
GABRIEL: A DESIGN ENVIRONMENT
FOR PROGRAMMABLE DSPs

E. A. Lee, E. Goei, H. Heine, W. Ho, S. Bhattacharyya, J. Bier, E. Guntvedt

U. C. Berkeley
Berkeley, CA 94720

eal@janus.Berkeley.EDU

ABSTRACT

Gabriel is a retargetable software system for the develop-
ment of assembly code and microcode for single or multiple
programmable DSPs. It is intended to ease code develop-
ment even for processors that are not easy targets for con-
ventional compilers. Code generation for the Motorola
DSP56001 is emphasized. A Thor-based simulator supplies
a variety of target multi-DSP architectures based on the
DSP56001. The top-level algorithm description is a large
grain data frow graph, and a graphical interface using
OCT and VEM provides a natural representation of the
high level structure of the algorithm.

1. INTRODUCTION
At the highest level, Gabriel applications are

described as block diagrams (equivalent to large-grain data
flow graphs [Bab84]). Feedback is efficiently supported, as
are changes in sample rates. Blocks can have arbitrary
granularity, and may come from a standard library or be
generated by the user. A static (compile time) schedule is
devised, and code generated to implement the functionality
represented by the blocks. Each block is a parametrized
code generator written in Lisp; this approach appears to be
flexible enough to support target processors, such as the
fastest DSP chips or VLSI core processors, for which tradi-
tional high level language compilers are not practical. To
permit static scheduling, blocks must fit the synchronous
data $0~ model CLee87a]&ee87bl. This implies some

’ We gratefully acknowledge the support of Cygnet
Technologies, a division of Everex Systems, Inc., Digital
Equipment Corporation, Sony Corporation, and Hayes Inc.,
plus matching funds from the State of California Micro
Program.

Permission to copy without fee all or pm of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice aud the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

significant limitations on the algorithms that can be
represented, although we are working to overcome these
limitations.

Synchronous data flow is a special case of data flow
where the number of tokens produced or consumed by an
actor when it fires is specified ahead of time. The number
cannot be data dependent. This implies that SDF graphs
cannot have data-dependent firing of actors, a significant
limitation for many applications. Although we have
developed more general scheduling strategies, they are not
yet implemented in our software, so they will not be
described here.

Gabriel is the second generation of DSP design
environments at Berkeley, the first generation being Blosim
[Mes84a][Mes84b], a simulation program also based on
block diagrams. One consequence of this heritage is that
some of the Blosim terminology survives in the new sys-
tem. Specifically, function blocks in the block diagram,
also called actors in the data flow literature, are called stars
in Gabriel. The block diagram can be hierarchical, with a
cluster of stars being called a galaxy. A galaxy can be
manipulated as if it were a star, and can itself contain
galaxies. An entire application is called the universe. Blo-
sim, however, is a DSP simulation environment, whereas
Gabriel is a real-time implementation environment. Some
of the generality of Blosim had to be sacrificed in order to
get efficient implementations.

A number of other block-diagram systems for DSP
have appeared in recent years. Three commercially avail-
able programs are BOSS [Sha87] from the University of
Kansas, DSPlay from Burr-Brown, and the Signal Process-
ing Worksystem from Corndisco. BOSS and the Comdisco
system are both currently strictly simulation systems, not
aimed at real-time implementations. BOSS is particularly
distinguished for its project management facilities. DSPlay
is a PC based system for both simulation and code genera-
tion (for the AT&T DSP32). In the opinion of the authors,
all three systems suffer from not using synchronous data
flow techniques.

Two important non-commercial block-diagram sys-
tems aimed at real-time implementations on TMS320 sys-
tems are a prototype program from Lincoln Labs [Zis86]

26th ACM/IEEE Design Automation Conference@
Paper 10.2

0 1989 ACM O-89791 -31 O-8/89/0006/01 41 $1.50 141

and Gospl [Cov87]. By not using synchronous d.ata flow
techniques, however, both systems are constrained ID single
sample-rate appIications. Gospl does not attempt to paral-
lelize the code. Techniques for fine-grain parallel real-time
implementations have been investigated at Georgia Insti-
tute of Technology [Sch85][Sch86].

Block diagram languages for simulation #actually
have a long and distinguished history; this testifies to their
attractiveness to the DSP community. A number of sys-
tems were proposed or built in the 1960s
[Der69][Go169] [I&65] [Ke161] and 1970s
[Cry74][Kor77][Hen75]. Since all of these systems were
aimed at simulation, not implementation, they did not
exploit one of the principle advantages of block diagram
descriptions, which is the ability to automatically parallel-
ize the implementation using data flow techniques.

2. THE USER MODEL
Gabriel runs as two concurrent Unix processes, a

VEM process handling the graphical interface, and a Lisp
process handling the code generation. It is possible to
bypass the graphical interface and interact directly with the
Lisp process. This is useful if a graphics workstation is not
available.

Graphical representation of computer programs is a
controversial topic. For general-purpose programming,
many experimental systems have been disappointing. An
interesting experiment is Pitt [Gli84], a visual program-
ming system in which entire programs are built graphically.
However, many such systems go to the extreme of attempt-
ing to express everything graphically, and the result is
severe limitations in the complexity of programs, and. cryp-
tic and arbitrary symbols representing concepts that have
no natural visualization. Gabriel uses graphics to represent
the high-level structure of the program, leaving many
details to the textual definition of the stars. The graphical
representation of a data flow organization is appealing, and
complexity is easily handled using hierarchy. While we
make no claim that a graphical representation of this type is
suitable for all applications, we are convinced it is s&able
for signal processing.

The Gabriel graphical interface is built using VEM, a
graphical editor designed at UC Berkeley for CAD. A
sample screen is shown in figure 1. The interconnection of
icons represents the system topology and is stored by IOCT,
a design manager associated with VEM. Using VEM and
X windows commands, the user can pan, zoom, resize:, and
move windows. Icons can be moved, copied, or dragged
(dragging preserves connections, moving does not). Com-
mands are all menu driven and have single-key accelera-
tors.

Stars are collected into libraries organized around
Unix directories and represented in palettes in the graphical
interface. A separate library is used for each target proces-
sor. Gabriel currently has libraries for non-real time opera-
tion on the local workstation and for real-time operation on
the Motorola DSP56000. A small library has also been
built for the AT&T DSP32, demonstrating retargetab.ility.

The user can easily create star libraries and peruse them.

2.1. Creating Stars
Even the best designed star library wil1 not satisfy the

needs of most users. The Gabriel system attempts to make
the creation of new stars as easy as possible. If a C com-
piler is available for the target processor {as it is for the
DSP56001), then the functionality of a new star can be
defined in C. Otherwise it must be written in the assembly
language or microcode of the target. The most flexible
mechanism available for doing this in Gabriel is to define a
code generator in Lisp. A less flexible mechanism is also
provided that requires no Lisp coding, but we will not
describe it here.

The definition of a star is best illustrated with a trivial
example, the adder represented by the plus sign icon in
figure 1:

(defstar 56add
(descriptor “DSP56000 - 2-Input Adder”)
(param saturation “yes”}
(input in1 (type dsp56000))
(input in2 (type dsp56000))
(output sum (type dsp56000))
(function 56add)

)

Gabriel keywords are shown in bold. The name of the star
is “56add”. The descriptor provides a short summary of
the functionality of the star. The param entry defines a
parameter named “saturation” with default value “yes”.
Two inputs named “inl” and “in2” and one output named
“sum” are defined. The type designator prevents the user
from accidentally connecting this star to an incompatible
star, such as a code generator for the AT&T DSP32.
Finally a function named “56add” is associated with the
star. The function is a Lisp routine defined as follows:

(def-cg function 56add ()
(emit-code ” move x:” in1 “~0”)
(emit-code ” move x:” in2 “,a”)
(emit code ” add xO,a”)
(if (e&al saturation “no”)
then

(emit-code ” move al ,x:” sum)
else

(emit-code ” move a,x:” sum)
1

1

This function begins by issuing two move: instructions to
get the inputs from memory and load them into registers.
The inputs are referenced symbolically (by name), and
Gabriel will supply the memory locations using an efficient
and flexible static buffering scheme [Lee87b]. Then an add
instruction is issued. Finally an instruction is issued to
move the sum to the output memory location, where
Gabriel again will supply the memory locations. There are
two possibilities for the last instruction, depending on the
value of the “saturation” parameter. That parameter

Paper 10.2

142

specifies how to handle overflow conditions in the adder. If
the parameter has value “yes” (the default), then an
overflow will result in the DSP56001 writing to memory
the largest number consistent with the sign of the result that
can be represented in the 24 bit format. The code segment
generated is:

;code for star3 -- ako of 56add
move x:0,x0
move x: 1,a
add xO,a
move a,x:2

Otherwise, the overflow will be ignored and wraparound
permitted.

A number of comments are in order.
. Fixed point processors often have arithmetic proper-

ties (such as saturation arithmetic) that are difficult or
impossible to represent in conventional high level
languages such as C. The Gabriel mechanism, by
contrast, has no such difficulty, as illustrated in the
above example.

. Depending on the schedule generated by Gabriel, it
is possible that the code immediately following the
above code segment would move data from memory
back into a register. For example, Gabriel may pro-
duce the following wasteful code segment at the
boundary between two stars:

move a,x:2
move x:28

Our plan is to eliminate such wasteful code segments
with a post-optimizer, but this has not been done.

. No star can retain ownership of any registers. In
other words, the star can make no assumption about
the data in any register on entry. The entire context
of the star must be stored in memory. Although this
certainly leads to some inefficiency, maintaining
modularity would be very difficult without this
assumption.

. Because of the above inefficiencies, Gabriel pro-
duces more efficient code when the granularity of the
stars is large than when it is small. However, Gabriel
makes no attempt to exploit concurrency within a
star, so large granularity means less concurrency to
exploit in a multi-processor target.

In addition to the capabilities illustrated by the above
example, Gabriel supports the following:
. A star may allocate memory in the target processor

for storage of context information from one invoca-
tion to the next.

. A star may have a parameterized number of inputs
and outputs.

. A star can have an initialization routine and termina-
tion routine. The initialization routine can manipu-
late or compute parameters (for instance digital filter
coefficients) and can write assembly code that will

appear before the main loop. This is useful for ini-
tializing memory locations and setting up I/O. The
termination routine is invoked after the main loop
has been written and is useful for defining subrou-
tines.

Large algorithms will be difficult to represent at the
finest level of granularity, so the hierarchical capabil-
ity of Gabriel should be used. A galaxy is a collec-
tion of stars that can be treated as a star. Inputs, out-
puts, and parameters of a galaxy are bound to inputs,
outputs, and parameters of its component stars.

2.2. Multiple Sample Rates and Block Pro-
cessi ng

Unlike most block diagram environments, Gabriel
easily and efficiently supports multiple sample rates and
block processing. This is accomplished using the princi-
ples of synchronous data flow &ee87a]&ee87b]. The user
model is simple - the number of samples that the star pro-
duces or consumes each time it is invoked is defined as a
property of each input and output. For example, the defs-
tar command for an FFT would be:

(defstar fft
(descriptor “Computes the FFI of the input.“)
(param order 128)
(input in (no-samples-used order))
(output out (no-samples-made (* 2 order)))
(memory twiddle-factors x (* 2 order))
(init compute-twiddle-factors)
(function fft))

The order of the FFT is a parameter. The star is not
invoked until the number of samples given by the value
order has accumulated on the input buffer. Gabriel knows
to do this because of the no-samples-used property of the
input. It gives the number of samples required for the star
to fire. For most stars, this number is not specified and is
assumed to be unity. In the run-time function, samples on
the input are accessed using the format name@number,
where the number gives the position of the sample relative
to the most recent one. When the fft star fires, it will pro-
duce twice as many samples as it consumes, because this
particular implementation outputs the real and imaginary
parts sequentially using the same output port. Memory is
allocated for the storage of the twiddle-factors, which are
computed by Lisp code (at compile time) in the initializa-
tion routine. The run-time function is calledflt.

Consider a universe consisting of a signal source
connected to the above F’FT star connected to a signal out-
put star. Suppose the signal source produces one sample on
each invocation. Gabriel will automatically determine that
the signal source must be invoked 128 times before the the
FFT can be invoked once. In the current release of Gabriel,
the 128 invocations are accomplished by in-line code, i.e.
128 repetitions of the code for the signal source. This is
obviously seriously wasteful of code space, and we are
investigating methods for eliminating this waste.

Paper 10.2

143

3. REAL-TIME I/O
Suppose that the signal source in the above example

is an A/D converter connected to the FFT star. It is
assumed that the target architecture has an A/D cclnverter
connected to at least one of its processors. In Gabriel, an
A/D star has one output and no inputs. In other words, in
accordance with the data flow model, the A/D star is just a
source of data that can be scheduled at any time. Suppose
now that the FFT is used to implement an FIR filter in real
time, and hence will be invoked repeatedly. Using the
data-flow model the scheduler simply schedules the A/D
star 128 times in a row, then schedules the FFT star once.
With periodic repetitions of this schedule, the invocations
of the A/D star are far from regular. If on each invocation
of the A/D star it waits for input, then most of the time the
processor will be idle, waiting for an input. Clearly this
approach is not desirable.

We have implemented a simple and familiar solution,
double buffering. The A/D star generates code for two rou-
tines, an interrupt service routine and a run-time routine.
The interrupt service routine is invoked by the hardware
independent of the Gabriel scheduler. It collects an input
sample and stores it in a buffer. Each location in the buffer
has a semaphore to indicate whether it is full or empty.
The run-time routine collects data from the buffer, setting
the semaphore to indicate that it is empty, and halting to
wait for an interrupt only if the buffer is entirely empty.
The interrupt service routine will be invoked at regular
intervals, while the run-time routine can be invoked at arbi-
trary intervals. It is easy to determine the precise size of
the buffer required by determining the total number of
times the A/D star is invoked in one cycle of the periodic
schedule.

4. TARGET ARCHITECTURES
Gabriel is intended to be retargetable both in the

selection of component processors and in their multi-
processor interconnection. The system is new enough that
we have only been able to test this on a limited number of
configurations, but we expect it to be most useful for mod-
est parallelism, on the order ten or fewer processors. Our
lab is equipped with two target systems, a single-processor
system and a four-processors system. The latter system is a
prototype provided by Dolby Laboratories, of San Fran-
cisco. We have concentrated on the Motorola DSP.56001
as the component DSP for several technical reasons
&ee89]. Perhaps most importantly, Motorola provides a
simulator that can easily be linked to hardware simmation
programs. We have linked this simulator to Thor [VLS86],
a functional hardware simulator from Stanford, permitting
us to construct a variety of multi-DSP systems in software
and produce and test code for them. The salient features of
each target architecture, such as the number of processors
and the interprocessor communications mechanism, are
specified as attributes of the target architecture. The intent
is that Gabriel should make as few assumptions as possible.

5. WHY NOT USE C?
C compilers are available for many programmable

DSPs, so why do we need Gabriel? Although the
efficiency of the code generated by these compilers is often
not. adequate for cost-competitive, real- time applications,
significant improvements are expected as optimizers are
developed. Therefore, C compilers might be an attractive
long term solution. Furthermore, critical sections of code
can be written in assembly language, or better yet, imple-
mented using efficient subroutines from a subroutine
library. Also, many engineers have experience with C, so
little additional time is required before code development
can begin. Finally, writing applications in C ensures porta-
bility, so that little code conversion is required when new
generations of DSPs are introduced.

These are compelling arguments, and for certain
applications, we concur with the conclusion. Programm-
able DSPs, especially the recent generation of floating-
point architectures, are used in non-real-time signal pro-
cessing. Such applications often use elaborate data styuc-
tures and have a high percentage of control code (vs. signal
processing code). Control code tends to be large and typi-
cally involves much decision making. However, for many
real-time signal processing applications, a.nd for many high
performance architectures, we do not beheve that C com-
piiers provide a complete solution. We expect them to be
useful tools, but only if used as part of a more sophisticated
development environment such as Gabriel. Our reasons
follow.

C is not a particularly appealing language for
describing signal processing algorithms, while block
diagrams are. For instance, there is no clean way to
express a delay (z-l) in C. Furthermore, there are no
“stream” data types, so signals are not naturally represented
in the language. Finally, many of best features of C, such
as the flexibility of its data structures, are irrelevant for
many signal processing algorithms.

Subroutine libraries are in some ways similar to
Gabriel’s star libraries. They can be efficiently coded in
assembly language, and can provide many of the basic sig-
nal processing functions, some of which are awkward to
express in C. Both approaches involve some overhead.
However, stars need not be passed their parameters at run
time, only their data. Subroutines can only evaluate their
parameters at run time. In fact, in Gabriel, the code gen-
erated can depend on the value of the parameters! Conse-
quently, the code can be tuned not just to the function
desired, but to its parameters. For example, a Gabriel FFT
star may have the FFT order as a parameter without penalty
because the twiddle factors can be computed at code gen-
eration time. If a C subroutine has the FFT order as a
parameter, it has no choice but to compute the twiddle fac-
tors at run time.

There is a strong trend towards increased functional-
ity in DSP architectures, a trend that makes writing
efficient C compilers easier. However, the DSPs with the
fastest performance (such as the AT&T DSP16, the Hitachi
DSPi, and numerous proprietary microcoded DSP cores) do

Paper 10.2

144

not have C compilers, and do not have the functionality that
makes it easier to write C compilers. Gabriel provides a
high level interface that can be used with very high perfor-
mance devices of limited functionality. The star library is
customized for the processor, while the C language is fixed.

6. PARALLEL GABRIEL
The scheduling algorithm used in the current version

of Gabriel is given in &ee87a]. It assumes that the run-
time of each star is known reasonably accurately. The less
accurate the run-times, the less optimal the schedule. The
scheduler also assumes that communicating between any
two processors is equally easy, and that the time required is
not much greater than what is required to communicate
between two stars within one processor. This model is rea-
sonable for shared memory machines with small numbers
of DSPs. Fortunately, as long as communication between
any pair of processors is possible, Gabriel produces code
that is robust in the sense that it will work, although possi-
bly not at the predicted speed.

The Gabriel parallel scheduler is invoked before
code generation to determine which processor each invoca-
tion of each star should be mapped to. The parallel
schedule is displayed as shown in figure 1.

The interprocessor communication mechanism is
defined as an attribute of the target architecture. For
retargetability, it is not built into Gabriel. However, in
order to produce robust code, GabrieI assumes handshaking
is done when two processor communicate. Note that is a
shared memory architecture there is no need for an indivisi-
ble test-and-set operation, often required when semaphores
are used in shared memory. The reason such a mechanism
is often required is that if a processor tests a semaphore and
sets it in separate cycles, then it is possible for another pro-
cessor to set the semaphore between the test and set opera-
tions of the first processor. However, because of the data
flow structure, the use of the semaphores is sufficiently dis-
ciplined that this is not a problem. Specifically, only one
processor will ever write to each buffer, and only one pro-
cessor will ever read from each buffer. The writing proces-
sor will not write unIess it reads an “empty” semaphore,
and the reading processor will not read unless it detects a
“full” semaphore. Each processor busy-waits for the sema-
phore to reach the proper state (it is up to the scheduler to
ensure that time is not wasted busy-waiting).

The parallel code generation mechanism has been
tested with a four-processor parallel architecture donated
by Dolby Labs of San Francisco. It has four DSP56OOls,
each with private memory, plus a shared memory accessed
using bus arbitration. The code generated by Gabriel takes
a minimum of about 12 instruction cycles to send or
receive data from the shared memory, including the over-
head of processing semaphores. While this is lean com-
pared to many interprocessor communication mechanisms
on parallel machines, it is high enough to preclude effective
exploitation of fine-grain parallelism. We think it can (and
should) be improved through architectural modifications to
the DSP. Modest reductions can also be obtained with

different organizations of the multiprocessor architecture.
For example, using our Thor-based simulation we have
tested an architecture that uses a multi-ported shared
memory, and hence does not require interaction with a bus
arbitrator. The reduction in interprocessor communication
time is about 25%, but clearly the hardware cost would be
significantly increased.

7. CONCLUSION
The synchronous data flow techniques used in

Gabriel provide a high level application development
environment that can target architectures for which conven-
tional compilers are not suitable. However, there are still
significant inefficiencies and limitations. Many of the
inefficiencies can be removed, in principle, using a post-
optimizer. More fundamental work is required, however,
in order to broaden the domain of algorithms and multi-
processor target architectures that can be supported.

8. ACKNOWLEDGEMENTS
Many people have worked on this project. The most

important contributors are Wai-Hung Ho [Ho88], who
developed the basic code generation mechanism, Holly
Heine and Edwin Goei, who developed the graphical inter-
face, Shuvra Bhattacharyya, who developed the interactive
parallel schedule display, Jeff Bier, who developed the
multi-DSP hardware simulator based on Thor, Erik
Guntvedt and Eric Cox, who developed most of the real-
time I/O capability, and Andria Wong, who demonstrated
retargetability to the AT&T DSP32. Finally, Dave Messer-
Schmitt provided much of the inspiration through his Blo-
sim program.

References.

[Bab84] R. G. Babb, “Parallei Processing with Large Grain Data
Flow Techniques” Computer, 17(7) July, 1984.

[Cov87] C. D. Covington, G. E. Carter, and D. W. Summers,
“Graphic Oriented Signal Processing Language - GOSPL”,
ICASSP. Dallas, 1987.

[Cry741 T. Crystal, and L. Kulsrud, “Circus”, CRD Working
Paper, Institute for Defense Analysis, Princeton, NS, Dec., 1974.

[Der69] M. Dertouzous, M. Kaliske, and K. Polzen, “On line
simulation of block-diagram systems”, IEEE Trans. on Cornput-
us, C-18(4) April, 1969,

[Gli84] E. P. Glinert and S. L. Tanimoto, “Pitt: An Interactive
Graphical Programming Environment”, Computer, 17(11),
November, 1984.

[Go1691 B. Gold and C. Rader, Digital Processing of Signals,
McGraw-Hill, 1969.

[Hai@] D. J. Hait, “The BLOSIM Simulation Program”, Master’s
Report, U. C. Berkeley, Nov. 11,1985.

[Hen751 W. Henke, MITSYN - An Interactive Dialogue Language
for Time Signal Processing, MIT Research Laboratory of Elec-
tronics memo. no. RLE-TM-l Cambridge, MA, Feb. 1975.

[Ho881 W. H. Ho, E. A. Lee, and D. G. Messerschmitt, “High
Level Data Flow Progr amming for Digital Signal Processing”,
VLSI DSP Workshop, IEEE ASSP Society, Monterey, November
1988.

Paper 10.2

145

[Kar65] B. Karaiin, “The new block diagram compiler for simula-
tion of sampled-data systems”, in AFIPS Collference Proceedings,
27 pp. 55-61, Spartan Books, 1965.

[Ke161] Kelly, Lochbaum, and Vyssotsky, “A Block Diagram
Compiler”, BellSys. Tech. J. 40(3) May, 1961.

[Kor77] G. Kom, “High-speed block-diagram languages for
microprocessors and minicomputers in instrumentation, control,
and simulation”, Computers in Electrical Engineering 4 pp. 143-
159,1977.

[Lee87a] E. A. Lee and D. G. Messerschmitt, “Static Scheduling
of Synchronous Data Flow Programs for Digital Signal Process-
ing”, IEEE Trans. on Computers, January 1987, C-36(2).

]Lee87b] E. A. Lee and D. G. Messerschmitt, “Synchronous Data
Flow” IEEE Proceedings, September, 1987,

[Lee891 E. A. Lee, “Programmable DSP Architectures, Part II”,
ASSP Magazine, January, 1989.

[Mes84a] D. G. Messerschmitb “A Tool for Structured Functional
Simulation” lEEE Journal on Selected Areas in Communications,
SAC-Z(l), January, 1984.

[Mes84b] D. G. Messerschmitt. “Structured Interconnection of
Signal Processing Programs” Proceedings of Globecom 84,
Atlanta, GA, Dec., 1984.

[Sha87] K. S. Shanmugan, G. J. Minden, E. Komp, T. C. Man-
ning, and E. R. Wiswell, “Block-Oriented System Simulator
(BOSS)“, Telec:ommunications Laboratory, llTniversity of Kansas,
Internal Memorandum, 1987.

[Sch85] D. A. Schwartz, “Synchronous Multiprocessor Realiza-
tions of Shift-Invariant Flow Graphs”, Georgia 1nstitut.e of Tech-
nology Technical Report DSPL-85-2, (PhD Dissertation) July
1985.

[Sch86] D. A. Schwartz, T. P. Barnwell, III, “Cycle-Static Solu-
tions: Optimal Multiprocessor Realizations of Recursive Algo-
rithms”, in VLSI Signal Processing, IEEE Press, 1986.

[VLS86] VLSI/CAD Group, Thor Tutorial, Stanford University,
Stanford, CA, 1986.

[Zis86] M. A. Zissman, G. C. O’Leary, and D. H. Johnson, “A
Block Diagram Compiler for a Digital Signal Processing MIMD
Computer” DSP Workshop Presentation, Ch(stham, MA, October
1986.

Figure 1. A Gabriel screen showing an application in the bottom window, a palette of functional blocks in the middle window, a
two processor schedule at the upper left, and a signal display at the upper right. The application at the bottom (an FM-based
music synthesis system) is built using blocks from the palette immediately above it. Code is generated and run in real time on
a Motorola OSP56001 system. The menu at the bottom is the Gabriel command menu.

Paper 10.2

146

