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Abstract 

This paper is the result of a workshop entitled “Software Reliability for FCS” that was organized 
by the Army Research Office, held on May 18-19, 2004, and hosted by: Institute for Software 
Integrated Systems (ISIS), Vanderbilt University. I was given the charge of leading one of four 
topic areas, and was assigned the title. This is my summary of the results of the workshop on this 
topic. 

It may well be that established approaches to software engineering will not be sufficient to avert 
a software disaster in FCS and similarly ambitious, software-intensive efforts. This topic 
examines the tension between informal methods, particularly those that focus on the human, 
creative process of software engineering and the management of that process, and formal 
methods, specifically those that rely on mathematically rooted systems theories and semantic 
frameworks. It is arguable that, as these approaches are construed today by their respective 
(largely disjoint) research communities, neither offers much hope of delivering reliable FCS 
software. Although certainly these communities have something to offer, the difficulties may be 
more deeply rooted than either approach can address. In this workshop, we took an aggressive 
stand that there are problems in software that are intrinsically unsolvable with today’s software 
technology. This stand asserts that no amount of process will fix the problems because the 
problems are not with the process, and that today’s formal techniques cannot solve the problem 
as long as they remain focused on formalizing today’s software technologies. A sea change in the 
underlying software technology could lead to more effective informal and formal methods. What 
form could that take? 

1. Some Objectives of Formal Methods 

An early conclusion in the workshop was the dispelling a widely held misconception that formal 
methods have had little practical impact in software. Type systems are an example of a formal 
method that is a centerpiece of all modern programming languages. They have a formal structure 
that has influenced the design of languages and compilers and has proven scalable to extremely 
large programs. They contribute enormously to software reliability and to the efficiency of the 
software design process by exposing many programming errors early in the design process. 

But type systems represent only the static structure of programs. They do not represent temporal 
or concurrent behavior, for example. Could the equivalent of strongly typed interfaces be 
developed to represent these other aspects? While there is research in this direction, it appears 
inconclusive at this time. 



Nonetheless, many formal methods demand a level of skill levels not normally found in software 
development community to apply. 

An examination reveals that formal methods have several objectives, and that depending on the 
emphasis, the approaches may differ. In particular, formal methods have been proposed to 
provide: 

• semantic grounding for languages, 
• precise specification, 
• proof of properties, 
• proof of correctness, 
• improved understanding, and 
• reduced need for testing. 

It was argued in this workshop that of these, “proof of correctness” was probably the only 
unattainable objective. 

2. Programming Languages 

Languages form the medium of expression for software design. In practice, most embedded 
software is written in C, an ironic choice because of its complete lack of concurrent or temporal 
semantics. Concurrency and time are essential aspects of software that engages with sensors and 
actuators. What C does provide is excellent efficiency, access to hardware resources, and 
familiarity to programmers. 

Can new languages help with embedded systems? An interesting case study is the SCADE 
system marketed by Esterel Technologies. This system is based on the synchronous language 
Lustre, the formal properties of which strongly influenced the process that led to the certification 
of the compiler for use in safety critical avionics software. This system is used in practice by 
Airbus and others for embedded software design. 

Another interesting case study is Simulink, from The MathWorks. Simulink has taken hold in 
several communities, perhaps most notably in the automotive industry where it is widely used to 
design and deploy embedded control software. 

An issue that arises is that the introduction of new programming languages is difficult, 
expensive, and risky. Even with a strong mandate for many years from DOD, Ada, which has 
many desirable features for embedded software, has never been completely embraced by the 
embedded software community. A focus on domain-specific languages and on languages with 
visual syntaxes (SCADE and Simulink fit both) helps languages gain acceptance, because 
domain knowledge and style can be built into the languages, and visual syntaxes meet less 
resistance, presumably because the learning curve appears gentler (although in practice, it may 
be just as steep). 

Yet the success of Simulink and SCADE is the exception, not the rule. Simulink succeeds in part 
because it is not recognized by engineers as a “language.” It is, first and foremost, a modeling 
tool. It just happens to be extremely convenient that models can be compiled (“code generated”) 
into deployable code. Whereas modeling has traditionally been used as part of the requirements 
definition process, in this case the requirements turn out to be a compilable implementation. The 
distinction between “model” and “program” disappears. 



Neither Simulink nor SCADE emerged from the mainstream programming languages research 
community. It was argued in the workshop that language research is stalled in part because 
language researchers tend to promote “universal” solutions, languages that completely replace 
their predecessors. Simulink most notably does not do this; it fully embraces C as a mechanism 
for defining primitive components and as a target for code generation, and therefore offers the 
key advantages of C, access to hardware resources and code efficiency, but offers them within a 
framework that has a clean semantic notion of time and concurrency. Simulink also leverages the 
task scheduling provided by real-time operating systems (RTOS’s), but does not expose to the 
designer the features that are difficult to use correctly, such as priorities. Priorities are used by 
the code generator (with preemptive multitasking) to synthesize a correct implementation of the 
Simulink semantics, but what the designer works with is the Simulink semantics, not the 
abstraction of processes with priorities that RTOS’s depend on. 

3. Platforms 

Describing Simulink as a programming language is a stretch, since the role it plays in design 
differs somewhat from the role that languages have traditionally played. A better conceptual 
framework in which to consider design alternatives is to leverage the notion of “platforms.” A 
platform is a set of designs. A programming language (e.g. Java) is a platform (the set of all Java 
programs). The set is described by describing the syntax and some of the semantics of Java, 
which defines what it means to be a member of this set. Java byte code is a platform. The Intel 
x86 architecture is a platform (the set of all x86 programs). A compiler or an interpreter is a 
translator from a design in one set to a design in another. 

Simulink is a platform (the set of all Simulink diagrams). A code generator is a translator that 
converts a member of this set into a member of the set of C programs. If we change the question 
from “what programming language(s) should we use?” to “what platform(s) should we use?” 
then we are likely to get much better answers because we haven’t prejudiced the answer with 
preconceptions about what constitutes a “language” (e.g., it has to have a syntax that can be 
given in BNF).  Moreover, platforms can work in concert at different levels of abstraction (e.g. 
Simulink with C). 

4. Actor Orientation 

It was argued in the workshop that concurrency and time play central roles in embedded 
software, and yet are almost entirely absent in the semantics of prevailing programming 
abstractions. When present, as in the threading model of Java, they are reflections of very old 
and very low-level mechanisms. Java’s threads and monitors date back to the 1960’s, and as a 
concurrency model, are actually extremely difficult to use reliably. 

Many flaws in software are ultimately due to concurrency errors, and these flaws are difficult to 
find. They manifest themselves rarely in an execution, so verification based on testing often fails 
to find them. Code can be exercised in deployed form for years before a design flaw appears. 
Static analysis techniques can help (e.g. Sun Microsystems’ LockLint), but these methods are 
often thwarted by conservative approximations and/or false positives. 

Worse, programs that use threads and monitors can be extremely difficult for programmers to 
understand. It was argued at the workshop that if a program is incomprehensible, then no amount 
of process improvement or schedule extensions will make it reliable. In fact, schedule extensions 



are as likely to degrade the reliability of programs that are difficult to understand as they are to 
improve it. 

Formal methods can help detect flaws, and in the process can improve the understanding that a 
designer has of the behavior of a complex program. But if the basic mechanisms fundamentally 
lead to programs that are difficult to understand, then these improvements will fall short of 
delivering reliable software. 

Simulink and SCADE both offer concurrency models that are much easier to understand than 
threads or processes that interact via monitors and semaphores. Both are based on a synchronous 
abstraction, where components conceptually execute simultaneously, aligned with one or more 
interlocked clocks. SCADE relies on an abstraction where components appears to execute 
instantaneously, whereas Simulink is more explicit about the passage of time and supports 
definition of tasks that take time to execute and execute concurrently with other tasks. In both 
cases, every (correctly) compiled version of the program will execute identically, in that if it is 
given the same inputs, it will produce the same outputs. In particular, the execution does not 
depend on extraneous factors such as processor speed. Even this modest objective is often hard 
to achieve using threads and monitors directly. 

Simulink and SCADE both offer a software component model that is significantly different from 
the object-oriented component model. Whereas in Java and C++ components interact with one 
another primarily through method calls, in Simulink and SCADE they are concurrent 
components that send messages via ports. This style of component interaction has been called 
actor oriented, and it can complement and co-exist with object-oriented components. The key 
feature of actor-oriented models is that they emphasize concurrency, and typically offer 
concurrency mechanisms that are easier to understand than threads. 

Many actor-oriented languages also offer a notion of time built-in to their semantics. Imperative 
languages (C, C++, Java) abstract away the notion of time, and temporal properties have to be 
specified indirectly by invoking operating system features (such as setting priorities). Simulink 
models, for example, explicitly specify temporal behavior, and any (correct) implementation of 
the Simulink model must conform to that specification. 

There is much discussion of integrating “non functional” and “quality of service” aspects into 
program specifications. Time is a key one of these aspects. However, much of this work 
approaches the problem by adding expressiveness through APIs to object-oriented languages. It 
was proposed at the workshop that together with adding expressiveness, it is also necessary to 
create constraints. A clean semantics for time and concurrency cannot emerge simply as a design 
pattern in languages that fundamentally lack time or concurrency in their semantics. 

Actor-oriented modeling is an active, albeit somewhat immature, area of research. Computer 
Science, as a discipline, has had only modest and sporadic interest in domain-specific languages, 
and most actor-oriented languages in use today are domain specific. Investment in research in 
this area (such as the DARPA MoBIES program) can strongly affect the level of activity in the 
research community. 

It was argued at the workshop that actor-oriented design has the potential for impact on the scale 
that object-oriented has had. But much more work is needed, for example in modularity 



techniques (classes, inheritance, interfaces, type systems, aspects), models of computation, and 
visual notations. 

5. Model Transformations and Multi-View Modeling 

Modeling has always played a role in software design, but it has its pitfalls. Models can diverge 
from an implementation over time, and they are frequently at a higher level of abstraction. 
Introducing details later can introduce bugs and complexity. Moreover, models can be incorrect 
and code synthesizers can be incorrect. Interaction with legacy or handwritten code can introduce 
errors. 

These problems are mitigated (but not eliminated) by blurring the distinction between the model 
and the program. A Simulink model, for example, is both an (abstracted) model of a control 
system and the source code for the embedded software. 

With the distinction between models and programs becoming blurred, it becomes useful to have 
multiple models/programs for the same design. This fact is well recognized in the object-oriented 
programming community, where the various UML languages are used in concert to complement 
source code specification and to describe, for example, static structure and sequential behavior. 
Actor-oriented technique could similarly benefit from multi-view modeling. Research is needed 
however in how to maintain coherence and consistency, how to integrate code generators, how to 
weave specifications of diverse aspects, and how to leverage descriptions of the modeling 
paradigms themselves (so called “meta modeling”). 

6. Visual Notations 

Visual notations have a checkered history in computer science, but have always played a role in 
design. In mainstream design today, the various UML visual languages are often extensively 
used to complement textual programs and specifications. Highly concurrent models seem to 
benefit particularly from visual notations (e.g., Simulink). But there are questions about scaling 
and about expressiveness that need to be addressed. For example, is the prevalent use of 
hierarchy as the principle (or only) abstraction mechanism sufficient? 

Visual notations should be used to express aspects of design that are not well expressed by text, 
such as static structure and concurrency. They should not be used to replace text where text does 
well, as in flowcharts, and certain elements of executable UML. 

7. Conclusion 

Bad design can be done in any language. No amount of formal analysis will turn a bad design 
into a good design. No amount of schedule slippage or process planning will turn an 
incomprehensible design into a reliable one. Bad designs evolve into worse designs, never into 
good designs. 

Artistry is the essence of good design. Languages are the medium of expression, and hence 
greatly affect the product. High quality medium is essential for durable art. Tools (formal and 
informal) are just tools, and high quality tools facilitate but do not guarantee artistry. 


