, Figure6.40 shows the C language filter code generated for a sim-

ilar model constructed in Simulink, a commercial tool built by The Mathworks. This

code stores the previous filter inputs in theFilter_STATE array and the filter taps in the

Filter_C array. Although this code makes use of several C language features that are

not available in Java, such as pointer arithmetic and implicit comparisons with zero, the

structure of the basic loop is very close to the code generated by Copernicus.

6.6. Performance 101

Speedup acheived using Copernicus
(sor ted by speedup without obfuscation)

0 20 40 60 80 100 120 140 160

Sleep
VariableSleep

URLDirectoryReader3
WallClockTime

URLDirectoryReader
StringToUnsignedByteArray

VariableLattice2
FFT1

FixToDoubleAndBack
ArrayAppend2

zeroRate_delay5
FileWriter1

IIR
RecursiveLattice

FileWriter3
ArrayExtract

LevinsonDurbin2
LevinsonDurbin3

GradientAdaptiveLattice
LevinsonDurbin

ArrayAppend
DelayLine

ScaleArray
ArrayExtract2
LMSAdaptive

FIR4
VectorAssemblerDisassemblerSDF

MaxIndex
ArrayLevelCrossing2

VariableLattice
Matrix1

Autocorrelation4
Autocorrelation5

ArrayToElements
Autocorrelation2
Autocorrelation

BitsToInt
VariableRecursiveLattice

DotProduct
Gaussian2
Gaussian1

VariableFIR
Autocorrelation3

SequenceToMatrix
Chop2
Lattice

PolarToCartesianAndBack
Expression14

VariableRecursiveLattice2
PolarToComplexAndBack

VariableFIR2
TrigFunctionTan

SampleDelayConversion
TrigFunctionInverse

Chop
Const2

TrigFunction
Matrix2

DB
ArrayElement
PhaseUnwrap

DownSample1
CountTrues

UpDownSample1
UnaryMathFunction

Uniform
ArrayLevelCrossing

DownSample
ElementsToArray

FIR2
DotProductMatrix

Distributor
UpSample1

Scale
UtilityFunctions

LookupTable
ArrayLength

vectorizationFactor1
ComplexDivide

Test
CommDistDiscard

Expression16
IntToBits

Maximum
Minimum

vectorizationFactor2
Limiter
Equals

ComplexToCartesianAndBack
zeroRate3

AbsoluteValue
zeroRate8

Const
MultipleLinksToSameRelation

LinearDifferenceEquationSystem
BooleanMultiplexor

zeroRate7
Ramp1

funcApplyInConst
logic

Compare
zeroRate1

ArraySource
zeroRate_delay6

zeroRate2
Expression15
Expression9

parameterPassing
zeroRate_delay4

MatrixToSequence
Expression5
Expression2

Expression12
Expression13
Expression4
Expression6
Expression1
ScaleMatrix

Const3
Expression10

expressionInference
Expression11

expressionCastInference
expression_bug

expressionCastInference2
Expression8

(or iginal execution time)/(optimized execution time)

With Obfuscation

Without Obfuscation

Figure 6.31:A graph of the speedup achieved by Copernicus, when applied

to a number of test models.

6.6. Performance 102

Percent Reduction in Static Memory Usage Acheived Using Copernicus
(sor ted by speedup without obfuscation)

0 10 20 30 40 50 60 70 80 90 100

Sleep
VariableSleep

URLDirectoryReader3
WallClockTime

URLDirectoryReader
StringToUnsignedByteArray

VariableLattice2
FFT1

FixToDoubleAndBack
ArrayAppend2

zeroRate_delay5
FileWriter1

IIR
RecursiveLattice

FileWriter3
ArrayExtract

LevinsonDurbin2
LevinsonDurbin3

GradientAdaptiveLattice
LevinsonDurbin

ArrayAppend
DelayLine

ScaleArray
ArrayExtract2
LMSAdaptive

FIR4
VectorAssemblerDisassemblerSDF

MaxIndex
ArrayLevelCrossing2

VariableLattice
Matrix1

Autocorrelation4
Autocorrelation5

ArrayToElements
Autocorrelation2
Autocorrelation

BitsToInt
VariableRecursiveLattice

DotProduct
Gaussian2
Gaussian1

VariableFIR
Autocorrelation3

SequenceToMatrix
Chop2
Lattice

PolarToCartesianAndBack
Expression14

VariableRecursiveLattice2
PolarToComplexAndBack

VariableFIR2
TrigFunctionTan

SampleDelayConversion
TrigFunctionInverse

Chop
Const2

TrigFunction
Matrix2

DB
ArrayElement
PhaseUnwrap

DownSample1
CountTrues

UpDownSample1
UnaryMathFunction

Uniform
ArrayLevelCrossing

DownSample
ElementsToArray

FIR2
DotProductMatrix

Distributor
UpSample1

Scale
UtilityFunctions

LookupTable
ArrayLength

vectorizationFactor1
ComplexDivide

Test
CommDistDiscard

Expression16
IntToBits

Maximum
Minimum

vectorizationFactor2
Limiter
Equals

ComplexToCartesianAndBack
zeroRate3

AbsoluteValue
zeroRate8

Const
MultipleLinksToSameRelation

LinearDifferenceEquationSystem
BooleanMultiplexor

zeroRate7
Ramp1

funcApplyInConst
logic

Compare
zeroRate1

ArraySource
zeroRate_delay6

zeroRate2
Expression15

Expression9
parameterPassing
zeroRate_delay4

MatrixToSequence
Expression5
Expression2

Expression12
Expression13

Expression4
Expression6
Expression1
ScaleMatrix

Const3
Expression10

expressionInference
Expression11

expressionCastInference
expression_bug

expressionCastInference2
Expression8

100-100*(optimized memory usage)/(or iginal memory usage)

With Obfuscation

Without Obfuscation

Figure 6.32:A graph of the reduction in static memory usage achieved by

Copernicus, when applied to a number of test models.

6.6. Performance 103

Reduction in Dynamic Memory Usage Acheived Using Copernicus
(sor ted by speedup without obfuscation)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Sleep
VariableSleep
URLDirectoryReader3
WallClockTime
URLDirectoryReader
StringToUnsignedByteArray
VariableLattice2
FFT1
FixToDoubleAndBack
ArrayAppend2
zeroRate_delay5
FileWriter1
IIR
RecursiveLattice
FileWriter3
ArrayExtract
LevinsonDurbin2
LevinsonDurbin3
GradientAdaptiveLattice
LevinsonDurbin
ArrayAppend
DelayLine
ScaleArray
ArrayExtract2
LMSAdaptive
FIR4
VectorAssemblerDisassemblerSDF
MaxIndex
ArrayLevelCrossing2
VariableLattice
Matrix1
Autocorrelation4
Autocorrelation5
ArrayToElements
Autocorrelation2
Autocorrelation
BitsToInt
VariableRecursiveLattice
DotProduct
Gaussian2
Gaussian1
VariableFIR
Autocorrelation3
SequenceToMatrix
Chop2
Lattice
PolarToCartesianAndBack
Expression14
VariableRecursiveLattice2
PolarToComplexAndBack
VariableFIR2
TrigFunctionTan
SampleDelayConversion
TrigFunctionInverse
Chop
Const2
TrigFunction
Matrix2
DB
ArrayElement
PhaseUnwrap
DownSample1
CountTrues
UpDownSample1
UnaryMathFunction
Uniform
ArrayLevelCrossing
DownSample
ElementsToArray
FIR2
DotProductMatrix
Distributor
UpSample1
Scale
UtilityFunctions
LookupTable
ArrayLength
vectorizationFactor1
ComplexDivide
Test
CommDistDiscard
Expression16
IntToBits
Maximum
Minimum
vectorizationFactor2
Limiter
Equals
ComplexToCartesianAndBack
zeroRate3
AbsoluteValue
zeroRate8
Const
MultipleLinksToSameRelation
LinearDifferenceEquationSystem
BooleanMultiplexor
zeroRate7
Ramp1
funcApplyInConst
logic
Compare
zeroRate1
ArraySource
zeroRate_delay6
zeroRate2
Expression15
Expression9
parameterPassing
zeroRate_delay4
MatrixToSequence
Expression5
Expression2
Expression12
Expression13
Expression4
Expression6
Expression1
ScaleMatrix
Const3
Expression10
expressionInference
Expression11
expressionCastInference
expression_bug
expressionCastInference2
Expression8

log10(optimized memory usage/or iginal memory usage)

With Obfuscation

Without Obfuscation

Figure 6.33:A graph of the reduction in dynamic memory usage achieved

by Copernicus, when applied to a number of test models.

6.6. Performance 104

Minimal Jar Size Acheived Using Copernicus
(sor ted by speedup without obfuscation)

0 10 20 30 40 50 60 70 80 90 100

Sleep
VariableSleep

URLDirectoryReader3
WallClockTime

URLDirectoryReader
StringToUnsignedByteArray

VariableLattice2
FFT1

FixToDoubleAndBack
ArrayAppend2

zeroRate_delay5
FileWriter1

IIR
RecursiveLattice

FileWriter3
ArrayExtract

LevinsonDurbin2
LevinsonDurbin3

GradientAdaptiveLattice
LevinsonDurbin

ArrayAppend
DelayLine

ScaleArray
ArrayExtract2
LMSAdaptive

FIR4
VectorAssemblerDisassemblerSDF

MaxIndex
ArrayLevelCrossing2

VariableLattice
Matrix1

Autocorrelation4
Autocorrelation5

ArrayToElements
Autocorrelation2
Autocorrelation

BitsToInt
VariableRecursiveLattice

DotProduct
Gaussian2
Gaussian1

VariableFIR
Autocorrelation3

SequenceToMatrix
Chop2
Lattice

PolarToCartesianAndBack
Expression14

VariableRecursiveLattice2
PolarToComplexAndBack

VariableFIR2
TrigFunctionTan

SampleDelayConversion
TrigFunctionInverse

Chop
Const2

TrigFunction
Matrix2

DB
ArrayElement
PhaseUnwrap

DownSample1
CountTrues

UpDownSample1
UnaryMathFunction

Uniform
ArrayLevelCrossing

DownSample
ElementsToArray

FIR2
DotProductMatrix

Distributor
UpSample1

Scale
UtilityFunctions

LookupTable
ArrayLength

vectorizationFactor1
ComplexDivide

Test
CommDistDiscard

Expression16
IntToBits

Maximum
Minimum

vectorizationFactor2
Limiter
Equals

ComplexToCartesianAndBack
zeroRate3

AbsoluteValue
zeroRate8

Const
MultipleLinksToSameRelation

LinearDifferenceEquationSystem
BooleanMultiplexor

zeroRate7
Ramp1

funcApplyInConst
logic

Compare
zeroRate1

ArraySource
zeroRate_delay6

zeroRate2
Expression15
Expression9

parameterPassing
zeroRate_delay4

MatrixToSequence
Expression5
Expression2

Expression12
Expression13
Expression4
Expression6
Expression1
ScaleMatrix

Const3
Expression10

expressionInference
Expression11

expressionCastInference
expression_bug

expressionCastInference2
Expression8

Generated Jar Size (KBytes)

With Obfuscation

Without Obfuscation

702 KBytes

490 KBytes

100 KBytes

Figure 6.34:A graph of the minimal.jar size achieved by Copernicus,

when applied to a number of test models.

6.6. Performance 105

Figure 6.35:A model of an FIR filter system. For the purposes of profiling,

the output is simply discarded.

6.6.2 Adaptive FIR Filter

Another example of how specialization can improve performance is shown in Figure

6.41. This model shows a simple model containing an Least Mean Square (LMS) Adaptive

Filter, implemented by extending the Java class that defines the basic FIR filter. The same

algorithm is shown implemented using a synchronous dataflow model in Figure6.42. Ide-

ally, there would be no performance difference between the code generated from the two

different implementation of theLMSAdaptive actor.

Figure6.43compares the performance of the generated code for the two filter imple-

mentations. Copernicus reduces execution time and memory usage of both implementa-

tions immensely, although the hierarchically modeled filter remains somewhat slower than

the filter implemented in Java code. The most significant difference between the two is the

significant dynamic memory usage of the hierarchically modeled filter, even after applying

Copernicus. This difference is because the modeled filter createsArrayToken objects to

represent the filter taps. Although Copernicus unboxes theArrayToken objects, it does not

eliminate the freshly allocated array contained by theArrayToken.

6.6. Performance 106

public classFilterTest {
static double_state_Ramp = 0.0;
static double_state_Ramp2 = 0.0;
static double[] _taps = new double[31];
static double[] _delay = new double[31];
static double_output = 0.0;
public static void main(String[] args) {

/∗ Initialize ∗/
_state_Ramp = 0.0;
_state_Ramp2 = 0.0;
_taps[0] = 0.013689;
// Remaining _taps initialization not shown.
for (int i = 0; i < 31;i++) { _delay[i] = 0; }
for (int i = 0; i < 800000;i++) {

doublesin1 = Math.sin(_state_Ramp);
doublesin2 = Math.sin(_state_Ramp2);
doublesum = _sin1 + _sin2;
_delay[0] = sum;
for (doubled = 0.0, int j = 0; j < _taps.length; j++) {

d += _taps[j] ∗ _delay[j];
}
_output = d;
/∗ State update.∗/
_state_Ramp = _state_Ramp + 0.3455751918948773;
_state_Ramp2 = _state_Ramp2 + 0.9424777960769379;
System.arraycopy(_delay, 0,_delay, 1,_delay.length−1);

}
}

}

Figure 6.36:Hand optimized FIR filter code.

6.6. Performance 107

public TypedIOPort input, output; // double
public Token[] _data;
public Token[] _taps;
public Token _zero;

public void fire() throws IllegalActionException {
super.fire();
// Shift the delay line
System.arraycopy(_data, 0,_data, 1,_data.length − 1);

_data[0] = input.get(0);
Token outToken = _zero;
for (int i = 0; i < _data.length; i++) {

Token tapItem = _taps[i];
Token dataItem = _data[i];
dataItem = tapItem.multiply(dataItem);
outToken = outToken.add(dataItem);

}
output.send(0, outToken);

}

Figure 6.37: Original code from an actor representing a single-rate FIR

filter.

6.6. Performance 108

public void fire() {
boolean[] bools = _CG__data_isNotNull;
double[] ds = _CG__data_value;
int i = ds.length − 1;
System.arraycopy(bools, 0,bools, 1,i);
System.arraycopy(ds, 0,ds, 1,i);
boolean[] bools_3_ = _CG__data_isNotNull;
double[] ds_4_ = _CG__data_value;
FilterTestModel filtertestmodel = _CGContainer;
boolean[] bools_5_ = filtertestmodel._CG__relation3_0_double_isNotNull;
double[] ds_6_ = filtertestmodel._CG__relation3_0_double_value;
doubled = ds_6_[0];
bools_3_[0] = bools_5_[0];
ds_4_[0] = d;
booleanbool = _CG__zero_isNotNull;
doubled_7_ = _CG__zero_value;
for (i = 0; i < ds_4_.length; i++) {

bool = _CG__taps_isNotNull[i];
doubled_8_ = _CG__taps_value[i];
bool = bools_3_[i];
d = ds_4_[i];
d_8_ ∗= d;
d_8_ = d_7_ + d_8_;
bool = true;
d_7_ = d_8_;

}
bools_5_ = filtertestmodel._CG__relation4_0_double_isNotNull;
double[] ds_9_ = filtertestmodel._CG__relation4_0_double_value;
bools_5_[0] = bool;
ds_9_[0] = d_7_;

}

Figure 6.38:Code generated by Copernicus by specialization of a generic

single-rate FIR filter.

6.6. Performance 109

Figure 6.39:Performance comparison of FIR filter implementations. Pro-

filing was taken over 800000 processed samples. The unusually long exe-

cution time for the obfuscated version of the handwritten code is apparently

due to a bug in the Java just-in-time compiler.

Code Size Execution Time Memory Usage
(bytes) (ms) (Kbytes)

Static Dynamic
Ptolemy II 743687 40217 324 1011032
Copernicus 23326 2590 112 189

with obfuscation 11237 2631 109 135
Handwritten Code 1770 1482 91 56

with obfuscation 1057 7031 87 38

int_T output;
{

int_T nx = 30;
real_T ∗x = &rtD.Filter_STATE[0];
real_T ∗Cmtx = &rtP.Filter_C[0];
while (nx−−) {

output += (∗Cmtx) ∗ (∗x++);
Cmtx += 1;

}
}

Figure 6.40:C code for an FIR filter generated from Simulink.

Figure 6.41:A model of an adaptive FIR filter system.

6.6. Performance 110

Figure 6.42:A model of an adaptive FIR filter.

Figure 6.43:Performance comparison of LMS adaptive filter implementa-

tions. Profiling was taken over 800000 processed samples.

Code Size Execution Time Memory Usage
(bytes) (ms) (Kbytes)

Static Dynamic
Ptolemy II 738847 2103 326 195891
Copernicus 24434 297 113 151

with obfuscation 10753 290 110 106

(a) LMSAdaptive actor implemented in Java code

Code Size Execution Time Memory Usage
(bytes) (ms) (Kbytes)

Static Dynamic
Ptolemy II 758073 6596 461 580523
Copernicus 47398 661 116 175244

with obfuscation 19150 664 113 175159

(b) LMSAdaptive actor implemented in a hierarchical model

111

Chapter 7

Conclusion

This thesis has addressed issues relating to the use of generic, parameterized actor-

oriented components in hierarchical dataflow models. An actor-oriented component can

be instantiated in different models, which allows for convenient design reuse and library-

based design. Actor-oriented components can also be reconfigured during execution, which

allows for many complex systems to be expressed easily. In many models, it becomes im-

portant to constrain how an actor can be reconfigured in a model. We treat constraints

on reconfiguration as safety requirements which guarantee the absence of certain kinds of

modeling errors. We have presented an analysis framework for verifying these reconfig-

uration constraints, which has been implemented in Ptolemy II. We have also leveraged

information from the analysis in a metaprogramming system that transforms Ptolemy II

models into self-contained Java code with improved performance.

Reconfiguration analysis is described in terms of a formalized mathematical frame-

work. This framework abstracts the behavior of an actor-oriented model. One portion

of this framework describes the dependencies between actor parameters and the effects of

reconfiguration in the style of an attribute grammar. The remainder of the framework de-

scribes the sequencing constraints on the execution of an actor oriented model implied by

the hierarchical structure of the model. This portion of the framework leverages the lattice

structure of quiescent points in a model, implied by the fact that actor-oriented models are

hierarchically reactive.

The reconfiguration analysis we have presented unifies many concepts in the dataflow

112

literature. In particular, a source of reconfiguration, which we call a change context, is

always associated with a single actor in a hierarchical model. This is true regardless of

whether reconfiguration is specified using finite state machines, reconfiguration ports, or

other syntaxes. The formal framework also unifies different types of safety constraints,

allowing them to be considered in a generic way. These safety constraints may include both

requirements that parameters do not change and requirements that parameters change only

at particular points in the execution of a model. This second type of requirement allows

verification of complex behavioral properties, such as the local synchrony constraint for

parameterized synchronous dataflow scheduling.

The reconfiguration analysis depends on two conservative approximations in order to

make the analysis problem tractable and efficient. Firstly, the theory analyzes the behavior

of the model based on all possible executions of a model. If a reconfiguration constraint

might be violated during any execution of the model, the theory assumes that the model is

invalid. Secondly, the theory approximates the set of change contexts for a parameter by

the least change context. The least change context approximation allows for efficient type

checking, but might result in no information about reconfiguration. We show, however,

that the least change context approximation is sufficient to check interesting semantic con-

straints. Because the reconfiguration analysis checks safety properties of an actor oriented

model using efficient approximations, we call the analysis a behavioral type system.

In Ptolemy II, generic, parameterized actors are implemented in Java using an object-

oriented framework. This framework supports reconfiguration at run-time using indirec-

tion. Unfortunately, each level of indirection introduces overhead into every operation.

This overhead can be difficult to see, however, since it is hidden in the implementation and

interaction of methods in different classes. To expose this overhead, we have developed

a variation of UML class diagrams specifically to describe indirection in object-oriented

frameworks such as Ptolemy II.

The thesis also describes a metaprogramming system called Copernicus that transforms

Ptolemy II models into self-contained Java code. Copernicus analyzes an actor-oriented

model to determine whether the context of an actor in the model changes due to reconfig-

uration. This context includes the structure of the model, the model of computation, data

types, and parameter values. The Java code for each actor is then transformed to be spe-

113

cific to this context, allowing the indirection to be removed. Conceptually, a generic actor

specification is specialized to a particular role in the model.

After specialization, the generated code is significantly more efficient than the original

Ptolemy II model in terms of code size, memory usage, and execution speed. For small

examples, this generated code approaches the resource usage of handwritten Java code. We

anticipate that this efficient generated code, together with appropriate models of computa-

tion for specifying real-time behavior could eventually form a basis for embedded system

implementation.

114

Appendix A

Mathematical Background

The mathematics required to understand this thesis is not complicated, however it may

be unfamiliar to some readers. In the interest of self containment and notational clarity,

this appendix will present a brief introduction to the mathematics of partially ordered sets

as used in this thesis. Those readers interested in more detailed understanding are highly

recommended to read Davey and Priestley [23], although trees are treated only in a brief

exercise.

Notationally, elements in a set are usually written in lower case letters:a, sets are

written in capital letters:A, and sets of sets are written in boldface capitals:A. The set

of natural numbers{0,1,2, ...} and the set of booleans{TRUE, FALSE} are writtenN andB,

respectively. The fact that an elementa is contained in a setA is written: a ∈ A. The set

A × B, called theproduct setis the set of pairs of elements(a,b) wherea ∈ A andb ∈ B,

which might also be written as set closure:{(a,b) : a ∈ A,b ∈ B}. A setA is asubsetof

another setB, written A ⊆ B, if every element ofA is an element ofB. This fact can also

be written asA ⊆ B ⇐⇒ ∀a ∈ A,a ∈ B. Note thatA might contain exactly the same

elements ofB. If there is some element ofB which is not contained inA, thenA is astrict

subsetof B, written A ⊂ B. This fact can also be written:A ⊂ B ⇐⇒ ∃b ∈ B,b < A.

Given two setsA andB, theirunion is writtenA∪ B and theirintersectionis writtenA∩ B.

A relation between a setA and a setB, is simply a subset ofA×B. Fora ∈ A andb ∈ B,

the fact thatr is in a relationR is equivalently written:(a,b) ∈ Ror a R b. The opposite fact

is written: (a,b) < R. A relation might also be a subset ofA× A, in which case it is simply

115

a relation overA. You are probably already familiar with theidentity relation over a setA,

written=A, but you are probably used to ignoring the original set and just writing=. Many

relations are distinguished in some way. A relationR overA is:

• reflexiveif and only if ∀a ∈ A,a R a.

• irreflexiveif and only if ∀a ∈ A, (a,a) < R.

• symmetricif and only if ∀a1 ∈ A,a2 ∈ A,a1 R a2 ⇐⇒ a2 R a1.

• antisymmetricif and only if ∀a1 ∈ A,a2 ∈ A,a1 R a2 ∧ a1 R a2 =⇒ a1 = a2.

• transitiveif and only if ∀a1 ∈ A,a2 ∈ A,a3 ∈ A,a1 R a2 ∧ a2 R a3 =⇒ a1 R a3.

The reflexive closureR? of a relationR over A is defined to beR
⋃

=A. Note that the

reflexive closure is reflexive by construction. Thetransitive closureR+ of a relationRover

A is defined to be smallest set that containsR, wherea1 R+ a2∧a2 R+ a3 =⇒ a1 R+ a3. Note

that the transitive closure is transitive by construction. Thereflexive, transitive closureis

R+
⋃

=A, and is both reflexive and transitive.

Any transitive, irreflexive, antisymmetric relation over a setA can be interpreted as a

strict partial order of elements, and is usually written with the familiar symbol:<. The

reflexive closure of a strict partial order, often just called a partial order, is written with a

similar symbol:≤. A special kind of partial order where every element is related to every

other element (∀a1 ∈ A,a2 ∈ A,a1 ≤ a2 ∨ a1 ≥ a2) is called atotal order. Unfortunately,

partial orders and total orders are usually written in the same way, so total orders will

always be noted explicitly. A pair(A,≤A) of a carrier setand a partial order over the set is

called apartially ordered set, or simply aposet.

It is customary to draw simple posets in aHasse diagram, where each element of the

carrier set is represented by a dot and lines are drawn between comparable elements. Al-

though in simple cases, the order is often inferred from the vertical position of two con-

nected dots in a diagram, it is less confusing to indicate the order explicitly. Example of

Hasse diagrams is shown in FigureA.1. 1

1Incidentally, explicitly specifying the order is also consistent with a categorical interpretation of posets
[84].

116

Theupsetof an elementa is the set of all elements that are greater thana. Similarly,

the downsetof an elementa is the set of all elements that are less thana. The greatest

lower boundof a setA, writtenuA, is the unique element that is a lower bound for the set

(i.e., is less than every element in the set) and also greater than every other lower bound.

Conversely, theleast upper boundof a setA, writtentA, is the unique element that is an

upper bound of the set and also less than every other upper bound. In an arbitrary order, the

greatest lower bound and least upper bound of a set do not necessarily exist. Alattice is a

special partial order where every subset of the lattice has a least upper bound and a greatest

lower bound.

It is often important to consider posets with certain properties, or subsets of posets with

certain properties. Achain is a simple name for a countable, totally ordered set. It is often

useful to consider subsets of a poset which are also chains. Some partial orders have a top

element, written>, that is greater than every other element, or a bottom element, written

⊥, that is less than every other element. Atop-rooted treeis a poset with a top element,

where the upset of every element is a chain. Symmetrically, abottom-rooted treeis a poset

with a bottom element, where the downset of every element is a chain. An example of a

tree is shown in FigureA.1d.

117

(c) (d)

Figure A.1: Two diagrams illustrating partially ordered sets. The order is

indicated with arrow between elements of the set, and redundant relations

in the set are not shown explicitly.(c) is not a tree or a lattice, while(d) is a

top-rooted tree.

118

Appendix B

Summary of Theorems

Definition 1 .39

Consistent valuation function:

A valuation functionv is consistent if and only if∀p ∈ P, p is dependent

=⇒ constraintp(v(domainp
1), . . . , v(domainp

n)) = v(p)

Definition 2 .41

Constant parameter:

Parameterp is constantif and only if

∀a ∈ A,∀q ∈ Qa, p <

R(q).

Definition 3 .41

Constant parameter over actor firings:

Parameterp is constant over firings of actorc if and only if

∀a ∈ A,∀q ∈ Qa, p ∈

R(q) =⇒ q ∈ Qc.

Theorem 1 .41

p is constant impliesp is constant over firings of any actor.

Proof: Let c be an arbitrary element ofA

∀x ∈ A,∀q ∈ Qx, p <

R(q)

∀x ∈ A,∀q ∈ Qx, p ∈

R(q) =⇒ q ∈ Qc

p is constant over firings ofc

119

Theorem 2 .41

p is constant over firings ofc andc D a implies p is constant over firings ofa.

Proof: ∀x ∈ A,∀q ∈ Qx, p ∈

R(q) =⇒ q ∈ Qc

Qc ⊆ Qa

∀x ∈ A,∀q ∈ Qx, p ∈

R(q) =⇒ q ∈ Qa

p is constant over firings ofa

Definition 4 .42

Reconfiguration Requirement:

A reconfiguration requirementin a modelm is a statement of the form “p is con-

stant,” or “p is constant over firings of actora,” wherep anda are in the model.

Definition 5 .42

Reconfiguration Safe:

An execution of a model with a set of reconfiguration requirementsS is reconfig-

uration safeif the execution satisfies each requirement inS.

Definition 6 .43

Change context:

An actora is a change context of a parameterp, written a p p, if and only if

p ∈

Ra.

Definition 7 .43

Inherently constant parameter:

Parameterp is inherently constantif and only if

∀a ∈ A,a 6p p .

Definition 8 .43

Inherently constant parameter over actor firings:

Parameterp is inherently constant over firings of actora if and only if ∀c ∈ A, c p

 p =⇒ c D a .

Theorem 3 .43

120

p is inherently constant impliesp is constant during any execution.

Proof: ∀x ∈ A, x 6p p

∀x ∈ A, p <

Rx

∀x ∈ A,∀q ∈ Qx,

R(q) ⊆

Rx

∀x ∈ A,∀q ∈ Qx, p <

R(q)

p is constant

Theorem 4 .43

p is inherently constant over firings of actorc implies

p is constant over firings of actorc during any execution.

Proof: ∀x ∈ A, x p p =⇒ x D c

∀x ∈ A, p ∈

Rx =⇒ x D c

∀x ∈ A,∀q ∈ Qx,

R(q) ⊆

Rx

∀x ∈ A,∀q ∈ Qx, p ∈

R(q) =⇒ x D c

x D c =⇒ Qx ⊆ Qc

∀x ∈ A,∀q ∈ Qx, p ∈

R(q) =⇒ q ∈ Qc

p is constant over firings of actorc

Definition 9 .45

Least change context of a parameter:

The least change context of a parameterp, bpc, is an element ofA>⊥ wherebpc =

u{a ∈ A>⊥ : a ∈ A ∧ a p p}
Or equivalently,

bpc =

> if {a ∈ A : a p p} = ∅

u{a ∈ A : a p p} if {a ∈ A : a p p} , ∅ and

u{a ∈ A : a p p} exists

⊥ otherwise

Theorem 5 .46

121

bpc = > implies p is inherently constant.

Proof: {a ∈ A : a p p} = ∅
∀a ∈ A,a 6p p

p is inherently constant

Theorem 6 .46

bpc ∈ A implies p is inherently constant over firings ofbpc.

Proof: bpc = u{a ∈ A : a p p}
∀a ∈ A : a p p =⇒ a D bpc
p is inherently constant over firings ofbpc

Theorem 7 .47

p is inherently constant overactor(p) implies thatbpc , ⊥.

Proof: By cases.

Let p be an arbitrary element ofP

Case 1:@c ∈ A such thatc p

=⇒ bpc = >
Case 2:∃ uniquec ∈ A such thatc p

=⇒ bpc = c

Case 3:∃A ⊆ A such that∀c ∈ A, c p

∀c ∈ A, c D actor(p)

(A,D) is a chain

∃c ∈ A,∀x ∈ A, x D c
=⇒ bpc = c

Theorem 8 .47

122

p1 p2 impliesbp1c D>⊥ bp2c.

Proof: Let p1 andp2 be arbitrary elements ofP

∀a ∈ A,a p p1 =⇒ a p p2

{a ∈ A : a p p1} ⊆ {a ∈ A : a p p2}
{a ∈ A>⊥ : a ∈ A ∧ a p p1} ⊆ {a ∈ A>⊥ : a ∈ A ∧ a p p2}
u{a ∈ A>⊥ : a ∈ A ∧ a p p1} D>⊥ u{a ∈ A>⊥ : a ∈ A ∧ a p p2}
bp1c D>⊥ bp2c

Theorem 9 .47

p ∈ Rc impliesc D>⊥ bpc.

Proof: Let c be an arbitrary element ofA andp be an arbitrary element ofRc

p ∈

Rc

c p p

c ∈ {a ∈ A : a p p}
c ∈ {a ∈ A>⊥ : a p p}
c D>⊥ u{a ∈ A>⊥ : a p p}
c D>⊥ bpc

Definition 10 .49

Conditional Reconfiguration Function:

A conditional reconfiguration functionfa p : (P→ V) × (P→ A>⊥) → {a,>} for

an actora and a parameterp is monotonic function, wheref a(v0, b·c) = a if in any

execution beginning with parameter valuesv0, ∀q ∈ Qa, p ∈ R(q).

Definition 11 .49

Conditional Dependence Function:

A conditional dependence functionfp1 p2 : (P → V) × (P → A>⊥) → A>⊥ for

parametersp1 and p2 is monotonic function, wherefp1 p2(v0, b·c) = bp1c if in

any execution beginning with parameter valuesv0, reconfiguration ofp1 requires

evaluation ofconstraintp2

123

Bibliography

[1] Franz Achermann and Oscar Nierstrasz. Applications= components+ scripts : A

tour of Piccola. In Mehmet Aksit, editor,Software Architectures and Component

Technology, pages 261–292. Kluwer, 2001.

[2] G. Agha, S. Frolund, W.Y. Kim, R. Panwar, A. Patterson, and D. Sturman. Ab-

straction and modularity mechanisms for concurrent computing.IEEE Parallel and

Distributed Technology: Systems and Applications, 1(2):3–14, May 1993.

[3] Gul A. Agha.ACTORS: A Model of Concurrent Computation in Distributed Systems.

The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, 1986.

[4] Uwe Aßmann.Invasive Software Composition. Springer-Verlag, May 2003.

[5] Lennart Augustsson, Jacob Schwartz, and Rishiyur Nikhil. Bluespec language defi-

nition. Technical report, Sandburst Corporation, November 2000.

[6] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a dialect of java

without data races. InProceedings of the Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), pages 382–400. SIG-

PLAN, ACM Press, 2000.

[7] Twan Basten and Jan Hoogerbrugge. Efficient execution of process networks. In

A. Chalmers, M. Mirmehdi, and H. Muller, editors,Proceedings of the Conference

on Communicating Process Architectures, pages 1–14. IOS Press, September 2001.

[8] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. Quasi-static scheduling of

BIBLIOGRAPHY 124

reconfigurable dataflow graphs for DSP systems. InProceedings of the International

Workshop on Rapid System Prototyping (RSP). IEEE, June 2000.

[9] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. Parameterized dataflow

modeling for DSP systems.IEEE Transactions on Signal Processing, 49(10):2408–

2421, October 2001.

[10] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. Consistency analysis of

reconfigurable dataflow specifications. InEmbedded Processor Design Challenges,

number 2268 in Lecture Notes in Computer Science, pages 1–17. Springer-Verlag,

October 2002.

[11] Shuvra S. Bhattacharyya, Pravin K. Murthy, and Edward A. Lee.Software Synthesis

from Dataflow Graphs. Kluwer, 1996.

[12] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static dataflow.

IEEE Transactions on Signal Processing, 44(2):397–408, 1996.

[13] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Najjar.

Mapping a single assignment programming language to reconfigurable systems.The

Journal of Supercomputing, 21(2):117–130, 2002.

[14] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy:

A framework for simulating and prototyping heterogenous systems.International

Journal of Computer Simulation, 4:155–182, April 1994. Special issue on “Simula-

tion Software Development”.

[15] Joseph Buck and Radhu Vaidyanathan. Heterogeneous modeling and simulation of

embedded systems in El Greco. InProceedings of the International Symposium on

Hardware/Software Codesign (CODES), May 2000.

[16] Joseph T. Buck.Scheduling Dynamic Dataflow Graphs with Bounded Memory Us-

ing the Token Flow Model. PhD thesis, EECS Department, University of California

at Berkeley, CA, 1993.

BIBLIOGRAPHY 125

[17] Joseph T. Buck. Static scheduling and code generation from dynamic dataflow

graphs with integer-valued control systems. InProceedings of the Asilomar Con-

ference on Circuits, Signals and Systems. IEEE, October 1994.

[18] Lars R. Clausen. A Java bytecode optimizer using side-effect analysis.Concurrency:

Practice and Experience, 9(11):1031–1045, November 1997.

[19] M. Cole and S. Parker. Dynamic compilation of C++ template code.Scientific

Programming, 11:321–327, 2003.

[20] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. InPro-

ceedings of the Symposium on Principles of Programming languages (POPL). SIG-

PLAN, ACM, January 1993.

[21] Krzysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming: Methods,

tools, and applications. Addison-Wesley, May 2000.

[22] Joan Daemen and Vincent Rijmen.The Design of Rijndael: AES – The Advanced

Encryption Standard.Springer-Verlag, 2002.

[23] B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge

University Press, 1990.

[24] Jack B. Dennis. First version of a dataflow procedure language. InProgramming

Symposium: Proceedings, Colloque sur la Programmation, number 19 in Lecture

Notes in Computer Science, pages 362–376. Springer-Verlag, April 1974.

[25] Pierre Deransart, Martin Jourdan, and Bernard Lorho.Attribute Grammars: De-

finitions, Systems, and Bibliography. Number 323 in Lecture Notes in Computer

Science. Springer-Verlag, 1988.

[26] Julian Dolby. Automatic inline allocation of objects. InProceedings of the Confer-

ence on Programming Language Design and Implementation (PLDI), pages 7–17.

SIGPLAN, ACM, 1997.

BIBLIOGRAPHY 126

[27] Julian Dolby and Andrew A. Chien. An automatic object inlining optimization and

its evaluation. InProceedings of the Conference on Programming Language Design

and Implementation (PLDI), pages 345–357. SIGPLAN, ACM, 2000.

[28] B. Draper, W. Böhm, J. Hammes, W. Najjar, R. Beveridge, C. Ross, M. Chawathe,

M. Desai, and J. Bins. Compiling SA-C programs to FPGAs: Performance results.

In Proceedings of the International Conference on Vision Systems (ICVS), number

2095 in Lecture Notes in Computer Science, pages 220–235. Springer-Verlag, July

2001.

[29] Johan Eker et al. Taming heterogeneity—the Ptolemy approach.Proceedings of the

IEEE, 91(1), January 2003.

[30] Johan Eker and Jörn Janneck. CAL language report: Specification of the CAL actor

language. Technical Memorandum UCB/ERL 03/48, Electronics Research Lab, De-

partment of Electrical Engineering and Computer Sciences, University of California

Berkeley, CA 94720, USA, December 2003.

[31] Daniel D. Gajski, editor.SpecC: Specification Language and Methodology. Kluwer,

2000.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns.

Addison-Wesley, 1995.

[33] G.R. Gao, R. Govindarajan, and P. Panangaden. Well-behaved programs for DSP

computation. InProceedings of the International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages V.561–564, March 1992.

[34] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical finite state machines

with multiple concurrency models.IEEE Transactions on Computer-aided Design

of Integrated Circuits and Systems, 18(6):742–760, June 1999.

[35] Aleksey Gurtovoy and David Abrahams. The Boost C++ metaprogramming library.

Available atwww.boost.com, March 2002.

www.boost.com

BIBLIOGRAPHY 127

[36] D. Harel. Statecharts: A visual formalism for complex systems.Science of Computer

Programming, 8:231–274, 1987.

[37] D. Harel and A. Naamad. The STATEMATE semantics of Statecharts.ACM Trans-

actions on software engineering and methodology, 5(4), 1996.

[38] Carl Hewitt. Viewing control structures as patterns of passing messages.Journal of

Artifical Intelligence, 8(3):323–363, June 1977.

[39] Carl Hewitt and Henry Baker. Actors and continuous functionals. InProceeding of

Working Conference on Formal Description of Programming Concepts, pages 267–

387. International Federation for Information Processing, August 1977.

[40] James C. Hoe and Arvind. Hardware synthesis from term rewriting systems. In

Proceedings of the IFIP Conference on Very Large Scale Integration, pages 595–

619. International Federation for Information Processing, Kluwer, December 1999.

[41] Jochen Hoenicke. Jode: Java optimizer and decompiler. http://jode.sourceforge.net.

[42] Paul Hudak. Modular domain specific languages and tools. InProceedings of the

International Conference on Software Reuse, pages 134–142. IEEE, June 1998.

[43] Scott E. Hudson. Incremental attribute evaluation: A flexible algorithm for lazy

update. ACM Transactions on Programming Languages and Systems, 13(3):315–

341, 1991.

[44] John Davis II, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu, Xiao-

jun Liu, Lukito Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel, and Yuhong

Xiong. Ptolemy II - Heterogeneous concurrent modeling and design in Java. Tech-

nical Memorandum M01/12, Electronics Research Lab, Department of Electrical

Engineering and Computer Sciences, University of California Berkeley, CA 94720,

USA, March 2001.

[45] Jörn W. Janneck. Actors and their composition.Formal Aspects of Computing,

15(4):349–369, 2003.

BIBLIOGRAPHY 128

[46] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial Evaluation and Auto-

matic Program Generation. Prentice-Hall, June 1993.

[47] Gilles Kahn. The semantics of a simple language for parallel programming. In

Proceedings of the IFIP Congress, pages 471–475. International Federation for In-

formation Processing, North-Holland, 1974.

[48] Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel

processes. InProceedings of the IFIP Congress, pages 993–998. North-Holland,

1977.

[49] Asawaree Kalavade.System-Level Codesign Of Mixed Hardware-Software Systems.

PhD thesis, EECS Department, University of California at Berkeley, CA, 1995.

[50] Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: Run-time code generation for

Java and its applications. InInternational Symposium on Code Generation and Op-

timization (CGO), pages 48–58. IEEE, March 2003.

[51] D. J. Kaplan. An introduction to the processing graph method. InProceedings of

the International Conference and Workshop on the Engineering of Computer-Based

Systems (ECBS), pages 46–52, March 1997.

[52] Holger Keding, Martin Coors, Olaf Luethje, and Heinrich Meyr. Fast bit-true simu-

lation. InProceedings of the Design Automation Conference (DAC), June 2001.

[53] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. Sys-

tem level design: Orthogonolization of concerns and platform-based design.IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12),

December 2000.

[54] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of AspectJ. InProceedings of the European

Conference on Object-oriented Programming (ECOOP), pages 327–353, 2001.

BIBLIOGRAPHY 129

[55] Gregor Kiczales, John Lampinga, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. InPro-

ceedings of the European Conference on Object-oriented Programming (ECOOP),

number 1241 in Lecture Notes in Computer Science, pages 220–242. Springer-

Verlag, 1997.

[56] Bart Kienhuis and Ed F. Deprettere. Modeling stream-based applications using the

SBF model of computation.The Journal of VLSI Signal Processing-Systems for

Signal, Image, and Video Technology, 34(3):291–300, 2003.

[57] S. C. Kleene. Introduction to Metamathematics, chapter 12, page 342. North-

Holland, 1952.

[58] Donald E. Knuth. Semantics of context-free languages.Mathematical Systems The-

ory, 2(2):127–145, 1968.

[59] Eddie Kohler, Robert Morris, and Benjie Chen. Programming language optimiza-

tions for modular router configurations. InProceedings of the Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pages 251–263,

October 2002.

[60] Peeter Laud. Analysis for object inlining in java. In Uwe Aßmann, editor,Java Op-

timization Strategies for Embedded Systems (JOSES) Workshop, in association with

European Joint Conferences on Theory and Practice of Software (ETAPS), number

2001-10 in Technical Report, Genova, Italy, April 2001. Fakultät für Informatik,

University of Karlsruhe.

[61] Bilung Lee. Specification and Design of Reactive Systems. PhD thesis, EECS De-

partment, University of California at Berkeley, CA, 2000.

[62] Edward A. Lee. Consistency in dataflow graphs.IEEE Transactions on Parallel and

Distributed Systems, 2(2):223–235, April 1991.

[63] Edward A. Lee. Embedded software.Advances in Computers, 56, 2002.

BIBLIOGRAPHY 130

[64] Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous data

flow programs for digital signal processing.IEEE Trans. on Computers, 36(1):24–

35, January 1987.

[65] Edward A. Lee and Stephen Neuendorffer. Actor-oriented models for codesign. In

Sandeep Shukla and Jean-Pierre Talpin, editors,Formal Methods and Models for

System Design. Kluwer, 2004. to appear.

[66] Edward A. Lee and Stephen Neuendorffer. A survey of embedded system models

of computation.Proceedings on Computers and Digital Techniques special issue on

Embedded System Design, 2004. to appear.

[67] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-oriented

design of embedded hardware and software systems.Journal of Circuits, Systems,

and Computers, 12(3):231–260, June 2003.

[68] Edward A. Lee and Steve Neuendorffer. MoML - a modeling markup language

in XML Version 0.4. Technical Memorandum UCB/ERL M01/12, Electronics Re-

search Lab, Department of Electrical Engineering and Computer Sciences, Univer-

sity of California Berkeley, CA 94720, USA, March 2000.

[69] Edward A. Lee and Thomas M. Parks. Dataflow process networks.Proceedings of

the IEEE, 83(5):773–801, May 1995.

[70] X. Leroy. Effectiveness of type-based unboxing. Technical Report BCCS-97-03,

Boston College Computer Science Department, June 1997. In Workshop on Types

in Compilation ’97.

[71] Stan Y. Liao, Steve Tjiang, and Rajesh Gupta. An efficient implementation of reac-

tivity for modeling hardware in the Scenic design environment. InProceedings of

the Design Automation Conference (DAC). SIGDA, ACM, 1997.

[72] J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee. A hierarchical hybrid

system model and its simulation. InProceedings of the Conference on Decision and

Control (CDC), December 1999.

BIBLIOGRAPHY 131

[73] Jie Liu.Responsible Frameworks for Heterogenous Modeling and Design of Embed-

ded Systems. PhD thesis, EECS Department, University of California at Berkeley,

CA, 2001.

[74] B. Ludaescher, I. Altintas, and A. Gupta. Compiling abstract scientific workflows

into web service workflows. InProc. of the Intl. Conference on Scientific and Sta-

tistical Database Management (SSDBM), 2003.

[75] M. D. McIlroy. Mass-produced software components. InNato Science Committee

Meeting at Garmisch, Germany, October 1969.

[76] Walcelio Melo, Lionel Briand, and Victor Basili. Measuring the impact of reuse

on software quality and productivity. Technical Report CS-TR-3395, University of

Maryland, College Park MD, USA 20742, January 1995.

[77] Anne-Francoise Le Meur and Charles Consel. Generic software component con-

figuration via partial evaluation. InProceedings of the European Conference on

Object-oriented Programming (ECOOP), August 2000.

[78] John C. Mitchell. Coercion and type inference. InProceedings of the Symposium on

Principles of Programming languages (POPL). ACM, January 1984.

[79] Steven Muchnick.Advanced Compiler Design and Implementation. Morgan Kauf-

mann, 1997.

[80] Praveen K. Murthy, Etan G. Cohen, and Steve Rowland. System Canvas: A new de-

sign environment for embedded DSP and telecommunication systems. InProceed-

ings of the International Symposium on Hardware/Software Codesign (CODES).

SIGDA, ACM, April 2001.

[81] Stephen Neuendorffer. Automatic specialization of actor-oriented models in Ptolemy

II. Technical Memorandum M02/41, Electronics Research Lab, Department of Elec-

trical Engineering and Computer Sciences, University of California Berkeley, CA

94720, USA, December 2002.

BIBLIOGRAPHY 132

[82] Rishiyur Nikhil. Bluespec SystemVerilog: Efficient, correct RTL from high-level

specifications. InProceedings of the Conference on Methods and Models for Code-

sign (MEMOCODE), June 2004.

[83] T. M. Parks.Bounded Scheduling of Process Networks. PhD thesis, EECS Depart-

ment, University of California at Berkeley, CA, 1995.

[84] Benjamin C. Pierce.Basic Category Theory for Computer Scientists. MIT Press,

1991.

[85] Jose Luis Pino, Soonhoi Ha, Edward A. Lee, and Joseph T. Buck. Software synthesis

for DSP using Ptolemy.Journal on VLSI Signal Processing, 9(1):7–21, January

1995.

[86] H. John Reekie.Realtime Signal Processing: Dataflow, Visual, and Functional Pro-

gramming. PhD thesis, School of Electrical Engineering, University of Technology,

Sydney, 1995.

[87] Jakob Rehof and Torben Mogensen. Tractable constraints in finite semilattices.Sci-

ence of Computer Programming, 35(2):191–221, 1999.

[88] John C. Reynolds. Using category theory to design implicit conversions and generic

operators. InProceedings of the Workshop on Semantics-Directed Compiler Gener-

ation, number 94 in Lecture Notes in Computer Science, pages 211–258. Springer-

Verlag, January 1980.

[89] Ulrik Schultz. Partial evaluation for class-based object-oriented languages. InPro-

ceedings of Symposium on Programs as Data Objects (PADO), number 2053 in Lec-

ture Notes in Computer Science. Springer-Verlag, May 2001.

[90] Ulrik Pagh Schultz, Julia L. Lawall, Charles Consel, and Gilles Muller. Towards

automatic specialization of Java programs. InProceedings of the European Confer-

ence on Object-oriented Programming (ECOOP), number 1628 in Lecture Notes in

Computer Science, pages 367–390. Springer-Verlag, June 1999.

BIBLIOGRAPHY 133

[91] Ulrik P. Shultz, Julia L. Lawall, and Charles Consel. Automatic program spe-

cialization for Java.ACM Transactions on Programming Languages and Systems,

25(4):452–499, July 2003.

[92] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich. FunState - an

internal design representation for codesign.IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 9(4):524–544, August 2001.

[93] Clemens Szyperski.Component Software - Beyond Object-Oriented Programming.

Addison-Wesley, 2002.

[94] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical experi-

ence with an application extractor for Java. Technical Report 21451(96813), IBM

Research, October 1999.

[95] Jeff Tsay, Christopher Hylands, and Edward Lee. A code generation framework

for Java component-based designs. InProceedings of International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems(CASES), pages 18–

25, ACM, November 2000.

[96] Rob van Ommerling. The Koala component model for consumer electronics soft-

ware. IEEE Computer, 33(3):78–85, March 2000.

[97] Todd Veldhuizen. C++ templates as partial evaluation. InWorkshop on Partial

Evaluation and Semantics-Based Program Manipulation (PEPM), 1999.

[98] Piet Wauters, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cyclo-

dynamic dataflow. InWorkshop on Parallel and Distributed Processing (PDP).

EUROMICRO, IEEE, January 1996.

[99] Darren Webb, Andrew Wendelborn, and Kevin Maciunas. Process networks as a

high-level notation for metacomputing. InProc. of the Int. Parallel Programming

Symposium (IPPS), Workshop on Java for Distributed Computing, 1999.

BIBLIOGRAPHY 134

[100] Lars Wernli. Design and implementation of a code generator for the CAL actor lan-

guage. Technical Memorandum UCB/ERL M02/5, Electronics Research Lab, De-

partment of Electrical Engineering and Computer Sciences, University of California

Berkeley, CA 94720, USA, March 2002.

[101] Edward D. Willink. Meta-Compilation for C++. PhD thesis, University of Surrey,

June 2001.

[102] Michael Winter et al. Components for embedded software : The PECOS approach.

In Workshop on Composition Languages, In conjunction with the European Confer-

ence on Object-Oriented Programming (ECOOP), June 2002.

[103] Yuhong Xiong. An Extensible Type System for Component-Based Design. PhD

thesis, EECS Department, University of California at Berkeley, CA, 2002.

	List of Figures
	Introduction
	Metaprogramming and Generative Programming
	Component Based Design
	System-level Design
	Actor-oriented Metaprogramming

	Actor-oriented Design
	Actor-oriented Models
	Hierarchical Semantics
	Parameterization and Reconfiguration
	Dataflow Models of Computation
	Dataflow Execution
	Static Dataflow Scheduling
	Synchronous Dataflow
	Parameterized Synchronous Dataflow
	Boolean- and Integer-controlled Dataflow
	Hierarchical Dataflow Scheduling

	Reconfiguration of Actor-oriented Models
	Hierarchical Parameter Reconfiguration
	Modal Models
	Reconfiguration Ports
	Reconfiguration Actors

	Delayed Reconfiguration
	Efficient Parameter Evaluation
	Assumptions about Reconfiguration
	Reconfiguration and Type Checking
	Reconfiguration and Structural Parameters
	Reconfiguration and Model Correctness
	Reconfiguration and Dataflow Scheduling

	Reasoning About Reconfiguration
	Parameterization Model
	Reconfiguration Semantics
	Change Contexts
	The Least Change Context
	Conditional Reconfiguration

	Design Examples
	Blind Communication Receiver
	Rijndael Encryption

	Actor-Oriented Metaprogramming System
	Ptolemy II
	Indirection in Object-oriented Frameworks
	Data and Data Types
	Type Checking
	Parameters and Expressions
	Ports and Communication
	Actor Specifications
	Model Specifications

	Copernicus
	Code Generation from a Model
	Transformation Rules

	Actor Specialization
	Structural Specialization
	Parameter Specialization
	Type Specialization

	Domain Specialization
	Dataflow Scheduling is Model Specialization
	Domain Specialization Transformations
	Token Unboxing

	Application Extraction
	Reachable Method Analysis
	Side-Effecting Method Analysis
	Dead Field Analysis
	Obfuscation

	Performance
	FIR Filter
	Adaptive FIR Filter

	Conclusion
	Mathematical Background
	Summary of Theorems
	Bibliography

