
Engineering Education: A Focus on Systems

Edward A. Lee

Department of Electrical Engineering and Computer Science
University of California at Berkeley
Berkeley, CA 94720 USA
eal@eecs.berkeley.edu

1 Introduction

Engineers have a major advantage over scientists. For the most part, the
systems we analyze are of our own devising. It has not always been so. Not long
ago, the principle objective of engineering was to coax physical materials to
do our bidding by leveraging their intrinsic physical properties. The discipline
was one of “applied science.” Today, a great deal of engineering is about
coaxing abstractions that we have invented. The abstractions provided by
microprocessors, programming languages, operating systems, and computer
networks are only loosely linked to the underlying physics of electronics.

The rapid improvements in the capabilities of electronics during the last
half of the 20-th century are, in part, the reason for this separation. The
physical constraints imposed by limited memory, processing speed, and com-
munication bandwidth appeared to evaporate with each new generation of
computers. What appeared to one generation as luxuriously inefficient ab-
stractions became the bread and butter of the next generation. The separation
of “computer science” from “electrical engineering” is both a consequence and
a cause, fueling the separation and reflecting it at the same time.

At the same time, the systems science that was incubated in the study of
electronic circuits (control systems, communications theory, and signal pro-
cessing) has also become more abstract. Although these disciplines were cre-
ated by true “electrical engineers” (“true” means that they were engaged with
electrical systems), many of the practitioners today rarely encounter electricity
directly. Their techniques are often realized in “embedded” software, ironically
building on the abstractions that are only loosely connected to the electronics
that their theory originally helped to create. The theories, however, have not
adapted as well as one might hope to world of software. Perhaps these theories
remain too wedded to their physical heritage.

Computer scientists lament that the engineers who write embedded soft-
ware use so few of the beautiful abstractions they have built. They write their

eal
In "Advances in Control, Communication Networks, and Transportation Systems: In
Honor of Pravin Varaiya," E.H. Abed (Ed.), Systems and Control: Foundations and
Applications Series, Birkhauser, Boston, 2005.

2 Edward A. Lee

code in C (or even in assembly code), using low-level (less abstract) mecha-
nisms. They ignore advances in object-oriented design, memory management,
operating systems, and programming languages, and instead directly interact
with memory-mapped registers that set up timer interrupts, provide interrupt
service routines, and build application-specific task schedulers. Wouldn’t it be
nice if they would just learn to use the modern technology, and set up instead
an HTTP server in Java? Or a peer-to-peer network of embedded sensor and
actuator components that discover each other’s capabilities via JXTA? The
problem is that the modern technology does not talk about the properties of
the system that they have to control, such as timing.

On the other hand, the information technology revolution of the late 20-
th century was greatly accelerated by advancing computing abstractions. The
Internet and the Web are not principally electronic systems. They are con-
ceptual frameworks. The financial, economic, and social systems built on top
of them have transformed our cultural landscape. But there is a weakness.
While the computing abstractions we have built are extremely well suited to
the management of information, their very divorce from the physics makes
them less well suited to the management of our physical environment. This
is the key reason that these abstractions have had less impact in embedded
software.1

It seems likely that embedded computing is the next transformational
revolution. Although it may seem that computers are already everywhere,
the real potential is vastly greater than what we have today. The National
Research Council’s report Embedded Everywhere [4] summarizes this view in
the introduction:

“Information technology (IT) is on the verge of another revolution.
Driven by the increasing capabilities and ever declining costs of com-
puting and communications devices, IT is being embedded into a
growing range of physical devices linked together through networks
and will become ever more pervasive as the component technologies
become smaller, faster, and cheaper... These networked systems of em-
bedded computers ... have the potential to change radically the way
people interact with their environment by linking together a range of
devices and sensors that will allow information to be collected, shared,
and processed in unprecedented ways. ... The use of [these embedded
computers] throughout society could well dwarf previous milestones
in the information revolution.”

Sensor networks and “smart dust” [7] are only just breaking out of being lab-
oratory curiosities, but their successes to date imply that the electronics tech-
1 It is often assumed that real reason is that embedded software faces more se-

vere resource constraints than general purpose software. But as I have pointed
out, resource constraints have repeatedly evaporated with each new generation of
computers, and yet the practice of embedded software has changed remarkably
little.

Engineering Education 3

nology scales, and that leveraging advances in sensors, actuators, and wireless
networking will make possible (and probable) a pervasiveness of computing
that we can only dream of today.

I am convinced, however, that the embedded revolution will require a
reexamination, and probably a reinvention of some of the core abstractions of
computing and systems engineering. All effective abstractions hide properties
of the underlying systems, but the key to their effectiveness is that they hide
the right properties. The divorce of computing from physics has to end for
this embedded revolution to take hold.

It is not only the abstractions of computing that have to adapt. Embed-
ded computing will also require a reexamination and reinvention of the core
abstractions in the more physics-based engineering disciplines. The models
that are used in civil, electrical, and mechanical engineering are deeply rooted
in the interactions of physical devices, and poorly express the interactions of
those physical devices with computing.

Consider a simple example. A physics-based model of a power distribu-
tion system will describe voltages and currents as a function of time, giving
their dynamics as ordinary differential equations. The time variable, t ∈ R, is
universal. Its value in Schenectady is the same as its value in San Francisco.
But the software embedded in the control system for the power network has
tremendous difficulty maintaining a common time base across a distributed
system. Even with technologies such as GPS (which provides atomic clock
timing precision worldwide), building software that works tightly in concert
over geographically distributed systems is extremely difficult. In fact, in the
abstractions used to build the software, time is not a part of the ontology.
No wonder the engineers who build this software are stuck working with very
low-level mechanisms.

Another example is more technically difficult: dealing with random behav-
ior. In standard computing abstractions, we have had the luxury of largely
not having to worry about this. This is partly because electronics technology
(with some algorithmic help from coding and communication theory) has de-
livered amazing reliability. Consider the fact that a 40 Gbyte hard disk can
be copied flawlessly. This requires that the electronics process 320 billion bits
without error. And operations like this occur by the millions on a daily basis.
But when we switch our attention to embedded computers with energy scav-
enging and wireless communication, it is probably too much to expect such
reliability. The computing abstractions will have to adapt.

The engineering of systems that are composed of both physical and compu-
tational components must be based on abstractions that embrace both physics
and computation. There is huge potential for a new “systems science,” and
there are a few visionaries exploring it. But the cultural divide between com-
puting and engineering is a major barrier to progress. We must break down
that barrier.

4 Edward A. Lee

-0.05

-0.1 0

K=0

K= 0.00025

K < 0

Re s

Im s

K=0K < 0

- 50 0 50 100 150

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

K = 0.0025

K = 0.00025

t

y

x

overshoot

w(t)

D

y(t)

M

C

spring

damper

mass

H2(s) =
yw

1

Ms2 + Ds + C

x e y

H =
H1H2

1 + H1 H2

−

H2(s) =

w
1

Ms2 + Ds + C
H1(s) = K1 + K2/s + K3s

PID controller Plant

Fig. 1. Illustration of the mathematical tools of classical feedback control systems
(from [14]).

2 Feedback Control, Hybrid Systems, and Beyond

A computational systems theory must, of course, build on both theories of
computation and classical systems theories [3]. Ideally, it identifies the com-
mon foundations, like theories of composition of components. For example,
classical feedback control theory, as illustrated in figure 1, builds on a key
insight, dating back to the 1930s, that feedback systems can be effectively
modeled self-referentially, using an abstraction of instantaneous feedback. At
its roots, this principle rests on topological fixed point theory, the same foun-
dation underlying recursion theory (a foundation for many modern program-
ming languages) [6] and many theories of concurrency (e.g. the synchronous
languages [2] and process networks [8]). It is extremely rare, however, for en-
gineering students (or even engineering faculty) to be even aware of these
commonalities. That these commonalities are not exploited in the curriculum
is a consequence of the cultural divide that we created in the 20-th century
between engineering and computer science.

On the engineering side, we often misrepresent to our students that the
connection between the physical world and the world of software is simply
a matter of discretizing time. As long as we respect the Nyquist sampling
theorem, everything will be fine. Regrettably, software does not perform with
the clock-tick regularity of discrete-time abstractions. And even if it did (or if

Engineering Education 5

we use tricks to achieve a reasonable approximation), the systems we build in
software are far more complex than those we used to build with resistors, ca-
pacitors, and inductors. The linear-time-invariant abstraction that underlies
so much of the pertinent systems theory is simply not applicable. No won-
der engineers using embedded software are stuck with bench testing as their
principal analysis tool.

y1(t)

y2(t)

stick /

y(t) := y1(t)

y(t) := (y1(t)m1 + y2(t)m2)/(m1+ m2)

apart together

y1(t) = k1(p1 − y1(t))/m1

stickyMasses

unstick /

y1(t) := y(t)

y2(t) := y(t)

y1(t) := y(t)

y2(t) := y(t)

..

y1(t) ∈ Reals

y2(t) ∈ Reals

y1(0) := initialPosition1

y2(0) := initialPosition2

y1(0) := 0

y2(0) := 0

y2(t) = k2(p2 − y2(t))/m2
..

y(t) =
..

 k1 p1 + k2 p2 − (k1+ k2)y(t)
m1+ m2

.

.

.

.

.

.

.

. .

y1(t) = y(t); y2(t) = y(t)

unstick = {(y(t), y(t)) | (k1 − k2)y(t) + k2 p2− k1p1 > stickiness}
.

stick = {(y1(t), y1(t), y2(t), y2(t)) | y1(t) = = y2(t)}
. .

y1(t)

y2(t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35 40 45 50

Displacement of Masses

time

Fig. 2. Illustration of the mathematical tools of hybrid systems (from [14]).

6 Edward A. Lee

The theory of hybrid systems (see for example [16, 10, 5]) is relatively
recent example of a modern systems theory, one that combines computation
with classical systems theory. It combines the continuous-time world (or its
discretized versions) with the world of irregularly timed mode transitions. It
provides analytical tools that are rooted in both linear-time-invariant sys-
tems and automata (see figure 2). It leverages theories of computation to
achieve decidability results (or, more commonly, undecidability results) [9],
and theories of feedback control to study dynamics and stability. Much of
the pioneering work in this area was carried out by teams that included both
computer scientists and electrical engineers.

However, the current intellectual formulation of hybrid systems has its
limitations. It still relies on a model of time that poorly fits what software
does. Consider a simple example, due to Jie Liu [15], where two software-
based controllers execute on a single computer under the control of a real-time
operating system (RTOS). A model of such a system is shown in figure 3. A
typical RTOS will offer scheduling policy alternatives, such as preemptive or
non-preemptive multitasking, and will support the assignment of priorities to
tasks. Under the formulation in figure 3, if the scheduling policy is preemptive
multitasking, only one of the two feedback loops can be made stable (which one
depends on the relative priorities). Under non-preemptive multitasking, both
can be made stable. This difference is extremely hard to explain using classical
control theory. If such a simple system renders our analytical tools useless,
then engineers are forced to reject either the implementation technology or
the analytical tools. In the former case, an engineer might choose to not
share the same computer for the two control loops in order to be able to rely
on the analytical results. In the latter case, an engineer will bench test the
system to verify stability, tweaking priorities and scheduling policies until the
desired behavior is achieved experimentally. Neither outcome is particularly
attractive.

When our analytical tools break down even for such small, localized sys-
tems, how can we expect them to perform for large-scale distributed systems?
The lack of an effective temporal abstraction in software is a major limita-
tion. The tight binding of a universal time continuum with control theory is
an equally major limitation. The future of systems theory is going to have
to offer better time and concurrency abstractions that yield to both formal
analysis and distributed and concurrent software realizations.

3 A Focus on Systems

A few years ago, Pravin Varaiya, David Messerschmitt and I led an effort
at Berkeley that started down the road of updating the curriculum in the
EECS department. We began with our outdated introductory curriculum in
EE, where an “introduction to electrical engineering” was principally about
passive analog circuits. The rationale for the changes is described in [11], where

Engineering Education 7

Fig. 3. Model of two software-based controllers executing on a single computer un-
der the control of a real-time operating system, where the controllers are attempting
to each stabilize an unstable plant (after [15]).

8 Edward A. Lee

we cite the considerable work of others that influenced our thinking. A truly
long term (and highly speculative) vision is laid out in [12]. The first concrete
outcome of this work was a new introductory course on systems [13] and a
supporting textbook [14]. Despite this modest progress, the vision remains
incompletely unfulfilled. Academic institutions have considerable inertia.

A unifying theme in these efforts is an increased focus on systems rather
than technologies. From [11],

“First, we must prepare students to select abstractions, not just tech-
nologies. Second, just as designs can be built on top of higher level
abstractions, so can courses.”

Selecting abstractions requires being able to reason about the properties of
those abstractions. All too often, engineering abstractions are presented as
immutable facts (“this is how computers work,” or “this differential equation
describes that feedback circuit”) rather than as human ideas (“this is how
VonNeumann proposed that we control automatic machines,” or “ignoring
the intrinsic randomness and latency in this circuit, Black proposed that we
could idealize its behavior in this way.”) When we present these ideas as
immutable facts, we are doing it out of a genuine believe that the methods
are useful to engineers. But we are failing to convey that in a rapidly changing
technological climate, engineers must be prepared to think critically about the
engineering methods, not just about the engineering designs. When we teach
modeling, we must also teach meta-modeling, where we discuss the modeling
choices.

4 Conclusion

Abelson and Sussman describe computer science as “procedural epistemology”
[1]. Indeed, 20-th century computing was about procedure as knowledge. I
believe that 21-st century computing will transform into a system science
that subsumes procedure, but also embraces concurrency, time, randomness,
and physicality. 21-st century computing will be an epistemology of concurrent
interacting components. And the highly valued engineering education will be
that which focuses on systems rather than on technologies.

References

1. H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, second edition edition, 1996.

2. A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE, 79(9):1270–1282, 1991.

3. R. Boute. Integrating formal methods by unifying abstractions. In E. Boiten,
J. Derrick, and G. Smith, editors, Fourth International Conference on Integrated

Engineering Education 9

Formal Methods (IFM), volume LNCS 2999, page 441460, Canterbury, Kent,
England, 2004. Springer-Verlag.

4. C. S. Committee on Networked Systems of Embedded Computers, D. o. E.
Telecommunications Board, and N. R. C. Physical Sciences. Embedded, Every-
where - A Research Agenda for Networked Systems of Embedded Computers.
National Academy Press, Washington DC, 2001.

5. A. Deshpande and P. Varaiya. Information structures for control and verification
of hybrid systems. In American Control Conference (ACC), 1995.

6. J. Hartley Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

7. T. Hoffman. Smart dust - mighty motes for medicine, manufacturing, the mili-
tary and more. Computerworld, March 24 2003.

8. G. Kahn. The semantics of a simple language for parallel programming. In
Proc. of the IFIP Congress 74. North-Holland Publishing Co., 1974.

9. P. Kopke, T. Henzinger, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? In 27th Annual ACM Symposioum on Theory of Computing
(STOCS), pages 372–382, 1995.

10. M. Kourjanski and P. Varaiya. Stability of hybrid systems. volume Hybrid
Systems III, LNCS 1066, pages 413–423. Springer-Verlag, 1995.

11. E. A. Lee and D. G. Messerschmitt. Engineering an education for the future.
IEEE Computer Magazine, 31(1), 1998.

12. E. A. Lee and D. G. Messerschmitt. A highest education in the year 2049.
Proceedings of the IEEE, 87(9), 1999.

13. E. A. Lee and P. Varaiya. Introducing signals and systems - the berkeley ap-
proach. In First Signal Processing Education Workshop, Hunt, Texas, 2000.

14. E. A. Lee and P. Varaiya. Structure and Interpretation of Signals and Systems.
Addison Wesley, 2003.

15. J. Liu. Responsible frameworks for heterogeneous modeling and design of em-
bedded systems. Ph.D. Thesis Technical Memorandum UCB/ERL M01/41,
December 20 2001.

16. A. Puri and P. Varaiya. Verification of hybrid systems using abstractions. In
Hybrid Systems Workshop, volume Hybrid Systems II, LNCS 999, pages 359–
369. Springer-Verlag, 1994.

