

Presented at ICASSP-94 - Adelaide, Australia
AUTOMATIC CODE GENERATION FOR HETEROGENEOUS MULTIPROCESSORS

José L. Pino, Thomas M. Parks, and Edward A. Lee

EECS Department, University of California, Berkeley CA 94720
{pino,parks,eal}@EECS.Berkeley.EDU
ABSTRACT

This paper describes the use of Ptolemy to automatically
generate code for heterogeneous multiprocessor systems.
The framework presented lets the designer migrate from
simulation to code generation while developing an
application that is specified by constructing a dataflow
graph. From primitive send and receive actors, the
framework can automatically construct three classes of
interprocessor communication (IPC) interfaces. The first
type of interface uses a synchronous dataflow (SDF)
parallel scheduler to partition and schedule the graph
across the available processors. The second type of
interface allows hierarchical use of cooperating schedulers
within an application. Finally, the third interface uses the
send and receive actors as an interface between code
generation and simulation systems in Ptolemy. To
illustrate the framework, we present an example of a
heterogeneous architecture consisting of a workstation
with multiple Motorola 56001 processors. We present the
relative strengths and weaknesses of each type of
interface.

INTRODUCTION

Dataflow is a natural representation for signal processing
algorithms. One of its strengths is that it exposes
para l le l i sm by only express ing the ac tua l da ta
dependencies that exist in an algorithm. Applications are
specified by a dataflow graph where the nodes represent
computational actors, and data tokens flow between them
along the arcs of the graph. Ptolemy [1] is a framework
that supports dataflow programming as well as other
computational models (such as discrete event), in which
program graphs have different semantics.

Code generation consists of two phases, scheduling and
synthesis. In the scheduling phase, the dataflow graph is
partitioned for parallel execution. We splice send and
receive actors into the graph for interprocessor
communication. These actors do the synchronization
necessary for a self-timed implementation [2]. For each
target processor, an ordering of actor invocations is
determined. In the synthesis phase, the code segments
associated with each actor are stitched together, following
the ordering specified by the scheduler. Commercial
systems which use this “threading” technique include
Comdisco’s DPC [3] and CADIS’s Descartes [4]. The
techniques we describe here are complementary to those in
DPC and Descartes, and could, in principle, be used in

combination with them. In particular, we focus on
management of data passed between actors when
synchronous dataflow is used. DPC, by contrast, does not
use dataflow semantics.

There are several forms of dataflow defined in Ptolemy. In
synchronous dataflow (SDF) [5], the number of tokens
produced or consumed in one firing of an actor is constant.
This property makes it possible to determine execution
order and memory requirements at compile time. Thus
these systems do not have the overhead of run-time
scheduling (in contrast to dynamic dataflow) and have
very predictable run-time behavior. Some of the many
SDF scheduling algorithms implemented in Ptolemy
include: uniprocessor list scheduling [5], uniprocessor
loop scheduling [6], Hu-level multiprocessor scheduling,
and Sih’s declustering multiprocessor scheduling [7].

Although SDF is sufficient to describe many signal
processing algorithms, it cannot express data dependent
control flow. A dataflow model which does allow this is
boolean dataflow (BDF). This model subsumes SDF with
two additional actors: switch and select. These actors
allow the construction of data-dependent control flow
structures such as do-while and if-then-else. Buck [8]
shows how most of these graphs can be scheduled with
bounded memory. Such graphs allow some dynamic
dataflow expression with minimal run time overhead.
Unfortunately, at the present time this scheduling works
only for uniprocessor systems.

In this paper, we present three IPC interfaces that are
constructed automatically from send and receive actors.
The first interface uses send and receive actors to
implement the IPC specified by an SDF parallel scheduler.
In this configuration, we generate a stand-alone
application where the entire dataflow graph is scheduled as
a whole. The second interface, known as the CG
Wormhole, also generates a stand-alone application.
However, this interface isolates subsystems of the graph,
using distinct schedulers on each side of the interface.
CGWormholes are similar to the Ptolemy Wormhole
construct, which is defined to be the interface between two
different models of computation. CGWormholes, on the
other hand, interface subgraphs which typically obey the
same model of computation but are executed on different
processors. The third type of interface is a Wormhole
between code generation and simulation. We call this type
of interface a CG-Sim-Wormhole. One of its primary uses
is to embed actual hardware in high level simulations. The
This work was supported by grants from NSF (MIP 9201605), AT&T, ONR, and SRC (grant number 92-DC-008).

top-level simulation can any of the computation models
available in Ptolemy, such as dynamic dataflow, discrete-
event, or communicating processes.

We i l lus t ra te the use of these interfaces with a
heterogeneous target that consists of a workstation in
combination with several digital signal processor (DSP)
cards: Ariel S-56X cards installed on the SBus of a
SPARC workstation. Each DSP card has a single Motorola
56001 digital signal processor, a Xilinx programmable
logic cell array, serial ports, and a DMA port. In this
target, the workstation serves as the interface between the
DSP cards and the user, the network, and other resources.

TARGET SPECIFICATION

A key property of Ptolemy that makes specification of
heterogeneous targets easier is its use of object-oriented
programming techniques. In describing a multiprocessor
target, we begin with the specification of each individual
processor and build multiprocessor targets hierarchically
from these objects. A target specification in Ptolemy
manages the flow of the design process; i.e., it defines the
methods to schedule the graph, compile and run the
generated code, taking into account the target resources. A
detailed description of the code generation framework in
Ptolemy can be found in [9] and with emphasis on single
processor targets in [10].

The fundamental building block of a multiprocessor target
is a single processor target. In our example, we have
multiple Ariel S-56X cards installed in a workstation. An
S56X target describes one of the DSP cards. This target
knows the exact memory resources available on the card
and how download the code into the program memory of
the DSP. The S56X target generates assembly code and
allocates target-specific resources such as private memory.
A CGC target describes the resources of the workstation
and generates code in the C programming language. This
target is a more general type of target than the S56X target.
The code it generates can run on most general-purpose
computers.

A multiprocessor target is built from other targets that it
contains as children in a hierarchy. These children can be
any type of target, from a simple single processor to a
complex heterogeneous multiprocessor. The parent
multiprocessor target specifies the shared resources and
IPC mechanisms of the children. A homogeneous multi-
DSP target description is detailed in [11].

The CGC-S56X heterogeneous target is a multiprocessor
target containing multiple S56X target children together
with a CGC target. The S56X target was used to
implement a real-time ADPCM speech coder described in
[10]. Simpler examples are provided below to illustrate
key features of the different interfaces.

BASIC INTERFACE

When a dataflow graph is partit ioned by an SDF
multiprocessor scheduler, pairs of send and receive actors
are automatically spliced into the graph wherever IPC
occurs. Hence, the location of the splicing is typically
determined by the scheduler and not the user. For
multiprocessor targets, scheduling is performed at the top
level; the children are provided with the resultant schedule
for their processor(s). Any user-specified hierarchy is
ignored in order to fully exploit the parallelism that exists
in the graph.

However, there are disadvantages with using one of the
presently available SDF parallel schedulers. In many
practical situations, such as with heterogeneous targets,
the user knows a reasonable actor partitioning over the
processors. Parallel schedulers are hard to implement and
do not perform many of the optimizations that are
available with uniprocessor schedulers, such as code
compaction[6] and buffer minimization[12]. Furthermore,
schedulers such as BDF do not support multiprocessor
platforms, but are very attractive to express data-
dependent control flow with low run-time overhead.

INTER-CG INTERFACE

To allow the use of heterogenous schedulers in an
application, we implement something similar to the
Wormhole construct in Ptolemy. The use of Wormholes in
a simulation context is detailed in [1]. Here we use it as an
interface between schedulers in a code generation context.
For example, in our heterogeneous target we could use a
BDF scheduler (which works only for a uniprocessor) on
the control processor (workstation) and a loop scheduler
on the DSP card(s). The user can choose the most
appropriate scheduler for each processor.

A CGWormhole is constructed whenever there is a
scheduler change from one level of the user-specified
graph hierarchy to another, as in figure 1. From the
outside, the CGWormhole appears to be a monolithic
actor. This actor is constructed from send and receive

Figure 1. The CGWormhole Construct

CGWormhole

XXXScheduler

YYYScheduler

Receive

Send

Send

Receive

actors for each arc leading into/out of the Wormhole. The
inside interface is constructed by splicing two actors into
the inner graph: a data source for all the receive actors and
a sink for all the send actors.

The strength of this type of interface is clear: we are able
to use the most appropriate scheduler for any part of the
application. This advantage, however, comes at the
possible loss of exploitable parallelism. Another potential
problem is that we could introduce deadlock as shown in
figure 2. In this figure, the dotted lines represent an
arbitrary user-specified boundary. Here, the resultant top-
level graph would be deadlocked, even though the original
graph was not. This condition is returned to the user as an
error at the time of scheduling.

CG-SIMULATION INTERFACE

The last type of interface is between code generation and
simulation in the Ptolemy environment. The code
generation environment synthesizes and compiles code
from a user-specified graph. For simulation, the graph is
interpreted within Ptolemy. This interface is similar to the
previous one in that a CGWormhole is constructed;
however, in this case we must use the EventHorizon
interface with the Wormhole to transfer tokens to Ptolemy.
The EventHorizon interface is shown in figure 3 and is
described in detail in [1].

For this interface we restrict the outside system to be a
simulation. To construct the code generation side, we
splice in CGC actors that are designed to communicate
directly to the EventHorizon. If the inside target is CGC,

the interface is fully specified. However, if it is not CGC, a
CGWormhole is constructed between CGC and the
intended target, as detailed in the previous section. Finally,
the C code for this interface is dynamically linked into the
Ptolemy binary.

As an example, we use the CG-Sim-Wormhole as a simple
test/monitoring system for the DSP card. This example
demonstrates multiple streams of data flowing between the
workstation and DSP at different rates. Figure 4 shows the
hierarchical graph detailing the example. The S56XIO
block, which appears expanded above the main graph, is
executed on the DSP card installed in the workstation. All
other blocks run in a Ptolemy SDF simulation. Externally,
the S56XIO block appears to be an SDF simulation block;
however, before the s imula t ion i s run , code i s
automatically generated and downloaded to the DSP card.

When data reaches the input of the S56XIO block, it is
downloaded to the DSP card. Here it is forked; on one
branch it is downsampled by a ratio of 2:1 and on the other
it is multiplied by a gain of 0.5. The results are then
uploaded to the workstation for display using XGraph
blocks.

A primary motivation for the construction of this interface
is to embed an actual hardware implementation of an
algorithm into a high-level simulation. Other uses of this
CG-Sim-Wormhole include hardware acceleration,
algorithm development/migration and debugging. This
work is similar to the hardware and simulation interface
presented in [13]. The major distinction is that this
interface is one of a t r io of in terfaces a l l bui l t
automatically from the same send and receive actors.

Figure 2. Potential deadlock Condition

A B C

SDF Graph

CG-Sim-Wormhole

A Sim-Domain

CGCTarget

fromUniversal

E
ve

n
tH

o
ri

zo
n

toUniversal

Scheduler

Figure 3. Interface to Simulation: EventHorizon

Scheduler

CGWormhole

Xgraph

Xgraph

Xgraph

singen fork
S56XIO

Figure 4. CG-Sim Multirate Wormhole

DownSample

Gain

fork

Code Generation

Simulation

CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an extensible framework
to generate code for heterogeneous systems. This
environment promotes code reuse in the form of actor and
target libraries. The send and receive actors defined for a
particular target can be used to construct any of the
interfaces described. The first type of interface is one in
which pairs of send and receive actors are spliced into the
graph as specified by an SDF parallel scheduler. Allowing
the scheduler to fully partition the graph exposes maximal
parallelism and will not introduce deadlock. However, this
configuration is inappropriate in systems with high sample
rate changes. The next type of interface, a CGWormhole,
mixes scheduling algorithms in a code generation
application. For example, in a multiprocessor system
where we would like to use dynamic constructs with
minimal run-time over head, we could specify that the
BDF scheduler be used for a particular subgraph and an
SDF parallel scheduler for the remainder of the graph. The
last type of interface allows code generation applications
to communicate with simulations in Ptolemy. With this
interface, an actual hardware implementation can be used
within a high level simulation. These interfaces can be
used in conjunction with one another. For example, a
uniprocessor boolean dataflow scheduler could be used on
the outside of a CGWormhole, and a multiprocessor SDF
scheduler could be used on the inside to parallelize the
inner subgraph. The major focus for future work will be in
deciding how to partition the processors for multiple
CGWormholes.

REFERENCES

[1] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Proto-
typing Heterogeneous Systems,” International Jour-
nal of Computer Simulation , special issue on
Simulation Software Development, to appear 1994.

[2] E.A. Lee and S. Ha, “Scheduling strategies for multi-
processor real-time DSP.,” GLOBECOM '89, 1989, p.
1279-83 vol.2.

[3] D.G. Powell, E. A.Lee, and W.C. Newman, “Direct
Synthesis of Optimized DSP Assembly Code from

Signal Flow Block Diagrams,” ICASSP, vol. 5, San
Francisco, CA, IEEE, 1992, p. 553-556.

[4] S. Ritz, M. Pankert, and H. Meyr, “High level soft-
ware synthesis for signal processing systems,” Pro-
ceedings of the International Conference on
Application Specific Array Processors, Berkeley, CA,
USA, IEEE Comput. Soc. Press, 1992, p. 679-693.

[5] E.A. Lee and D.G. Messerschmitt, “Synchronous
data flow,” Proceedings of the IEEE, vol. 75, no. 9,
1987, p. 1235-1245.

[6] S.S. Bhattacharyya, Scheduling synchronous data-
flow graphs for efficient iteration, Master's Thesis,
University of California at Berkeley, 1991.

[7] G.C. Sih and E.A. Lee, “Declustering: A New Multi-
processor Scheduling Technique,” IEEE Transactions
on Parallel and Distributed Systems, vol. 4, no. 6,
1993, p. 625-637.

[8] J.T. Buck and E.A. Lee, “Scheduling Dynamic Data-
flow Graphs with Bounded Memory Using the Token
Flow Model,” ICASSP, Minneapolis, IEEE, 1993.

[9] J.L. Pino, S. Ha, E.A. Lee, and J.T. Buck, “Software
Synthesis for DSP Using Ptolemy,” Journal of VLSI
Signal Processing, Synthesis for DSP, 1993, to
appear.

[10] J.L. Pino, Software Synthesis for Single-Processor
DSP Systems Using Ptolemy, Master's Thesis Memo-
randum UCB/ERL M93/35, University of California
at Berkeley, 1993.

[11] S. Sriram and E.A. Lee, “Design and Implementation
of an Ordered Memory Access Architecture,”
ICASSP, Minneapolis, MN, IEEE, 1993.

[12] P.K. Murthy, S.S. Bhattacharyya, and E.A. Lee,
“Minimizing Memory Requirements for Chain-Struc-
tured Synchronous Dataflow Programs,” ICASSP,
Adelaide, South Australia, 1994.

[13] M. Pankert, S. Ritz, and H. Meyr, “Integration of dig-
ital signal processing hardware into a system level
simulation environment,” Proceedings of the Euro-
pean Simulation Multiconference, York, U.K., 1992,
p. 147-151.

Downsample 2:1
1

0

−1
0 10 20

Gain x 0.5

0

−0.5
0 20 40

0.5

Original
1

0

−1
0 20 40

Figure 5. Multirate Sine Output

	Abstract
	Introduction
	Target Specification
	Basic Interface
	Inter-CG Interface
	CG-Simulation Interface
	Conclusions and Future Work
	References

