Heterogeneous Cell-Relay Network
Simulation and Performance
Analysis with Ptolemy

Allen Y. Lao

Dept. of Electrical Engineering and Computer Science (EECS)
University of California at Berkeley

July 22, 1993

Abstract

Ptolemy is a platform which allows the modeling and simulation of communication networks, signal process-
ing, and various other applications. Its unique set of internal object-oriented interfaces allows it to merge heteroge-
neous descriptions of distinct system components into a unified simulation. This report concerns itself with
asynchronous transfer mode (ATM), cell-relay network simulation and shows how the combination of three different
domains (modes of system description) lends itself very well to this type of experiment: a synchronous dataflow
(SDF) domain, a discrete-event (DE) domain, and a message queue (MQ) domain. The work presented follows on the
details of a backbone network simulation described in [4]. It is not the goal of this report to focus on network-layer
management and related issues; instead, it focuses on modeling techniques and performance evaluation of various
popular, practical queueing disciplines for space-division packet switches. Ptolemy’s naturalness for the simulation of
such a heterogeneous environment will be demonstrated as well as its usefulness for analyzing network behavior and
performance.

Memorandum No. UCB/ERL M94/8, Electronics Research Laboratory , College of Engineering, University of Cali-
fornia, Berkeley, CA 94720

Heterogeneous Cell-Relay Network Analysis with Ptolemy 1

Introduction

1.0 Introduction

Future communication networks are expected to support a variety of services handling vastly different data
traffic types. The current concept of the integrated services digital network (ISDN) allows for such a capability.
Three elements are recognized as required for an ISDN: The end-to-end channel is purely digital; the network pro-
vides multiple services which differ in terms of required bandwidth allocation; and there is standardization of user
access interfaces. ISDN provides a residential customer with two B channels at 64 kbps and one D channel at
16kbps. [9] These channels can be used for voice and also for data transmissions.

The intelligent network model of ISDN primarily seeks to separate the flow of control information from that of
user information. Customer premise equipment is connected with service-switching points (SSPs) by existing tele-
phone lines known as subscriber loops. The SSP’s are connected themselves to service-control points (SCPs) by the
common channel-signaling network (CCS). An X.25 network makes possible the supervision of these SCPs by a
management system, operating via packet switching as does the CCS. [Wal] Nevertheless, it is often argued that
ISDN’s gains over the existing telephone network do not justify its difficulty of implementation since many of its ser-
vices are already possible with the modern telephone network.

An ambitious alternative to the provision of such multimedia services is the broadband integrated services
digital network (BISDN). BISDN would make available to residential customers four channels at 150 Mbps, one out-
going and three incoming. These high bit-rate channels would be suitable for providing compressed HDTV and other
multimedia information services. Its main design thrust is to economically meet the the widely different requirements
of its intended applications with a single network. A key to developing a cost-effective, flexible network is simplifica-
tion of network architecture coupled with simplification of node processing. The concept of virtual paths is integral to
the philosophy of asynchronous transfer mode (ATM) transmission. Much of the necessity of ATM becomes clear
when the inadequacy of synchronous transfer mode (STM) transmission in handling the switching of different types
of traffic is seen. STM transmission, also known as circuit switching, primarily operates with time-division multi-
plexed (TDM) frame structures to multiplex transmission channels and paths. But increasing demands for a variety of
services with different information transfer rates and a hierarchical scheme of transmission capacities have imposed
great complications on TDM-based networking. [5]

The ATM virtual path concept broadly defines a virtual path as a labeled path (bundles of multiplexed circuits)
extending between virtual path terminators. The virtual path terminators can identify each connection to or from the
network elements included in the segment network to which the virtual path terminators belong. Segment networks
may be LAN’s or local switching networks. Virtual path terminators could be switching systems or LAN gateways,
for example. In addition, the uniqueness of the information unit (cell) which is transported in the network, indepen-
dent of specific channel rates, allows for straightforward multiplexing/demultiplexing of service channels of varying
bit rates. The uniform adoption of the cell as the means of information transport also has the benefit of simplifying
hardware and software processing at network nodes. As far as the identification of virtual paths is concerned, this can
be done by associating with each cell a virtual path identifier (VPI), specifically by attaching it to the cell header.
Nodes have their own routing tables which allow them to route incoming cells correctly by means of the cells’ VPIs
and incoming channel numbers. Routing table renewal at these transit nodes only becomes necessary when paths are
set up, released, or rerouted which eliminates processing on a call-by-call basis at each transit node during call estab-
lishment and release, thus greatly reducing call setup time. On the other hand, circuit-switched transmissions require
a distinct call setup and release phase per call since links dedicated for each call last for the duration of the informa-
tion exchange and need to be freed up for the use of other callers after the call has ended. The nodes are merely
responsible for updating the VPI fields of incoming cells to ensure correct delivery of packets. [5]

The simulation of a BISDN network naturally becomes very complex as one must consider the design of the
networking, call processing, and signal processing subsystems. These components, already posing formidable chal-

Heterogeneous Cell-Relay Network Analysis with Ptolemy 2

Introduction

lenges for independent simulation, interact in complex ways. Unfortunately, most simulation tools for design envi-
ronments impose upon the user a single model of system description. (From this point onward, a single model of
system computation/behavior will be referred to as a domain.) This limitation suffers from two drawbacks: first, it
may not be the most natural domain for the intended user application, and secondly, it prevents the possibility of mix-
ing heterogeneous descriptions together into a unified model for simulation which may more suitably describe the
system of interest than would any single domain itself. The Ptolemy system, on the other hand, naturally allows for
mixed-mode descriptions by assuming little and allowing the user complete flexibility in merging system blocks from
arbitrary domains as needed. This is made possible by its internal object-oriented structure.

Ptolemy’s usefulness as a simulation vehicle also stems from its hierarchical characterization of modules
called blocks. A Ptolemaic system is in general composed of a collection of blocks and a scheduler. The scheduler
determines the order of execution of the system blocks and operates according to the principles of the domain it seeks
to emulate. Blocks are, in fact, modules of code which are invoked at run-time, consume data on input terminals, and
generate data on their outputs. These input and output terminals of blocks are known as portholes. Each connection
between a pair of blocks supports a stream of particles, which are messages conforming to a general data structure.
The hierarchical nature of Ptolemy’s system blocks allows for systematic development of useful, general-purpose
code modules that can be reused in multiple applications and makes possible the building of more complex systems
upon existing ones.

This report describes some areas of focus upon a prototype BISDN model and simulation recently completed,
details being given in [4]. It concentrates principally on the realistic modeling of system components as well as prac-
tical compilation and analysis of performance statistics. The overall organization of the paper will be as follows.
Background information on the three Ptolemy domains that were used to simulate the ATM system of interest will be
given to make clear why they were chosen to model it most naturally. Then will follow a brief description of the net-
work-level operation of the simulation, though this was not a primary focus. Next, we discuss a model to realistically
characterize and analyze the nature of customer packet voice traffic and models to simulate and analyze efficiency of
various queueing mechanisms for space-division packet switches to compare their performances with respect to
switch throughput levels and delay. By means of these example applications, Ptolemy’s benefits in its support of het-
erogeneous simulations will be dramatically illustrated.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 3

Overview of Domains Used in ATM Switching Modeling

2.0 Overview of Domains Used in ATM Switching Modeling

There are currently many different domains existing in Ptolemy for describing different systems. In the case of
the ATM simulation this report addresses, three were utilized: a synchronous dataflow domain (SDF), a discrete-event
domain (DE), and a message queue domain (MQ). Each of these three domains will be briefly described with exam-
ple(s) accompanying each to illustrate simple applications.

2.1 SDF Domain

The SDF domain is especially well-suited for signal processing systems with rationally-related sampling rates
throughout. [2] It is a special case of dataflow described by a directed graph of functional blocks, called actors, where
the arcs in the graph represent streams of dataflow from one actor to another. When an actor “fires,” it consumes some
pre-specified number of data samples, called fokens (or particles), on each input, performs a computation, possibly
updating its internal state, and produces a pre-specified number of tokens on each output. The number of tokens pro-
duced and consumed must be fixed and known at compile-time, a restriction which explains why the SDF model
applies exclusively to synchronous multirate systems. [1] Advantages of SDF are ease of programming (since the
availability of data tokens is static and requires no checking), a greater degree of setup-time syntax checking (since
sample-rate inconsistencies are easily detected by the system), and run-time efficiency (since the order of block exe-
cution is determined at compile-time instead of dynamically at run-time). [2]

The capability to determine at compile-time the necessary order of block invocation for any SDF graph has
significant consequences. This “scheduling” information for the SDF graph actors can be passed to a code generator.
Thus, it becomes possible to translate signal processing algorithms into efficient assembly code for programmable
DSPs. A simple example of an SDF graph and associated schedule is given in Figure 1. The numbers written next to
the input and output ports of the actors in the figure indicate how many tokens that terminal either produces or con-
sumes per firing.

Schedule: AAA BBBBBB CCCC

Figure 1 A synchronous dataflow graph and associated schedule

It is interesting to observe above that one iteration of the schedule consists of three firings of A, six firings of
B, and four firings of C. A user in running the above system would need to recognize what would constitute one
“cycle” of the system and then specify the duration of the execution by numbers of iterations. One can easily see that
there would be cases when an SDF system’s actors are specified and connected in such a way that determining a sys-

Heterogeneous Cell-Relay Network Analysis with Ptolemy 4

Overview of Domains Used in ATM Switching Modeling

tem iteration is impossible. In this case, Ptolemy’s SDF scheduler would detect the inconsistency in the SDF graph
and refuse to execute it.

A typical application of SDF modeling is to filter design and analysis. The block diagram in Figure 2 illustrates
an adaptive filter example. It consists of a Gaussian process generator feeding into an FIR filter with fixed, preset
taps. The adaptive filter block seeks to track the FIR filter, and the difference between the FIR and adaptive filters is
information to be used by the adaptive filter for tap updating. In this example, the Gaussian process generator repre-
sents an ouput-only unit, and analogously, the two graph blocks, one plotting both of the filter output signals against
each other and the other plotting the difference signal of the two filter outputs, are input-only modules. For the most
part, each block is enabled for firing when at least one token is available on each of its input(s) and produces one
token on each of its output(s) per firing. For example, the FloatDifference block requires at least one token on each of
its two inputs and produces one token representing the difference of the two inputs each time it executes. As for the
fixed FIR filter, it has optional decimation and interpolation parameters (both with default one). Thus, its input port
would require at least d tokens to fire where d is the value of the decimation parameter and i tokens waiting to be sent
on its output to emit data where i is the value of the interpolation parameter. By suitable choice of these parameters, it
is possible to effectively model systems with multiple, rationally-related sampling rates. It should be noted that the
SDF system has no notion of time. The two graph blocks, then, plot the values of filter outputs against the sequence
number of incoming tokens (starting from 1, 2, ...). Because of its nature, SDF’s untimed operation does not lose gen-
erality in describing digital signal processing experiments which can be considered to handle data tokens spaced
equally in time.

Graph

D | Fixed

Float

Gaussian HR Diftference Graph
- Filter
Adaptive
Filter
—

(delay)

Figure 2 Block diagram of Ptolemy adaptive filter demo

Heterogeneous Cell-Relay Network Analysis with Ptolemy 5

Overview of Domains Used in ATM Switching Modeling

Poisson

Float
Ramp

2.2 DE Domain

The DE domain in Ptolemy provides an environment for the simulation of timed systems such as communica-
tion networks, queues and servers, and generation of stochastic processes, etc. It operates in an event-driven fashion,
processing events by associating with each a time stamp (according to Ptolemy’s notion of simulated time; work is

Graph

—]
Overflow Graph
Queue size
FIFO
Queue P Server
f Demand
P Server
Stack size
Stack
-
Overflow Graph

Figure 3 A queue and stack with servers demo in the DE domain

Heterogeneous Cell-Relay Network Analysis with Ptolemy

Overview of Domains Used in ATM Switching Modeling

being done to realistically model real-time systems as well.) Thus, the DE scheduler manages an event queue to
enforce chronological ordering of events. System blocks in a DE graph can generally be classified as either being
functional in nature or of delay type. Functional blocks merely perform some operation in “zero” simulated time
whereas delay blocks model latency in the system. By appropiate combination of these two types of blocks, discrete-
event systems can be accurately described and modeled. Also, naturally, blocks known as “event generators” exist
which serve to generate timed processes, such as Poisson processes, independently without requiring inputs for firing.
Another example of an event generator would be a system clock.

Figure 3 is a typical system that would be modeled in the Ptolemy DE domain. The Poisson process block is an
event generator which produces events at equally spaced points in time, in this case set to unity. These events trigger
the FloatRamp block to produce in succession the integers in sequence starting from zero (taking zero time for run-
ning upon each invocation since it is a functional block.) These integers are sent to both a FIFOQueue block and a
Stack block which operate intuitively and have fixed, pre-selected capacities. Both of these blocks send their outputs
to identical server blocks. The servers service incoming events with fixed service times. As can be seen, the server
outputs act as demands for the queue and stack blocks. (Initially, the first events to arrive at both the queue and stack
pass through without requiring an assertion on the demand input; thereafter, events only exit the queue and stack
when the server has produced an output to trigger the demand inputs.) The output events of the queue and stack are
plotted together with any overflow events caused by an arrival of an event when queue or stack capacity was full.
Finally, the size of both the queue and stack are graphed over time to monitor occupancy. Of course, parameters in
this simulation were selected so that the servers’ service times were slightly greater than the mean interarrival time of
events to produce overflow conditions.

2.3 Heterogeneity Made Possible - the Wormhole

Ptolemy naturally handles the mixing of different domains in a system by the wormhole construct. As has been
mentioned, Ptolemy describes systems hierarchically. It recognizes the most fundamental units of computation as ele-
mental blocks called stars and from these, allows the building of galaxies, which are composed of arbitrary collec-
tions of stars and perhaps other galaxies. Of course, it is possible to “flatten” any galaxy into its constituent stars. A
self-standing, runnable system of blocks is known as a universe; with each universe is associated a particular domain
and matching scheduler. Thus, a pictorial representation of, say, a flattened DE universe would appear as in Figure 4.
The wormhole ingeniously allows for the enclosure of a certain domain inside a different one, for example, a speech
processing application described in SDF nested in an outside, timed DE environment which may model a packet
switching network. (Figure 5) To make this possible, the outside domain is given the illusion that the internal SDF
universe is merely a DE star! The SDF universe is, in fact, a wormhole in that it encapsulates a completely indepen-
dent runnable universe with its own scheduler but appears from the point of view of the outside as just a star of that
outside domain type. By supporting the use of multiple domains in a single simulation framework, Ptolemy allows a
designer great flexibility in modeling system components with those domains which are most natural and straightfor-
ward to their implementations.

Actually enforcing the correct operation of such a heterogeneous system is far from trivial and requires correct
synchonization of events that communicate across the domain interface. Ptolemy has implemented this by defining a
universal event horizon which contains all information necessary for domains to perform their specific operations. In
the case of Figure 5, the DE domain has defined a conversion from DE to this universal event horizon and vice-versa.
The same is true for SDF and all other Ptolemy domains. Events which pass from the outside DE universe to the
internal SDF system are translated first from DE to the universal event horizon, then converted from the universal
event horizon to SDF. Correctly processing events passing from the SDF to DE universes should also be straightfor-
ward to see. As one can see in following this strategy, having N domains requires definition of 2N conversions
whereas separately defining a conversion individually from each domain to any other domain would require N
squared specifications!

Heterogeneous Cell-Relay Network Analysis with Ptolemy 7

Overview of Domains Used in ATM Switching Modeling

DE Scheduler : Q

ONNe

Figure 4 A flattened representation of a homogeneous, DE universe

DE Stars

DE Universe

DE Scheduler Q Q Q
SDF-in-DE Wormhole
DE Stars

SDFScheduler O O Q

Q SDF Stars
SDF Universe

Figure 5 Nesting an SDF universe inside of a DE universe. Ptolemy’s capability to do
this would effectively model a speech or video processing unit in a switching network.
From the point of view of the DE scheduler, the SDF universe appears as a DE star.

DE Universe

There are two key principles of object-oriented programming which allow Ptolemy to achieve its goals: inher-
itance and polymorphism. Ptolemy is implemented in C++ and using the C++ language, a user defines various tem-
plates or classes which consist of associated data members and functions to operate on the data. In a sense, a class is
some general data structure enhanced with different functions. These functions are known in C++ as methods. Then
instances of these class templates can be formed, each of which is referred to as an object.

The C++ inheritance mechanism allows for the efficient and flexible formation of new, derived classes from
already existing ones. A programmer merely needs to add desired facilities to existing class(es), and no reprogram-
ming or re-compilation is required. The root, base class from which other classes may be derived serves as a common
interface so that objects of these class types may be handled identically in a program. Thus, inheritance provides a
natural means of expressing common properties among different classes. [7]

For example, a simple class inheritance diagram in Ptolemy is given in Figure 6. It is very straightforward,
showing how domain-specific star classes inherit properties from a base star class.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 8

Overview of Domains Used in ATM Switching Modeling

Star

/ + o o others

SDFStar DEStar

Figure 6 Class Inheritance in Ptolemy

Figure 7 shows how a class can inherit from more than one base class. This is known as multiple inheritance.
In the diagram, we have derived from class Block the Galaxy and Star classes. The Runnable class is intended to rep-
resent at the most basic level any independent, running Ptolemy module. So as an example of multiple inheritance,
the Universe class, since it is both a runnable entity and encloses a galaxy, inherits from both the Galaxy and Runna-
ble classes. Note also, how a domain-specific wormhole class (in the figure, XXX Wormbhole) inherits from both the
Star class of the same domain and the Wormhole class to assume the union of their characteristics, the Wormhole
class itself being derived from the Runnable class. Naturally, we expect XXX Wormhole to have the Wormhole class
as a parent, but the explanation below will show why it’s also essential for it to inherit from the corresponding Star
class, XXXStar.

Block Runnable
Galaxy Star
Universe XXXStar Wormbhole
XXXUniverse XXXWormbhole

Figure 7 Multiple Inheritance in Organization of Ptolemy Blocks

Polymorphism provides for the dynamic binding of class member methods. The method instance invoked is
determined by the actual class type of the object. For example, refer to Figure 8. When a scheduler executes a partic-
ular “star” (which might either be a star or wormhole), it will call the “go()” method of an instance of type XXXStar
where “XXX” refers to the domain in question. In this example, the DE scheduler will not know at compile-time
whether this is a genuine DE star or a wormhole. If it is a star, it won’t know the specific derived class of the star.
Nevertheless, by means of polymorphism, the scheduler will call the correct go() method! Should the star be of type
DEImpulse, say, the DEImpulse implementation of the “go()” will be called whereas should it be a DEWormbhole, its
“g0()” would be invoked and proceed to execute the internal domain’s scheduler. This transparency between star and
wormhole supports heterogeneous simulations.

For a set of classes with a common parent, polymorphism allows their behavior to be customized for any com-
mon method as long as its behavior is defined for the parent class, which provides for the possibility that one of the
child classes will omit an implementation definition of the method, in which case it assumes that of the parent. New

Heterogeneous Cell-Relay Network Analysis with Ptolemy 9

Overview of Domains Used in ATM Switching Modeling

child classes with their own definitions of method(s) they may share with existing classes can be introduced without
altering any existing code or the kernel of Ptolemy.

DEStar
DEImpulse DEWormhole
DEFork
DEMerge

Figure 8 Heterogeneity Made Possible by Polymorphism

2.4 MQ Domain

The MQ domain is targeted at developing control software for applications such as telecommunications call
processing software. It views a system as task modules which exchange messages with one another, each message
carrying information about actions for the destination task to perform along with necessary parameter information.

Network Transmission
(Switches)

Call + *
Request Control Unit
Process

A ¢
Network
- Congestion

Call Traffic Generator

A 4

Level

Router Information

MQ

DE

Figure 9 MQ control domain imbedded in DE environment to simulate packet switching network. The
diagram shows the connections from the point of view of one customer (one telephone with associated
call request process and traffic generator.)

Heterogeneous Cell-Relay Network Analysis with Ptolemy 10

Overview of Domains Used in ATM Switching Modeling

The scheduler has no notion of system time and is event-driven, servicing messages at task blocks in a first-in, first-
out manner. Blocks in an MQ system always communicate over bidirectional links to enable a client-server relation-
ship over connections. In practice, the tasks act as finite-state machines which take messages as inputs to make state
transitions and produce other outputs. This domain also has the capability of dynamically creating and destroying
blocks, reconnecting/disconnecting blocks so that it can support dynamic network topologies. In general, the MQ
description has little range of use in and of itself but is most natural to simulate software imbedded controllers where
an MQ control element may be enclosed in another outside domain external to the MQ system that controls it.

In the case of an ATM network simulation, it would be possible to implement either a form of centralized con-
trol by defining a single MQ control element external to the network packet switches or a distributed scheme of con-
trol by placing MQ controllers inside each of the switches themselves. Figure 9 shows in a simplified way how a
centralized MQ control element would communicate with the rest of the network which resides in a real-time DE
environment. The control domain would have tasks to assume the roles of telephones and the control unit itself. An
external calling request process of the DE domain would trigger operation of a call request loop via the telephones in
the MQ domain. Naturally, the telephone tasks need to be able to trigger generators for telephone call traffic lying
outside in DE. The MQ control block itself needs to be able to communicate with the external switches to perform
routing table updates, etc. Within the MQ universe, the control unit would have access to a network congestion level
information block and possibly a router block as shown to assist it in determining virtual circuits for connecting cus-
tomers.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 11

Network-Level Description of Backbone Simulation

3.0 Network-Level Description of Backbone Simulation

The reader may wish to refer to [Loh] for a complete treatment of the backbone ATM simulation with which
this report is concerned. This simulation base was primarily conerned with demonstrating the successful simulta-
neous interaction of the three previously discussed domains - DE, SDF, and MQ - in describing a large-scale ATM
system modeling packet switching and call processing control in a certain network configuration. The network topol-
ogy is shown in Figure 10. It is composed of four switches connected as shown with three customers or CPE’s (cus-
tomer premise equipment) served by each. A centralized controller resides outside the switches and coordinates the
actions of the twelve customers which make call requests to random parties. The controller’s responsibilities include
handling call request loops, requiring the appropiate determination and setup of virtual circuits without overloading
switch trunk lines, and ending conversations between callers. All of these actions occur in a simulated, timed DE
environment.

There were several networking aspects of this original simulation which were not modeled. Firstly, it did not
allow for the possibility of a dynamic network topology with respect to addition or removal of customer nodes or
switches in the network. Each switch was modeled as a Batcher-Banyan network (discussed later) in which packets
were queued at intermediate nodes of the Banyan network in the event of output port conflict within 2 x 2 switching
elements. Naturally, it would be of interest to compare performance in simulating various switching disciplines that
differ in their packet queueing strategies. Also of significance is the realistic characterization of source traffic gener-
ated by the customers during a phone call. Much of the rationale behind the ATM virtual circuit switching discipline
is the effective handling of “bursty” arrival processes. The original switching network model did not simulate realis-
tic traffic processes but concentrated on the correctness of call processing in establishing virtual circuits to ensure
proper delivery of packets.

Centralized Controller

CPE#1 CPE#4
CPE#2 CPE#5
CPE #3 Switch 1 Switch 2 CPE#6
CPE#10 CPE#7
CPE # 11 CPE#38
CPE# 12 Switch 4 Switch 3 CPE#9

Figure 10 Network topology of backbone simulation

Heterogeneous Cell-Relay Network Analysis with Ptolemy 12

Network-Level Description of Backbone Simulation

What follows is a more low-level look at the implementation of the centralized network controller and the
operation of the packet switches in the original backbone simulation.

3.1 Control Operation

Referring back to Figure 9 shows the basic anatomy of the control domain’s structure and interaction with the
external, timed DE domain. Modeled in the untimed, task-oriented MQ environment, the control domain consists of
a number of telephones (in this case twelve to represent each of the customers in the system), the control unit, and
two stars to assist the control unit in its functions, a router and a network congestion level table. Several other stars in
the DE domain which communicate directly with stars in the MQ control element are also pictured. Each telephone is
unidirectionally triggered by a separate, independent call request star and also communicates bidirectionally with a
distinct traffic generator star. In addition, the control unit communicates bidirectionally with each of the switches in
the system, in the case of this network topology, four. Within the MQ domain, in which all connections are two-way,
the control unit communicates with each of the telephones and also connects with the router and congestion level
table.

Having pointed out the structural details of the network control, the mechanics of its operation are now
explained. In actually implementing the MQ-in-DE wormbhole, Ptolemy runs the DE system in its usual chronological
fashion and will at some point, process an event which passes from an external DE star to an internal MQ star. Recall
from section 2.3 that Ptolemy achieves this by first providing for a conversion from DE to a universal event horizon
and then from the universal event horizon to the MQ description. MQ has no need for timing information and so dis-
regards time stamps of any token(s) entering the system from the outside. In deciding whether to run an internal
wormhole scheduler, Ptolemy checks if the internal domain is “ready” to run; in this case, MQ is always ready to run
and is always successfully triggered. At this time, the MQ scheduler begins operation in processing the triggering
event(s) appropiately. MQ stars pass messages to one another until the scheduler sees that there is a deadlock condi-
tion, meaning that there are no more messages to be processed in the system. Control is now returned to the external
DE scheduler. During the execution of the MQ control, messages or tokens may be produced which are passed from
MQ star(s) to external DE star(s). Since the MQ domain has no notion of time, the DE environment views the execu-
tion of the MQ system as occurring in zero elapsed time, to some extent reflecting the usual negligible time duration
of control functions. Thus, time stamps(s) of tokens produced by MQ which are output across the domain boundary
are identical with those of token(s) that originally were passed from DE into MQ in triggering the operation of the
MQ universe.

During the course of the simulation, the call request process stars of the DE domain generate events according
to independent Poisson processes to model requests which are fed to the MQ telephone stars. These requests contain
information about the desired customer party to be called, and subsequently, the telephone star proceeds to interact
with the control unit as the control attempts to set up the call. Should the called party be already engaged in another
conversation, the telephone is notified of failure in the call attempt; otherwise, the control unit determines trees of
possible virtual circuits by which the two customers can communicate with the aid of the router star. The reason for
this is that switch trunk lines have a maximum allowable utilization which is a parameter specifiable by the user. By
successive inquiries of the congestion level table, the control unit can establish a suitable virtual circuit to support the
conversation. It will attempt to set up “direct” conversations over more roundabout ones; for example, referring to
Figure 10, a direct conversation between CPE #2 and CPE #8 would only employ switches 1 and 3. If a packet sent
from CPE #2 to CPE #8 was following a more indirect route, it would first traverse switch 1, then either switch 2 or
switch 4, and lastly switch 3. The control unit allows as a worst case the traversal of two “intermediate” switch nodes
for a packet to travel from source to destination, the previous scenario considering one “intermediate” switch. Should
no suitable route be found, the calling telephone is notified of failure. Otherwise, the control records the relevant
information pertaining to the newly established conversation, updates the appropiate switches to implement the vir-
tual circuit, modifies the entries of the congestion level table, and informs the called telephone of the new connection.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 13

Network-Level Description of Backbone Simulation

Finally, the two telephones are told to begin conversation, whereupon, they signal their corresponding call traffic gen-
erator stars in the DE domain to begin transmitting data. These actions constitute the call request loop of the control
domain.

Both traffic generator stars have a specified length of time to transmit data as requested by the telephone stars.
The one which finishes first informs its telephone that it has completed transmission, initializing a call termination
loop in the MQ domain. The telephone sends a call termination request to the control unit which proceeds to order the
other telephone in the conversation to request its associated traffic generator star to cease transmission. Once this is
accomplished, the control updates the congestion level table accordingly and records the terminated conversation.

In considering the design philosophy of the MQ domain, one can see in this simulation context the need for its
stars to effectively communicate messages with each other and with stars lying in an outside “driver” domain which
view the MQ universe as an embedded controller. Thus the domain supports bidirectional connections among its ele-
ments as well as one-way or two-way connections with outside domain stars. Figure 9 shows that a call request star
communicates unidirectionally with a telephone whereas a telephone’s interaction with a traffic generator star needs
to be two-way. Also implicit is the naturalness of connecting multiple instances of a certain star type to another single
star; in this case, the control unit needs to communicate with twelve telephone instances. In order to support new or
failed customer nodes, the capability to alter the block toplogy within the domain is crucial, which MQ supports. MQ
also lends itself naturally to efficient system state representation. Whenever execution is surrendered to the outside
domain in the middle of a processing sequence, system state determines the actions taken once the MQ is reinvoked.
In any large-scale simulation such as this one, there will be sophisticated interaction between a controller and the rest
of the embodying network so this needs to be effectively and efficiently modeled.

3.2 Switch Operation

Space-division packet switching is playing a crucial role in the development of high-performance integrated
communication networks for data, voice, image, and video and multiprocessor interconnects for building highly par-
allel computer systems. Unlike current packet switch architectures with throughput maximums measured in the 10’s
of Mbits/s, a space-division packet switch can achieve throughput levels in 1’s, 10’s, or even 100’s of Gbits/s. These
capacities are attained by the use of a highly parallel switch fabric coupled with simple per packet processing distrib-
uted among many high-speed VLSI circuits. [3]

A space-division packet switch can be viewed as a box with N inputs and N outputs with the function of rout-
ing packets arriving on its input terminals to the appropiate outputs. The routing information necessary to transport
packets correctly is often contained in the headers of the packets themselves; in other words, the switch is self-routing
by nature. Buffering strategies for the switch are an important consideration as packets may need to wait for certain
desired connections to be made available. The buffer location and capacity depend on the switch architecture and
nature of incoming traffic. [3]

There are different types of space-division switches; of interest here are those based on multistage interconnec-
tion networks composed of 2 x 2 elementary crosspoint switches, each of which can assume one of two states, a cross
state and a bar state. Consider Banyan-based switches, an example given in Figure 11 known as an OMEGA network.
A simple procedure allows for correct routing of packets from input to output by considering the binary representa-
tion of the output port address (b,b,...5,) . Given that the packet has reached stage s of a switch, it should be routed
to the upper output if 5. = 0 and to the lower output if 5, = 1, regardless of which input to the elementary switch the
packet may have arrived at. This demonstrates the self-routing aspect of the Banyan switch structure. It turns out that
the connection of N inputs to N outputs requires (N/2) log, N elementary binary switches [8], as in the case of Figure
11 where N = 8 and a total of twelve switching elements are necessary.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 14

Network-Level Description of Backbone Simulation

A switch is denoted as blocking if it cannot always be assured that there will always be enough switch points to
provide simultaneous, independent paths between arbitrary pairs of inputs and outputs. The Banyan switch shown in
Figure 11 is an example of a blocking network. In a Banyan switch, even when every input is assigned to a different
output, as many as /N connections may contend for use of the same center link. Logically enough, the use of a
blocking network should only be considered as a feasible option under light offered load conditions or if the switch
can be run at a much faster speed than the input and output trunks. [Karol] To resolve this performance limitation of a
mere Banyan switching arthitecture, queueing at the inputs to the switch can be implemented, along with a Batcher
sorter, shown in Figure 12, that sorts input packets by destination address in order to remove output conflicts and
offer the Banyan network (sub)permutations that are guaranteed to pass without conflicts. Packets not initially
selected are buffered for later attempts. The tandem combination of the Batcher sorter with the Banyan network is
hence nonblocking and known as the Batcher-Banyan switching fabric, the switching structure that was modeled in
the prototype simulation.

Figure 11 8 x 8 Banyan Network.

The four switches in Figure 10 were built in the SDF domain primarily because of the suitability of SDF for
describing synchronous operations. In the case of the Batcher-Banyan switches, incoming trunks can be considered to
divide time into equally spaced slots. For each trunk, then, at the beginning of each time slot, the first packet on the
input line is accepted into the switch should packet(s) be available. Recall that SDF yields efficient scheduling
because of its ability to determine system block execution order at compile-time. Each switching element consists of
two input ports and two output ports. When one element fires, it consumes one token on each of its two inputs and
outputs one token on each of its outputs. Of course, in practice, because of the irregular nature of incoming traffic,
packets will not necessarily occupy both inputs of a crosspoint upon firing or both of its outputs after firing. In such a
case, a “null” packet is placed to satisfy the SDF domain requirements which might seem somewhat unnatural. Nev-
ertheless, the efficiency gains of SDF added to its natural characterization of the synchronous aspect of the switching
operation are quite notable. Most switching mechanisms when described in SDF lend quite well to possible hardware
implementations.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 15

Network-Level Description of Backbone Simulation

| | |
- —
— -
— -

-— -
\>§§</
- -

-+— -

T [

I S S)

Figure 12 8 x 8 Batcher Network.

The behavior of an SDF-in-DE wormbhole is quite intuitive. Since SDF is an umtimed domain, once again as in
the case of MQ, each execution of the enclosed SDF system from the external DE’s perspective takes zero time. In
order for the internal SDF system to execute, it must be provided with at least one token on each of its input ports that
lie on the domain interface with DE. For this reason, before each of the SDF switches, a DE synchronizer star was
provided which examined input trunk lines for the switch upon request of a periodic demand signal simulating the
start of new time slots. The synchronizer either passed a single available packet through or if none were available,
provided a null packet. In this way, the SDF-in-DE wormhole would always have at least one token on each of its
inputs and always be able to execute to process packets arriving on the switch inputs. Conversely, a star was placed at
the outputs of the SDF switch for the process of “filtering” out any null packets that might happen to be produced on
the switch outputs, amounting to output trunk(s) not being utilized for that clock cycle. These two simple stars
enabled the DE and SDF domains to interact in realistically characterizing a packet switch, both of them exhibiting
strength and naturalness of description with regard to what blocks they represented.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 16

Programming Network Control with Message Queue Domain

4.0 Programming Network Control with Message Queue Domain

Having discussed the nature of our simulated ATM network’s control and switching elements, we now exam-
ine in greater detail the problem of programming the stars comprising its centralized control unit. As already men-
tioned, this work was done in the MQ domain. Prior to the development of our simulation, the SDF and DE domains
had already been well-established in Ptolemy, but the MQ domain was newly developed for the express purpose of
facilitating the programming of network control. What follows is, first, a look at the MQ domain itself and secondly,
specific coding examples of MQ stars used in our simulation.

4.1 Design of the MQ Domain

General comments on the semantics of the MQ domain were given in section 2.4. As mentioned, an MQ uni-
verse consists of stars that pass messages with one another over bidirectional connections. In designing the domain,
one would want to ensure correct operation of the system regardless of the order in which stars are fired. Besides this
guiding principle, we would not want to stipulate for a given star currently being executed in what order we step
through its portholes. The only assumption that is to be made about the order of processing messages is that messages
arriving at a star’s input porthole over a given link are to be serviced in the order they arrive. By adhering to these
principles, we can straightforwardly implement the MQ scheduler.

The MQ domain provides various methods for MQ-type porthole (that is, portholes belonging to a star in the
MQ domain) classes consistent with the above conditions that allow for the reasonably efficient coding of MQ stars.
An MQ porthole supports two-way connections unlike other domains’ portholes in Ptolemy which generally support
unidirectional connections. For that reason, it can be considered as the union of two “ordinary” portholes, one for
incoming messages and one for outgoing messages. Following are the main methods for the MOPortHole class along
with brief explanations to their functions. Necessary parameters are listed in parenthesees following the methods’
names.

* expect () — indicates that the star expects its next arriving message to arrive on this par-
ticular port; scheduler will flag an error if next message does not arrive on this port

* block () — says the scheduler is to prevent the star from detecting new, arriving mes-
sages on this port, messages arriving at a blocked port remain queued at the port,
restore to normal with unblock () method

* flag () — raises a flag for this port, star can check on status of a port’s flag by calling
flagged () which returns a Boolean result, call unflag () to restore original state

* in (int) — returns a reference to a particle for the incoming porthole with the argument
representing the delay of the access, i.e. an argument of zero gives the most recent
token

* out (int) — same as above but for outgoing porthole

* newMessage () — indicates whether a new message has arrived on the incoming port-
hole, returns a Boolean result

Heterogeneous Cell-Relay Network Analysis with Ptolemy 17

Programming Network Control with Message Queue Domain

In the MQ domain, there also exists a class called MOMultiPort. In certain situations, an MQ star will have a
set of portholes that serve identical and parallel purposes, in many cases connected to multiple instances of another
MQ star. It is convenient from a programmer’s point of view to be able to refer to this set of portholes as an aggregate
whole, which motivates the existence of “multiportholes,” represented by the MOMultiport class. For example, refer-
ring to Figure 9 from earlier, we see that the star representing the control unit is connected to multiple instances of a
“telephone” star, one per customer node. Thus, a multiporthole would be declared for the control star to connect to
the parallel instances of the telephone star. Following are methods provided for the MOMultiport class:

» expect () — calls expect () for each of the member portholes, unexpect () similarly
* block () — calls block () for each of the member portholes, unblock () similarly
* flag () — calls flag () for each of the member portholes, unflag () similarly

* port (int) — returns reference to the individual porthole whose index within the multiport-
hole is given by argument

The MQStar class itself has a method portToService() which returns an MQ porthole that has an unserviced
message, if any. It also has a member called state which the user can use to record the current state of a star, as an
integer.

4.2 Examples of MQ Domain Star Code

(Telephone star has issued a call request

to the control star and awaits response

to see if permission obtained to proceed
with calling process.)

callReq port is blocked at time of request

Response obtained on control port

Unblock callReq port

Go back to idle
(original) state

Order DE traffic generator star
to begin transmission

Send “transmit” packet
on data port

Enter “calling” state

Figure 13 Actions taken by MQ telephone star after issuing call request to control star

Heterogeneous Cell-Relay Network Analysis with Ptolemy 18

Programming Network Control with Message Queue Domain

Typically, stars in the MQ domain are coded as finite-state machines. The MQ scheduler calls on stars in suc-
cession, firing them by executing their go() methods. A star’s go() method will fundamentally check upon its current
state, branch to its prescribed set of actions for that state, update its notion of state, and possibly output particles. Stars
were developed to implement the centralized network control of the backbone ATM network that utilized the meth-
ods described in the previous section. A few examples of code segments will most clearly indicate the nature of the
star programming.

Let’s consider the MQTelephone star. Refer back to Figure 9. It has portholes named callReq, data, and con-
trol. The callReq port is connected to the call request triggering star in the external DE universe. The data port com-
municates with the external DE call traffic generator star. Lastly, the control port connects the star to the control star
in the telephone’s own MQ universe.

Figure 13 provides a flow diagram indicating what actions are taken by the telephone star after issuing a call
request to the control star. It has been triggered into execution by a particle arriving from its external call request star
on the callReq port. While it remains in its call request loop, it cannot further process additional call requests so its
callReq port has been blocked. Awaiting approval from the control star, it has the possibility of receiving either a pos-
itive acknowledgment (ACK in Figure 13) or a negative acknowledgment (NAK). In the former case, it can order its
associated DE traffic generator star to begin transmission. Otherwise, it can safely unblock its callReq port and head
back to its original idle state.

From the flow diagram, it becomes a simple matter to translate this into pseudocode that draws upon the MQ
porthole methods of the previous section. The telephone star’s go() method appears as this:

switch (state of Telephone star) {

case (idle state): . . .

case (issued call request):

Access incoming message by “control.in(O)

if (message is ACK) {
send transmit message to DE traffic generator,
access output token by “data.out(0)
data. expect()
control. expect()
state = calling state

}

else if (message is NAK) {
callReq.unblock()
callReq.expect()
control.expect()
state = idle state

}

else {
error message

}

Heterogeneous Cell-Relay Network Analysis with Ptolemy 19

Programming Network Control with Message Queue Domain

end case

case (calling state): . ..

} /* end switch */

The actions taken in the code mirror those of the flow diagram. In the “ACK” branch of the if-elseif-else struc-
ture, data. expect() and control. expect() are called because the star enters the calling state and anticipates one of two
possibilities. Possibly, its traffic generator will later order it to cease transmission in which case it receives a corre-
sponding message on its data port. Also, it is possible the other phone will end the conversation first in which case
that phone would send a message to the control star, and the control star would send a “stop” message to this phone
over the control port. In the “NAK” branch, callReq. expect() and control. expect() are called since once again, this
telephone star will be fired in one of two possible situations. First, it may receive a message from its call request trig-
gering star over the callReq port. Or it may be randomly selected by the control star to converse with another cus-
tomer that has issued its own request for a conversation.

Let’s consider a more complicated example: the MQControl star in its “idle” state. Refer to Figure 9 to see that
this star has connections with every other star in the MQ universe in addition to the network’s switches. (It is actually
connected to each of the multiple Telephone star instances though the diagram doesn’t show this.) For the purposes of
this example, we only are concerned with the Control star’s connections to the Telephone stars via its multiporthole
phones and the network control congestion level table via its porthole mgcclt. The pseudocode for the Control star’s
actions in the idle state:

switch (state of Control star) {
case (idle state):

Access incoming message with “portToService()”

if (message is new call request) {

record identities of calling customer and randomly selected “target”
customer as vciActive and vciPassive (from message)

issue inquiry message to congestion level table star to determine
whether target customer is “busy,” access output token
by mqccit. out(0), anticipate either ACK or NAK

phones. flag()

maqcclt. expect()

state = beginning of call request loop

}

else if (message is call termination request) {
from message, determine identity of customer desiring to end
conversation and access internal data to determine other
customer’s identity. Record these respectively as vciActive
and vciPassive

Heterogeneous Cell-Relay Network Analysis with Ptolemy 20

Programming Network Control with Message Queue Domain

issue “stop” message to other customer, access output token by
phones. port(vciPassive). out(0)

phones. flag()

phones. port(vciPassive). unflag()

phones. port(vciPassive). expect()

state = beginning of call termination loop

}

else {
error message

}

end case
case (beginning of call request loop): . . .

case (beginning of call termination loop): . . .

} /* end switch */

When the Control star is sitting idle, it may be triggered into action by one of two means. First, it may receive
from a Telephone star a call request message containing the identity of the customer issuing the request and a ran-
domly selected customer it has chosen to establish a connection with. This information is locally recorded as vci-
Active and vciPassive. The Control star is responsible for checking the network congestion level table to see if the
vciPassive party is already busy in conversation. Thus, it produces a message on its mgcclt porthole containing the
vciPassive value and calls mgcclt. expect(), anticipating an ACK or NAK message on this port as appropiate the next
time it is invoked. While it is engaged in this call processing loop, it cannot also process additional requests from
other telephones; hence, it flags all of its connections to telephone stars by making the multiporthole method call
phones. flag(). If it later finds from the congestion level table star that the vciPassive party is free to talk, it will
“unflag” the two ports connecting to the two relevant telephone stars. After the Control star has unflagged these ports,
there is no problem when one of these phones wants to end their session as it can safely issue a call termination
request message as described below. At this point, the Control star proceeds to the call request loop.

The second method by which the Control star might be invoked from the idle state is receiving a call termina-
tion message from a Telephone star. The message will contain the identity of the customer wishing to end a conversa-
tion which is noted as vciActive. Thus, the Control star can check its internal data to see which party it is conversing
with (marked as vciPassive) and then to send that party a “stop” message. That customer will go about asking its
associated traffic generator star to stop transmission and then to send back to the control an ACK message. After the
control has sent the message, it flags all of its connections to telephone stars for the same reasons as in the preceding
situation except, of course, the customer whom has been asked to cease transmission since an ACK is expected from
it. Thus, the star makes method calls phones. flag(), phones. port(vciPassive). unflag(), and phones. port(vciPassive).
expect () in succession before proceeding to the state corresponding to the beginning of the call termination loop.

It is also of interest to consider what actions the Control star should execute when a message is received from
a telephone over a port which has been flagged. A call request message from a telephone is bluntly replied to with a
NAK message from the control. However, the same cannot be done for a call termination message; otherwise, the
telephone that issued the message will be left dangling indefinitely. Thus, the message is queued up for later service.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 21

Programming Network Control with Message Queue Domain

When the control has completed the call request or termination loop which it is currently engaged in, it will check this
queue for possible call termination requests that it can service. This process repeats until the queue is empty.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 22

Characterization of Source Traffic

5.0 Characterization of Source Traffic

An issue of interest in the field of network traffic study is the behavior of multiplexers for multiple, indepen-
dent arrival processes. Interestingly, the aggregate packet arrival process resulting from the superposition of the
streams from multiple voice sources is complicated, possessing a burstiness (high variability) that can lead to unex-
pectedly large packet delays in a muliplexer under heavy load conditions. [6] Thus, a reasonable issue to investigate
is the modeling and characterization of such an aggregate arrival process.

5.1 Single Voice Source

The inherent complexity in a multiplexed voice stream stems from the individual burstiness of a single voice
source. A single voice source alternates between periods of talking activity and silence. Periods of silence produce no
packets at all whereas a talkspurt produces packets at fixed intervals according to a packetization period. Another way
of looking at this is that the interarrival times are usually equal to one packetization period but occasionally longer
(one packetization period plus a silence period.) [6] Thus the output of a single voice source is a renewal process, i.e.,
one with i.i.d. (independent and identically distributed) packet interarrival times. But as mentioned, the interarrival-
time distribution of this one source is highly variable, so that as compared with a normal Poisson process, the voice
process is quite bursty.

As modeled in Ptolemy, a voice source specifically alternates between silence and talking periods. A silence
period is exponentially distributed with some mean . A talkspurt produces packets at fixed intervals of 7'ms and gen-
erates a number of packets geometrically distributed over the positive integers, a very significant assumption. In the
case of this simulation context, 7 was chosen to be 16 ms and a silence interval was of mean 650 ms. The mean num-
ber of packets produced in a talkspurt is 22, or 352 ms. So for the source, a packet interarrival time assumes value 7 =
16 ms with probability p = 21/22 and value 666 ms with probability 1 —p = 1/22 .

A simple system to graph the voice process is shown in Figure 13, constructed in the DE domain. The
FloatRamp star merely counts upward from zero when fed an input event from the Voice star, and this information is
graphed in the Xgraph star. Secondly, the actual output of the system is displayed in Figure 14. In it can be clearly
observed the periods of call activity made of packets equally spaced in time with separating gaps of silence.

Voice FloatRamp Xgraph

Figure 13 System to display a voice process

Heterogeneous Cell-Relay Network Analysis with Ptolemy 23

Characterization of Source Traffic

Voice Process of a Single Caller

350 T T T T T T T T |/_
300 |- / °c¥
250 | -
(%]
o
/
D_ 200 = =
©
et 150 | -
£
-]
Z
100 i
50 i
0 1 1 1 1 1 1 1 1 1

Time (sec)

Figure 14 Output of system in Figure 13

Figure 15 displays the results of the simulation described in section 3.0 structurally illustrated in Figure 10, in
the case where each customer, when active, transmits according to the single voice source model just described. The
graph shows the calling activity of CPE nodes 5 and 6, plotting their transmitted and received packets with an approx-
imate scatter plot. Markers in the plot are spaced for legibility with respect to the time axis since the packetization
interval of 16 ms is so small in relation to marker size. The vertical axis tells which one of the twelve CPE nodes is
being communicated with. Of course, graphs for the other CPE’s can be obtained to cross-check the transmitted and
received packets for two CPE’s communicating over some interval. In the figure, for example, we can see that CPE
#5 and CPE #6 talk to each other for approximately three seconds at around time 30 (seconds.)

Heterogeneous Cell-Relay Network Analysis with Ptolemy 24

Characterization of Source Traffic

Caller Activity
13 T T T T A CPE 5 transmitted
>+ X CPE 5 received
12 0000 1 o CPE6 transmitted
11 L 1 + CPE 6received
10 = mxx_
9} A Asasas .
E 8 L i 44 i
o)
E 7Trmx o
E 6 | v vy i
G 5t R .
4 L 4
3L 2 -
2L 4
1L 4
0 1 1 1 1
0 10 20 30 40 50
Time (sec)

Figure 15 An approximate scatter plot monitoring calling activity for two CPE'’s,
each customer transmitting according to a single voice source model.

5.2 Multiple Voice Sources

To study the general nature of arrival processes, we can focus on the dependence among successive interarrival
times in the process. As discussed in [Sriram], the index of dispersion for intervals (IDI) can provide a broad insight
into this issue. To define it, consider {X,, k> 1} as the sequence of interarrival times for the process in question.
Then the IDI is the sequence { ci, k>1} given by:

k-1
k-cov(X, X)) +2Y (k—j) -cov(X, X,)
) k-Var(S) _ Var(S) ried /; S)
C = — = =
[E(S)1> kIE(X)]’ kIE(X)1?

Heterogeneous Cell-Relay Network Analysis with Ptolemy 25

Characterization of Source Traffic

where we assume that {X o hk=1} is stationary, that is the joint distribution function of (X, o Xer oo X) remains
independent of k for all m. S, denotes the sum of & consecutive interarrival times, S, = X, +... + X,. Naturally,
cov (X, X)) is the covariance between X, and X.. The final IDI expresgion follows by the stationarity assumption of
the {X,} process and is quite insightful. From it, one can see that the ¢, represents the cumulative covariance among
k consecutive interarrival times normalized by the square of the mean. The factor k appears to prevent the ¢, from
approaching zero in the limit as £ — «. The principal usefulness of the IDI statistic is its accountingfor the cumula-
tive effect of the many individual covariances of the process. In the context of a statistical multiplexer, these many
covariances explain the unusually large packet delays which result under heavy load conditions.

The limiting value of the IDI, that is Ci = kli_r}nmci completely characterizes the effect of a general stationary
arrival process on a multiserver FIFO queue in heavy traffic conditions [6]. Specifically, we consider the case of a sin-
gle-server queue with either finite or infinite capacity operating by a FIFO rule. The traffic input to the queue consists
of the merged aggregate of a variable number of independent voice processes mentioned in the previous section. The
service distributions are independent of the arrival process and assumed to be i.i.d. with a general distribution.

The IDI limit and average arrival rate of the input process serve well to model the queue’s incoming traffic.
There are a few basic properties of the IDI measure which can be pointed out:

« For a Poisson process, ci =1 forall k

« For a renewal process, ci = c? for all &
. Ifc; = ¢ forall k, then cov (X, X) =0 forallij (i#)).

Thus, observing the fluctuations of the sequence {ci} can give intuition of the degree of deviation a process
may make with a simple renewal process. Again, the covariances between process interarrivals accounts for the
behavior of the IDI sequence. The third property above is the simple case in which these interarrivals are completely
uncorrelated, hence equatin§ to a renewal process. Now if we denote the index of dispersion for a superposition of n
i.i.d. arrival processes by ¢/, , important insights follow by respectively allowing first k to approach infinity with n
fixed and then » with & fixed.

" . .2 2 2
+ For a superposition of # i.i.d. renewal processes, lim ¢, = c¢_ = ¢
k= oo kn con 11

for n fixed, where c?l is the IDI of a single interval in one of the multiplexed
renewal processes.

« The superposition of 7 i.i.d. renewal processes, each with individual rate
A/n, tends to a Poisson process with rate A as n — .

Interestingly, the latter fact also holds for the case of multiplexed non-renewal processes. However, in this
case, an important condition is for the component processes to become increasingly sparse as n gets larger. We might
expect that a multiplexer would see a Poisson-like aggregate arrival process if many voice sources are merged
together, but what one generally observes is that great packet delays are experienced far and beyond what would be
seen for a Poisson arrival process. The deviation from Poisson behavior actually increases as the number of sources
increases. So the “sparsity” condition is necessary to ensure that the fotal average arrival rate remains unchanged.
Clearly, in the case of this application, the voice streams are fixed in their individual average packet rates, indepen-
dent of n. So it is inaccurate to always consider the superposition of the voice streams as being approximate to a Pois-
son process. What is observed in practice is that the Poisson approximation does work well under light traffic
conditions. When higher loads exist, though, the approximation grossly underestimates packet delay since in these
circumstances, the long-term covariances have a more dramatic effect. In sum, the suitability of approximating a
superposition process by a Poisson process depends not only on the number of multiplexed sources but on notion of
time scale. Over short intervals of time, the Poisson process does reasonably well to model the superposition process.
But over longer intervals of time, the covariances come into play so that the superposition process significanly devi-
ates from a Poisson process and displays high variability.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 26

Characterization of Source Traffic

To actually experiment with graphing the IDI {ci} sequence, we can collect interarrival time statistics over
some period of time. Figure 16 illustrates how a simple system was built to generate a sequence of these for & rang-
ing over some selected interval. For each £, the interarrival times were collected in non-overlapping blocks of size .
Recall from the definition given previously that ci = (k-Var(S))/[E(S)] ’E (S,) and Var(S,) can be straight-
forwardly calculated. Then for each &, we can consider the lengths of the respective blocks, denoting by Y. the
length of the ith block (i.e., ¥, = X, + X, + ...+ X, ¥}, = X, |+ X, ,+... +X,,, etc.) Allow n,_ to be the total num-
ber of blocks accumulated. We easily have:

o

E(Sy) = ”: : EYki

i=1

And an estimate of the variance of a k-block would be:

n ny 2
Var(S,) = ”;l : ZY;—[’%I : EYki]

i=1 i=1

In the figure, naturally, the system is modeled in the timed DE domain. Multiple instances of Voice stars have
their output streams chronologically merged together by the Merge star which sends this aggregate process to an IDI
star. The IDI star is responsible for the body of the calculations. Once it is triggered on its “demand” input, it sends on
its output terminals a series of ordered pairs in the form of Lk, c,) for, in this case, k = 1,2, ...,2000. These data
pairs are accepted by the SDF wormhole, consisting of a single Printer star which merely writes the results to a file.
Recall that by the semantics of SDF operation, the wormhole will require one particle on each of its two inputs in
order to fire once. Thus, each Lk, 012() pair successively fires the wormhole and is written to to the file. The system

Impulse ; Merge ;

data

DE

SDF-in-DE Wormhole

A4 v
StOp demand DI Fram(e size k i
Timer Associated IDI rinter

Figure 16 System to calculate IDI statistics for a superposition of voice sources

Heterogeneous Cell-Relay Network Analysis with Ptolemy 27

Characterization of Source Traffic

is set by the user to run for some length of time. At time zero, the Impulse star feeds a particle to the StopTimer star.
The StopTimer star, having been triggered, will produce a particle at the time the simulation ends to trigger the
demand input of the IDI star and have it output its statistics.

Index of Dispersion for Intervals (IDI) for Multiplexed Voice Streams

20

16

12 +

50 sources

IDI

25 sources

10 sources

1 2 5 10 100 1000

Frame Size (logarithmic scale)

Figure 17 IDI measurements obtained by experiment

Figure 17 above illustrates the results of our IDI measurement experiment. We simulated with different num-
bers of multiplexed voice sources and have displayed output for the cases of n = 10, 25, and 50. For increasing values
of n, the curve approaches in the limit a horizontal line, demonstrating that cin — 1 as n— oo for all £. In other
words, a superg)osition of infinitely many renewal processes approaches a Poisson process which we know has the
property that ¢, = 1 for all &. We also observe that for a fixed n, the accumulation of interval covariances becomes
increasingly significant as shown by the rising portions of the plotted curves. This qualitatively suggests the dramatic
deviations from Poisson behavior of these aggregate processes as we consider large frame sizes, or significant lengths
of time in which many covariances interact. Note that for small frame size values, the curves are nearly horizontal.
Over these small time intervals, then, we may consider interarrivals as roughly independent.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 28

Switch Performance Experiments

6.0 Switch Performance Experiments

In this section, we describe a number of experiments to compare the performances of certain switching strate-
gies. They are compared in terms of average throughput and end-to-end traversal times of packets. For each switch-
ing strategy, two basic network configurations are simulated. In the first case, a simple one-switch network is
constructed without any network control element. In the second case, the entire ATM backbone network configura-
tion of Figure 10 is implemented with the four switches operating according to the switching strategy of interest.
Unlike the first case, an MQ control element is present to handle call processing functions.

6.1 Intermediate Queueing

The queueing policy pursued in the modeling of the Banyan switch in Figure 11 was that of intermediate
queueing. In other words, a buffer of some finite capacity was placed at each of the two inputs to every switching ele-
ment in the Banyan switch. Recall that if a packet has a destination port address represented by (b,b,...5,) , and has
reached stage s of the switch, it should be routed to the upper output if 5. = 0 and to the lower output if b= 1.
Packets arriving at the input(s) to a 2 x 2 switching element are inserted at the tail(s) of the corresponding queue(s).
When there is a routing conflict caused by two packets contending for the same output port, the winner is randomly
selected with a fair coin flip, and the loser is kept at the head of its queue, free to contend for its destination port again
at the next clock cycle.

VoiceRan
Banyan
. InputSynch —=—@ ¢ o0 —=<—| Throughput |—<—®»| NullRemove
VoiceRan

r Latency |-egg————

Figure 18 Simple one-switch configuration without network control (blackhole)
to measure switch throughput and packet end-to-end delay

Figure 18 shows the first of two network configurations to be examined utilizing the policy of intermediate
queueing. The external environment is modeled in the DE domain with the Banyan network built in the SDF domain
as described before. As already explained, the Banyan network is a blocking network which cannot guarantee that
inputs destined for distinct outputs will pass through without internal conflicts. Multiple, parallel instances of “Voice-
Ran” stars transmit packets according to the voice process of a single caller, and each packet is randomly routed to an
output port of the switch, each with equal probability. The DEInputSynch and DENullRemove stars are placed at the
inputs and the outputs to the switch to ensure smooth interaction between the SDF and DE domains as explained in

Heterogeneous Cell-Relay Network Analysis with Ptolemy 29

Switch Performance Experiments

section 3.2. The two stars of interest used to gather performance statistics of this network are the DEThroughput and

DELatency stars.

A switch’s throughput is defined as the average number of packets produced at one of the switch’s output ports
per clock cycle. Thus, it is a positive real number less than one. It was convenient in the case of this experiment to
place the throughput measurement star at the output to the switch. For each clock cycle, each switch output port pro-
duces either an actual packet or a null packet, signifying that the port is idle for that cycle. Then it becomes straight-

forward to implement the star to measure the switch’s throughput. The star’s schematic appears as in Figure 19.

In practice, a token is generated at the end of the simulation to trigger the “demand” port of the DEThroughput
star. This is done by a combination of the DEImpulse and DEStopTimer stars as shown in Figure 16. When the
demand signal is detected, the star produces a set of values corresponding to the measured throughput on each of the
switch’s trunk lines. A packet received on one of the “input” ports is passed through directly to its respective “output”

port while the star updates its internal data to reflect measured throughput.

demand

—

—4<Pp DE Throughput —~—p

input output

s

throughput

Figure 19 Schematic of DE Throughput star

demand

=

input +} DE Latency

- La

Average delay Average delay
(all lines) (each line)

Figure 20 Schematic of DE Latency star

+>

+>

output

delayPerPacket

The other star used in Figure 18 to gather statistics about the switch’s performance is the DELatency star. It follows
the DENullRemove star and produces on a per-packet basis individual latency figures. This is measured by the time

Heterogeneous Cell-Relay Network Analysis with Ptolemy

30

Switch Performance Experiments

elapsed from the time the packet was produced by the DEVoiceRan star to its arrival at the DELatency star. Also,
when triggered on the “demand” port, the star yields a set of statistics measuring the average per-packet latency time
for each of the switch’s trunk lines and average per-packet latency over all trunk lines considered as an aggregate
whole. A block diagram of it is in Figure 20.

6.2 Input Queueing

The input queueing switching strategy consists of an input queueing structure followed by a nonblocking net-
work. Each trunk line into the input queueing network has a dedicated first-in, first-out queue. On each clock cycle,
the head elements of the queues contend for their destinations. Packets that request identical destinations require the
random selection of one to continue through the switching network. The others that lose contention for that destina-
tion remain in their queues to contend again at the next clock cycle along with the new head elements of the other
queues. Thus, packets presented to the nonblocking switch all have distinct destinations and can pass through the net-
work without risk of conflict.

Input queueing suffers from the problem of head-of-line (HOL) blocking. Packets may remain in queue behind
head elements that fail to gain admission to the switching network due to conflicts with other head elements. This rep-
resents a decrease in maximum throughput attainable by the switch. Different variants on the simple input queueing
policy described here exist. We may introduce multiple priority levels among packets. In this case, though, fairness to
the individual queues is an issue since lower-priority packets may suffer inordinate delay in winning contention for
the switch. Also, when packets vie for a destination port, it may be sensible to adopt a “longest-queue” policy that
will grant access to the packet coming from the queue with the largest number of buffered elements.

Figure 21 presents a top-level view of the different modeling approach used to implement this means of queue-
ing as opposed to intermediate queueing from a Ptolemy standpoint. Instead of a simple DEInputSynch star, a much
more complex system is built in the form of a DEInputQueue galaxy. The internals of this galaxy are presented later.
Also, instead of a blocking Banyan switch, a nonblocking Batcher-Banyan network is built. Both employ a DENull-
Remove star to filter out null packets offered by the switch built in SDF.

Now consider the low-level functional implementation of the Batcher-Banyan switch. At each clock cycle, a
number of packets may be offered to the inputs of the Batcher network with the other inputs occupied by null packets.
The purpose of the Batcher network is to sort the packets by destination address and to concentrate them toward the

DE SDF DE
InputSynch Banyan NullRemove
DE SDF DE
— Input Queue [—— — —
Galaxy Batcher-Banyan NullRemove

Figure 21 Top-level comparison of intermediate queueing (top) and input queueing (bottom)

Heterogeneous Cell-Relay Network Analysis with Ptolemy 31

Switch Performance Experiments

top so the null packets get filtered to the bottom inputs. When this is done, packets may be sent to the Banyan network
in two phases in order to avoid conflict. Each phase involves a separate, entire execution of the Banyan network. By
this, it turns out for the Omega Banyan network design that a simple rule to accomplish this is to simply ensure that
for a given phase, no two data packets received by any 2 x 2 switching element in the first stage of the Banyan net-
work have the same most significant bit in the binary representations of their destination addresses. Note that this
simple rule is dependent on the packets having been sorted and “concentrated” before being offered to the Banyan
network.

This overall switching operation conforms quite straightforwardly to the semantics of the SDF domain. Each 2
x 2 element of the Batcher and Banyan networks accepts a single token on each of its inputs and produces a single
token on both of its outputs per execution. If a Banyan network element has no data packet to produce on an output
port, it yields a null packet to obey SDF semantics. However, extra stars need to be included after the Batcher net-
work and before the Banyan network to offer the latter packets in two phases according to the previously discussed
rule. Figure 22 provides an example of a pre-banyan element accepting a pair of packets, and offering them to the
Banyan network in separate phases because of their identical most significant bits. Note that a “pre-Banyan” star
accepts one token on each input and produces two tokens on each output per execution. As for a Banyan 2 x 2 star, it
has no intermediate buffering of any kind. Any detected conflict between two data packets would represent a fatal
error.

(100) (100, N) (100,N) (100)

(110) (N,110) ¢t (N,N) N)

Pre-Banyan Banyan Banyan Post-Banyan
(First Stage) (Last Stage)

Figure 22 Low-level implementation of the Banyan network. The Pre-Banyan network produces two phases of
packets for the Banyan network. Packets at a Pre-Banyan 2x2 with same MSB in output address must go in
different phases to avoid conflict. The Post-Banyan stars reduce the pairs of packets produced by the Banyan
network for each port to single packets to condense the two phases of operation “back into one.” (“N” means null)

After the Banyan network has executed twice to account for both phases of its switching operation, it has pro-
duced a pair of packets on each output of its 2 x 2 elements in the last stage. Hence, a set of stars is necessary to con-
dense each pair to a single packet. Of course, packets that were originally offered at the switch’s inputs had no
duplication of destination address so at least one packet in each of the output pairs would be null. The mechanics of
the “post-Banyan” star are given in the same figure. Hence, we see that the overall modeling of the Batcher-Banyan
network is quite natural when built in SDF.

The function of the DE Input Queue Galaxy is to present packets to the nonblocking Batcher-Banyan network
that have no duplication of output address, queueing packets as necessary at the switch inputs and randomly resolving
output destination conflicts with equal fairness to contending packets. Figure 23 structurally illustrates the stars that
compose this galaxy. Of course, each star is modeled in the DE domain. In order to understand the galaxy’s operation,
it is necessary to describe the actions taken by each star when it is triggered into execution. After doing this, we can
understand the mechanics of the galaxy as a single composite block.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 32

Switch Performance Experiments

control

true demand

size |

outData

overflow

clock input
Switch| gee FIFOQueue
input#1 (blaCkhOIe) inData
true demand
input
Switch| fase FIFOQueue
input#2 (blaCkh()le) inData
true demand
input
Switch| faise FIFOQueue
input#3 (blaCkhOIe) inData

DE Input Queue Galaxy

input sizeln enable

e

demand

output

RanSelect

sizeOut

serviced

lost *

avgLossProb
(each trunk)

LossProb

demandStats

avgLossProb
(over all trunks)

Figure 23 The design of the DE Input Queue Galaxy. There are multiple, parallel instances of Switch and FIFOQueue
stars, one for each trunk line, and single instances of the LossProb and RanSelect stars. For convenience, connections
to the LossProb and RanSelect stars are only shown for one trunk line. Multiportholes on these stars have their arcs
marked with slashes. Connections made to stars external to the galaxy use different arrowheads than those made among
stars internal to the galaxy.

LT3

FIFOQueue; otherwise, by disabling it, the clock signal is shut off from the FIFOQueue.

The Switch star acts as a binary router. When it receives a token on its “input” port, it routes it to either its
“true” or “false” output based on its most recently received input on the “control” port. As can be seen, a clock signal
external to the galaxy feeds into the Switch star and can either continue onward to provide a demand signal to the
FIFOQueue or to be thrown away into the BlackHole star which merely accepts tokens and disposes of them. The
RanSelect star has an “enable” multiporthole which acts as the input to the Switch stars
the RanSelect star enables a Switch star, it allows the clock signal into that Switch star to trigger that trunk line’s

control” inputs. Thus, when

Heterogeneous Cell-Relay Network Analysis with Ptolemy

Switch Performance Experiments

The FIFOQueue star models a queue with either finite or infinite capacity. It is possible for the user to set a gal-
axy parameter that establishes the capacity of the queue instances in the galaxy or declares them to be of unbounded
capacity. Each trunk line into the galaxy connects to the “inData” port of a FIFOQueue instance dedicated to that
channel. If the queue has space for an incoming packet, it is inserted at the tail of the queue; otherwise, it is immedi-
ately output on the “overflow” port. When a token is received on the “demand” port, the head element of the queue, if
any, is issued on the “outData” port. Note that any packet produced on the “outData” port is sent to both the “input”
port of the RanSelect star and the “serviced” port of the LossProb star. Lastly, for any token received on either the
“inData” or “demand” ports, after appropiate actions as mentioned above have been taken, the current occupancy
level of the queue is output on the “size” port as a nonnegative integer.

There are parallel, multiple instances of the Switch and FIFOQueue stars for each incoming trunk line into the
Input Queue Galaxy. On the other hand, there is a single instance of the LossProb and RanSelect stars. The function
of the LossProb star is straightforward: the “outData” and “overflow” ports of each FIFOQueue star feed into it so it
can yield, when triggered by a “demandStats” signal external to the galaxy, the average loss probability over each
trunk line and over all lines as an aggregate whole. The RanSelect star maintains the head-of-line packet for each
trunk line’s queue. When it receives a packet on its “input” mulitporthole, it records it as the head-of-line packet for
that channel’s queue and sends a disable command to the corresponding Switch star so that demand signals cannot
cause another packet from the queue to come forth and “collide” with the current head-of-line packet. The same
demand signal that feeds into the Switch stars of the galaxy also acts as a demand signal for the RanSelect star. When
it is triggered on this port, the star examines its head-of-line packets for their destinations. It chooses a set which can
be safely sent according to previous discussion and for those channels that are transmitting packets, it sends an enable
signal to their Switch stars in addition to transmitting the packets on “output”. For channels that lose their bids for
transmission or have no packets at all, null packets are produced on “output.” Thus, this galaxy can suitably interact
with the Batcher-Banyan network built in the SDF domain. When the RanSelect star receives a token on its “sizeln”
multiporthole which is connected to the “size” output ports of the FIFOQueue stars, it reproduces that number on the
matching port of its “sizeOut” multiporthole. However, if there is a head-of-line packet for that channel, then it pro-
duces that number plus one.

6.3 Simulation Results

The simple one-switch network in Figure 18 was simulated for both the intermediate and input queueing pol-
icy mechanisms. Recall the structures of the switches and their interfaces to the external network which have already
been discussed and diagrammed from a top-level point of view in Figure 21. Single voice process generators transmit
randomly to switch outputs, and in both cases, the time slot interval used was that of the packetization period of voice
traffic, 16 ms. Results are given in Figure 24. As can be seen, greater average switch throughput was achieved with

Input
Intermediate 5 10 15 20
Avg Tput 3662 3371 3492 3542 3564
Avg Latency 0777 .0591 .0821 .0946 .1008

Figure 24 Average throughput and latency figures for Figure 18 under intermediate queueing and

input queueing with different input buffer capacities.

Heterogeneous Cell-Relay Network Analysis with Ptolemy

34

Switch Performance Experiments

Intermediate Queueing

o
—
1

0 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time

0.2 [y 10U Queting

0.04 i
0.02 U i

o | I N S N E— | 1
O 2 4 6 8 10 12 14 16 18 20

Time

Figure 25 Per-packet latency statistics for intermediate queueing and input queueing
(queue capacity for input queueing was set at five.) The graphs monitor statistics
for twenty simulated time units.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 35

Switch Performance Experiments

the intermediate queueing policy. The sizes of the intermediate queues used in the 2 x 2 elements of the Banyan net-
work were sufficiently large to prevent packet loss; however, queues used in the input queueing policy were experi-
mented with at different capacities. As the capacity was increased, average switch throughput level increased as well.
Gains made in throughput level taper off as queue capacity is allowed to increase in accordance with the concept of
diminishing returns. In the case of this simulation, average latency for intermediate queueing was appoximately five
times the length of a time slot. Average loss probabilities for the input queueing policy decay at a rate faster than that
of a linear one with respect to queue capacity. Figure 25 graphs per-packet latency statistics for the two queueing pol-
icies in this configuration for one of the randomly selected switch lines. Intermediate queueing clearly displays a
higher degree of variability than input queueing, and this observation is intutively reasonable. The graphs merely dis-
play statistics for the first twenty simulated time units. In just this time interval, though, the curves reaches a peak of
approximately .67 seconds in the intermediate queueing graph as opposed to a mere .18 seconds in the input queueing
graph.

Figure 26 shows an approximate scatter plot that monitors input queueing occupancy level for the first twenty
units of simulated time for one of the selected input buffers.

5 Input Queueing with Capacity 6
T T T T T T

T

N
%
]

Occupancy Level
w

N
—
1

1.— 3 am k X 3 3 -
0
6

8 10 12 14 16 18 20
Time

Figure 26 Input queue occupancy level for twenty time units

Next, the four-switch network of Figure 10 with network control was simulated for the intermediate and input
queueing policies under identical conditions. The switches are structured as described in the previous one-switch net-
work scenario. Figure 10 shows how the four switches are numerically designated. As for trunk lines, each switch has

Heterogeneous Cell-Relay Network Analysis with Ptolemy 36

Switch Performance Experiments

eight of them. The first three, numbers one through three, are connected with customer nodes. Trunk lines four and
five are drawn vertically, six diagonally, and seven and eight horizontally. These simulations follow the description of
section 3.1 and allow a maximum of one conversation to be supported over a given trunk line. As above, customer
nodes are represented by single voice source processes and the time slot interval of the switches is set at 16 ms.
Results in this case were much different as Figure 27 indicates. The latency figures correspond to traversal time of
packets routed to the twelve customer nodes in the network, three for each of the four switches. Statistics for average
per-packet latency and switch throughput per trunk line are given. Intermediate queueing, although achieving higher
average switch throughput, suffers greatly in average per-packet latency time. Trunk lines four through eight can be
considered as the “inter-switch” trunk lines and among those, trunk line six averages the highest throughput, natu-
rally, because switches diagonally opposite each other are singly connected instead of diagonally connected. Thus, it
would more frequently support traffic in a randomly established conversation.

LATENCY

Intermediate Input
SW1 Sw2 SW3 SW 4 SW 1 SW 2 SW3 SW 4
1 .2686 3225 3329 2671 .0259 0235 .0241 .0269
Trunk Line No. 2 2553 .3009 3357 2824 .0263 0256 .0272 .0210
3 2921 2711 2863 2733 .0293 .0280 .0251 .0258

THROUGHPUT

Intermediate Input
SW1 SwW2 SW3 SW 4 SW 1 SW 2 SW3 SW 4
1 2785 .2643 2748 2628 1539 1514 .1500 .1500
2 2613 .2620 .2804 .2698 .1340 .1339 .1464 1305
3 .2690 2778 2622 2755 .1408 1391 1133 1340

Trunk Line No.

4 .1160 .1166 1212 1170 .0455 .0476 .0619 .0610
5 .1240 1222 1261 1297 .0605 .0629 0671 .0609
6 .1949 2125 2054 2019 .1249 1133 1144 .1046
7 1357 1167 1184 1354 0620 .0685 .0679 .0592
8 1257 1258 .1208 1207 .0662 .0568 .0562 .0747

Figure 27 Throughput and latency statistics for network-level simulation, intermediate and output queueing

Heterogeneous Cell-Relay Network Analysis with Ptolemy 37

Conclusion

7.0 Conclusion

We have discussed the diverse issues that are encountered in the simulation of any large-scale telecommunica-
tions network: modeling of source traffic, network control, switch design, and the effective interaction of all these
elements in a unified context. The Ptolemy system was introduced to address these issues. Specifically, we considered
a cell-relay network with centralized control that provided basic call-processing capabilities. The Ptolemy MQ
domain was developed to support the design of this control element, and specific examples were given to illustrate its
use in modeling control subsystems.

Also, we considered the design of space-division packet switches with associated queueing policies. Two basic
designs were presented, that of a pure Banyan network utilizing intermediate queueing and an input queueing stru-
cure followed by a nonblocking Batcher-Banyan cascade network. Our primary measures of performance of these
switches were their average throughput and the end-to-end delay incurred by packets. We presented results of simula-
tions to gather these statistics for two scenarios: simple-one switch configurations with “always-active” sources and a
complete large-scale ATM network governed by a centralized control. Thus, by explaining the issues involved in the
modeling of these network elements and the nature of their interaction, challenges that arise in the successful simula-
tion of any large-scale, heterogeneous system become clear.

8.0 References

[1] S. Bhattachartta and E. A. Lee, Aug. 1991, “Scheduling Synchronous Dataflow Graphs for Efficient Looping,”
M.S. Report, Electronics Research Laboratory, Dept. of EECS, U. California Berkeley.

[2] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, 1992, “Ptolemy: A Framework for Simulating and Prototyp-
ing Heterogeneous Systems”, International Journal of Computer Simulation.

[3] M. Karol, M. Hluchyj, and S. Morgan, Dec. 1987, “Input Versus Output Queueing on a Space Division Packet
Switch”, IEEE Transactions on Communications.

[4]J. Loh, Aug. 1991, “ATM Packet Speech Simulation Using Ptolemy,” M.S. Report, Electronics Research Labora-
tory, Dept. of EECS, U. California Berkeley.

[5] K. Sato, S. Ohta, and I. Tokizawa, Aug. 1990, “Broad-Band ATM Network Architecture Based on Virtual Paths,”
IEEE Trans. Commun., vol. 38.

[6] K. Sriram, Sept. 1986, “Characterizing Superposition Arrival Processes in Packet Multiplexers for Voice and
Data,” IEEE Journal on Selected Areas in Communications, vol. 6.

[7] B. Stroustrup, 1991, The C++ Programming Language (2nd ed.), AT&T Bell Laboratories, Murray Hill, NJ.

[8] F. Tobagi, Jan. 1990, “Fast Packet Switch Architectures for Broadband Integrated Services Digital Networks”,
Proceedings of the IEEE.

[9] J. Walrand, 1991, Communication Networks: A First Course, Aksen Associates Incorporated Publishers, Boston,
MA.

Heterogeneous Cell-Relay Network Analysis with Ptolemy 38

