
DESIGN AND IMPLEMENTATION OF AN ORDERED
MEMORY ACCESS ARCHITECTURE1

S. Sriram, and E. A. Lee

EECS Department, UC Berkeley, Berkeley CA94720.
(sriram@ohm.berkeley.edu, eal@ohm.berkeley.edu)

 December 15, 1992

1. This work was supported by grants from SRC (grant number 92-DC-008), Motorola Inc., and ArielCorp.

ABSTRACT
This paper describes a multiprocessor machine for real-
time Digital Signal Processing that uses commercial pro-
grammable DSP chips. The architecture is a shared mem-
ory, single shared bus parallel processor designed to run
signal processing tasks that can be statically scheduled.
The design is based on the architecture proposed in [1]. A
prototype has since been built. The implementation details
and performance results are discussed here.

1 REAL-TIME SIGNAL PROCESSING USING
MULTIPLE DSP CHIPS

DSPs are ideal for medium throughput applications, such
as speech and digital audio. However, when attempting to
meet real time constraints, one is often faced with the task
of squeezing the application to fit onto relatively few
instructions available per sample on a processor.
For example, consider processing audio at a 44 KHz sam-
pling rate on a processor with a 60 ns cycle time. Audio
samples arrive once every 227 ms. Hence there are only
about 380 instructions available to process each sample
while maintaining real time constraints.
Use of multiple DSPs is thus an attractive option for
increasing the amount of processing that can be done per
sample. The utility of a multi-DSP machine is determined
largely by two issues. First is the overhead associated with
communication and synchronization between processors
and second is the available software environment for pro-
gramming the multi-processor machine. Several multi-
DSP architectures have been demonstrated by the research
community. Special hardware is usually employed for
reducing communication overhead. The SMART array [2]
for example is a distributed shared memory machine with
custom VLSI parts for maintaining coherence. The
iWARP architecture [3] employs separate communication
and computation agent, implemented using custom VLSI.
In [4], the authors describe a DSP96002 based multi-DSP
system with an “intelligent communication controller”
implemented on a gate array for communicating through a
high speed bus.

Our approach is to reduce overhead by restricting our-
selves to a certain subclass of DSP applications. By sacri-
ficing generality, we acheive efficient communication
between processors with relatively simple hardware. Such
an approach is ideal for low cost implementation of
embedded applications that fall into this subclass, on mul-
tiple DSPs. Also, software environment used for program-
ming the multi-processor machine is closely tied to the
hardware methodology employed.

2 SYNCHRONOUS DATA FLOW
We address DSP applications that can be specified as a
data-flow graph, with nodes (actors) being individual tasks
and directed arcs between them representing flow of data
(tokens). Synchronous Data Flow (SDF) refers to a sub-
class of data flow graphs where the actors lack data depen-
dency in their firing patterns [5]. Thus in SDF graphs the
number of tokens produced and consumed in each of the
output and input arcs of each actor is constant and fixed at
compile time. In exchange for this restriction several nice
properties are obtained for these graphs. In particular, self-
timed scheduling, i.e. assigning actors to processors and
specifying their firing order, can be done efficiently at
compile time. Nearly optimal static periodic multi-proces-
sor schedules can be obtained for these graphs [6]. Also,
given approximate execution times for the actors, one can
constrain the order in which processors would need to
access shared resources at run time without unduly sacri-
ficing performance.

It is seen that a large set of DSP algorithms fall into the
SDF paradigm. In our group at Berkeley, we have imple-
mented Gabriel, a block diagrammatic software environ-
ment for DSP based on the SDF model [7]. Ptolemy, the
next generation system developed by our group, handles
several different models, SDF being one of them [8]. Both
systems can generate executable code for processors from
block diagram specifications. Parallel scheduling algo-
rithms have been implemented to schedule a flow graph
onto multiple processors. Each processor gets a subset of
all the nodes present in the flow graph, and it executes
them in the prescribed order. When data tokens need to
flow between processors, interprocessor communication

— Proc. of ICASSP ‘93, Minneapolis, April, 1993 —

primitives are inserted in the code of the sender and the
receiver. The dataflow graphs we deal with are typically
fine to medium grained, with each node representing no
more than few tens of instruction cycles. Data going from
one processor to another is usually one word at a time, in
other words the data is not ‘packetized’ into blocks.
Figure 1 illustrates the multiprocessor scheduling mecha-
nism.
Under the software environment above we describe an
architecture for synchronous data flow.

3 ARCHITECTURE
3.1 Motivation
Our goal was to design parallel hardware that would mesh
well with the software methodology to be used on top of it.
The result, hopefully, would be an architecture optimized,
both in terms of performance as well as cost, for the
restricted set of applications (in this case SDF) that we
were concentrating on. We look at a single bus shared
memory architecture, mainly because it results in simpler
hardware and an easier partitioning problem. For such an
architecture, communication of data through shared mem-
ory involves bus and memory contention. Usually there is
a bus arbiter to resolve simultaneous bus access requests.
Memory accesses, then, must be synchronized using sema-
phore mechanisms. All this adds to the inter-processor
communication (IPC) overhead, not to mention the bus
bandwidth wasted on unsuccessful semaphore checks.

In our lab we had a four processor Motorola DSP56000
architecture based on the “bus arbiter and semaphore”
mechanism. Because of the associated overhead, 30
instruction cycles were required to transfer a word
between processors. For digital audio, 30 cycles represents
about 8% of the processing time available on a processor,
in the scenario of Section 1. This implies that the sched-
uler must use as few IPCs as possible, thus severely
restricting the parallelism that could potentially be
exploited.
In principle we could reduce the IPC overhead by manag-
ing semaphores in hardware, using multi-ported memory
and so on, under the penalty of complex and expensive
hardware. Instead, noting that the above approach is too

general for our purposes, we look at an alternative solu-
tion.
3.2 Ordered Transaction Principle
Suppose we knew the exact run time behavior of each of
the task nodes, down to the clock cycle. Also suppose that
all processors run synchronously. We could then determine
at compile time the instruction each processor executes on
each clock tick (the fully-static approach in [1]). This
approach would obviate bus-memory contention and result
in near zero overhead IPC. However it would be impracti-
cal, since we usually do not know execution times of
nodes to the degree required here.

Now, suppose we retain only the order of execution of
nodes and the order in which shared memory is accessed,
based on the static schedule. Since the application fits the
SDF model, imposing this constraint does not sacrifice
efficiency, provided that approximate execution times of
the nodes are known. The approach is robust even for
inaccurate execution time information. Performance effi-
ciency however, may suffer in this case. Run time imposi-
tion of an order pre-determined at compile time obviates
bus and memory contention, as in the fully-static case. No
bus arbitration is required, and semaphores are not needed.
A central controller simply maintains the pre-determined
order by granting the bus to each processor on its turn. In
the best case, if the scheduler has done a good job, the pro-
cessor already has the bus when it needs it and can go
ahead with its shared memory transaction. On the flip side,
if the scheduler does not do a good job, a processor may
have to wait until the bus is granted to it, or even worse, a
processor may not yet be ready when it is granted the bus,
thus blocking other processors that need the bus.
This approach is hardware lean: bus arbitration logic
already present on the processors can be used. The access
controller is simply a counter addressing memory that is
downloaded with the schedule at compile time. No other
hardware is required to implement the scheme. Moreover,
in the best case it takes only 3 instruction cycles per trans-
action, which is about as well as we can hope to achieve.
3.3 Hardware Implementation
As a proof-of-concept prototype, we have built a 4 proces-
sor single bus shared memory architecture, called the

Proc 1

Proc 2

Proc 3

Proc 1
Proc 2
Proc 3

SDF graph

Partitioned graph

Static Schedule:
A

B

C
D

E

G

F

A B
C D E

F G

Send

Receive

Idle time

1 2 3

Estimated order of occurance of
inter-processor communications

A
B

C
D

E

F

G

FIGURE 1. Illustration of the scheduling mechanism

FIGURE 2. Block diagram of four processor OMA board

ordered memory access architecture (OMA) board, with
hardware support for ordering shared memory transactions
(Figures 2 & 3). In our implementation, we use 4 Motorola
DSP96002 processors on a single printed circuit board,
operating with a 33MHz common clock. Even though our
techniques can be applied to most off-the-shelf DSP chips,
we chose the DSP96002, because its dual bus 32-bit archi-
tecture lends itself naturally to our specific application. A
processing element consists of a DSP96002 with up to
256Kbytes of onboard zero wait state static RAM on one
port (local memory); the other port of all processors are
connected together to form the shared bus. There is provi-
sion for up to 512Kbytes of onboard static shared RAM.

The transaction controller is implemented as a presettable
counter on a Xilinx FPGA. This was done with a view
towards future experimentation with the transaction order-
ing mechanism. The access order list is extracted from the
schedule and downloaded into the transaction controller
memory. The schedule counter steps through this list at
runtime. Stored entries in the schedule RAM correspond
to processor IDs. This output is latched and decoded to
obtain bus grant signals for the processors. The schedule
counter is incremented each time the bus is released by a
processor. Host interface and a simple I/O mechanism is
also implemented on the Xilinx array. Re-use of the gate
array has saved us a fair amount of glue logic, thus making
the board less complex. Buffers for connecting multiple
boards are included. We can configure multiple boards
such that they form a single bus, or we could have cleaved
busses with communication between busses implemented
on the Xilinx chip.
The host to this board is a DSP56000 Sbus based card
from Ariel Corp. This card is used to control the OMA
board as well as download code from a SPARCstation run-
ning UNIX. The 56000 also acts as a interrupt processor,

providing the OMA board with real time I/O. Currently,
we feed the OMA board with data from a compact disc
(CD) player and obtain data from it at CD rates.
The OMA board is a 10 layer through-hole PCB, with
dimensions of 11’’ by 7’’. It was designed and laid out
using the tools developed here at UC Berkeley [9] and was
fabricated by MOSIS.

4 RESULTS
The 4 processor prototype has been tested and functional
correctness has been verified. We have been able to
achieve processor to processor to communication over the
shared bus with a cost of 3 instruction cycles. The multi-
processor system has also been integrated into Ptolemy
and Gabriel, for automatic scheduling, code generation
and downloading from a Sun Sparc workstation. Some of
the applications that have been tested on the OMA board
are as follows.

4.1 1024 point complex FFT
Data is assumed to be present in shared memory. The
transform coefficients are written back to shared memory.
A single 96002 processor on the board performs the trans-
form in 3.0 milliseconds (ms). With all four processors, it
takes 1.0 ms. Each processor performs a 256 point FFT
from the first stage of a radix 4 computation. This example
is communication intensive: the throughput is limited by
the available bus bandwidth.

4.2 Music synthesis
A synthesis algorithm for plucked strings was imple-
mented using the Karplus-Strong algorithm. Synthesis of
each voice involves a noise source, a pulse generator, a
delay, a filter operation and scaling operations. A single
processor could fit 7 voices in real time (44 KHz sampling

SHARED BUS

Local Memory Local Memory

Local MemoryLocal Memory

DSP96002 DSP96002

DSP96002DSP96002

Shared
Memory

Xilinx
(XC3090)

Schedule
Memory

Bus grant
signals

Bus grant
signals

InterfaceInterface
to other
boards or
I/O

I/O
to Host,

FIGURE 3. Photograph of the board

rate). Partitioned accross 4 processors, with 15 IPCs, we
could fit in 28 voices. This example is not communication
intensive; the low overhead IPC mechanism easily absorbs
the extra cycles associated with IPC.

4.3 QMF filter bank
A filter bank was implemented to decompose audio from a
CD player into 5 bands. The resynthesis bank was also
implemented together with the decompostion part. This
involved 16 multirate filters (18 taps each). There were 85
IPCs in the final schedule .

5 CONCLUSION
We have presented the design and implementation of a
multi-DSP architecture that acheives low overhead inter-
processor communication with low hardware complexity.
Program entry, scheduling and code generation for this can
be done under the Ptolemy environment. Some applica-
tions have been run on the board. We plan to expand the
existing I/O capability of the board by adding peripheral
modules. This will enable us to evaluate the architecture
under several other applications.

Imposition of a single fixed order at run time means that
no data dependency can be tolerated. To run non-SDF
graphs on the OMA architecture, we use a presettable
counter as the transaction controller. Any processor that
has posession of the shared bus can make the transaction
controller jump to another bus access schedule by preset-
ting the schedule counter. Conditional branches can thus
be handled by computing access schedules for each branch
outcome and switching between them at run time. Compi-
lation process for this scheme under the Ptolemy environ-
ment will be the subject of future research. We can then

evaluate how well this approach to handling limited data
dependency works in practice.

6 REFERENCES
[1] J. C. Bier, S. Sriram, and E. A. Lee, “A Class of Multi-
processor Architectures for Real-Time DSP”, VLSI Signal
Processing IV, 1990.
[2] W. Koh, “A Reconfigurable Multiprocessor System for
DSP B ehavioural Simulation”, Ph.D. Thesis, ERL, UC
Berkeley, June 1990.
[3] S. Borkar et. al., “iWarp: An Integrated Solution to
High-Speed Parallel Computing”, Proceedings of Super-
computing 1988 Conference, Orlando, Florida.
[4] A. Gunzinger et. al., “Architecture and Realization of a
Multi Signalprocessor System”, Proceedings of the Inter-
national Conference on Application Specific Array Pro-
cessors, Berkeley, California, August, 1992.
[5] E. A. Lee, and D. G. Messerschmitt, “Synchronous
Data Flow”, IEEE Proceedings, Sept. 1987.
[6] G. C. Sih, and E. A. Lee, “Multiprocessor Scheduling
to Account for Inter-processor Communication”, Ph.D.
Thesis, ERL, UC Berkeley, April 1991.
[7] J. C. Bier et. al., “Gabriel: A Design Environment for
DSP”, IEEE Micro Magazine, Oct. 1990, Vol. 10.
[8] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogenous Systems”, Invited paper in the International
Journal of Computer Simulation, to appear.
[9] M. B. Srivastava, “Rapid Prototyping of Hardware and
Software in a Unified Framework”, Ph.D. Thesis, ERL,
UC Berkeley, June 1992.
[10] J. Buck, and E. A. Lee, “The Token Flow Model”,
Data Flow Workshop, Hamilton Island, Australia, May
1992.

