— Proc.

of ICASSP-94, Adelaide, Australia, April,

1994 —

MINIMIZING MEMORY REQUIREMENTS FOR CHAIN-
STRUCTURED SYNCHRONOUS DATAFLOW

PROGRAMS!
Praveen. K. Murthy, Shuvra. S. Bhattacharyya, and
Edward. A. Lee

EECS Department, University of California, Berkeley, CA 94720
{murthy, shuvra, eal}@eecs.berkeley.edu

Abstract

This paper addresses trade-offs between the minimization of
program memory and data memory requirements in the compila-
tion of dataflow programs for multirate signal processing. Our
techniques are specific to the synchronous dataflow (SDF) model
[6], which has been used extensively in software synthesis envi-
ronments for DSP; see for example [7][8]. We focus on programs
that are represented as chain-structured SDF graphs. We show
that there is an O (n3) dynamic programming algorithm for
determining a schedule that minimizes data memory usage
among the set of schedules that minimize program memory
usage. A practical example to illustrate the efficacy of this
approach is given. Some extensions of this algorithm are also
given; for example, we show that the algorithm applies to the
more general class of well-ordered graphs.

1. Introduction

We say that an m-node directed graph is chain-structured if it has
(m — 1) arcs, and there are labels Ny, N,, ..., N, and o}, 0y, ...,
o,,,.; for the nodes and arcs, respectively, such that each o is
directed from N; to Ny, ;.

With large sample-rate changes, careful code-scheduling tech-
niques must often be applied to keep program memory require-
ments manageable when efficient in-line code is desired [1]. For
chain-structured SDF graphs, although minimum-code-size
schedules can easily be constructed, the number of distinct mini-
mum-code-size schedules increases combinatorially with the
number of nodes, and these schedules can have vastly differing
data memory requirements.

In this paper, we focus on determining the schedule that mini-
mizes data memory requirements from among the set of sched-
ules that minimize code size. We show that this problem is
similar to the problem of most efficiently multiplying a chain of
matrices [5], for which a cubic-time dynamic programming algo-
rithm exists. We show that this dynamic programming technique
can be adapted to our problem to give an algorithm with time
complexity 0(m3). Finally, we present a heuristic having qua-
dratic time-complexity that usually performs well. Thus, the heu-

ristic can be used as a quick first-attempt, and if the resulting
solution does not satisfy the given memory constraints, the
dynamic programming algorithm can be applied to obtain an
optimal solution.

2. Memory Requirements for Chain-
Structured SDF graphs

In dataflow, a program is represented as a directed graph in
which the nodes (actors) represent computations and the arcs
specify the flow of data. An actor is allowed to execute (fire) only
after it has sufficient data on all input arcs. Synchronous dataflow
(SDF) is a restricted form of dataflow in which the number of
data values (fokens) produced and consumed by each actor is
fixed and known at compile-time. Fig. 1 shows a simple chain-
structured SDF graph. The numbers on the ends of the arcs spec-
ify the number of tokens produced and consumed by the incident
nodes.

We compile an SDF graph G by first constructing a periodic
admissable sequential schedule (PASS), also called a valid
schedule — a sequence of actor firings that executes each actor at
least once, does not deadlock, and produces no net change in the
number of tokens on each arc. Corresponding to each actor in the
valid schedule, we insert a code block that is obtained from a
library of predefined actors. The minimum number of times that
each actor must execute in a valid schedule can be computed effi-
ciently [6]. We represent these minimum numbers of firings by a
vector qg, indexed by the actors in G, and we refer to qg as the
repetitions vector of G (we often suppress the subscript if G is
understood from context). For fig. 1, q = q(A,B,C,D) = (9, 12,
12, 8).

For example, (2ABC) DABCDBC (2ABCD)A(2BC) (2ABC) A
(2BCD) gives a valid schedule for fig. 1. Here a parenthesized
term (7 S; S, ... Sy) represents n successive firings of the sub-
schedule S; S, ... S, and we translate such a term into a loop in
the target code. A more compact schedule for fig. 1 is

.4 3.1 1.2 3‘

Figure 1. A chain-structured SDF graph.

1. This research was sponsored by Star Semiconductor Corporation, the State of California MICRO Project, the National Science Foun-
dation (MIP-9201605), the Advanced Research Projects Agency and the United States Air Force.

(9A)(12B)(12C)(8D). We call this schedule a single appearance
schedule since it contains only one appearance of each actor.
Neglecting loop overhead, any valid single appearance schedule
gives the minimum code space cost for in-line code generation.

The amount of memory required for buffering along arcs may
vary greatly between different schedules. We define the buffering
cost of a schedule S as (X max_tokens(a., S)), where the sum is
taken over all arcs o, and max_tokens(o., S) denotes the maxi-
mum number of tokens that are simultaneously queued on o dur-
ing an execution of S. For example, the schedule (9A)(12
B)(12C)(8D) has a buffering cost of 36+12+12424 = 84.

The buffering cost gives the amount of memory required to
implement the arcs if each arc is implemented as a separate block
of memory. Optimally combining the advantages of buffer over-
laying and nested loops is a topic for further study.

Corresponding to each valid schedule, there is a positive integer
J, called the blocking factor, such that each actor N is executed
Jq(N) times by the schedule. It can be shown that given any SDF
graph and a valid schedule with J >1, there is a valid schedule of
unity blocking factor that has equal or smaller buffering cost.
Thus for our purposes, it suffices to consider only the unity
blocking factor case. In the remainder of the paper, by a “sched-
ule” we mean a valid unit blocking factor schedule.

Note that for simplicity, we assume that the arcs in a chain-struc-
tured SDF graph have no delay associated with them; however,
the techniques presented in this paper can easily be extended to
handle delays.

3. A Recursive Scheduling Approach

Let G be a chain-structured SDF graph with nodes N{,N,,...,N,,,
and arcs 04,0, ...,0,,. such that each oy is directed from Ny to
Ni+1- In the trivial case, m = 1, we immediately obtain N; as a
schedule for G. Otherwise, given any i € {1, 2, ..., m—1}, define
lef(i) to be the subgraph formed by {N,N,,...,N;} and {o; |j <
i}; similarly define right(i) to be the subgraph formed by
{Ni+1.Ny,....Np} and {oy |/ >}, Let qp = ged({q(Nj) | 1 <j <i}),
and let qr =gcd({q(N;) | i <j < m}) where gcd is the greatest
common divisor. If S; and Sy are valid single appearance sched-
ules for left(i) and right(i) respectively, then (q; S;)(qr Sg) is a
valid single appearance schedule for G [2].

For example, suppose that o, denotes the center arc in fig. 1, and
suppose i = 2. It is easily verified that gy (A, B) = (3, 4), and
Qrighiy (C; D) = (3, 2). Thus, S = (3A)(4B) and S = (3C)(2D)
are valid single appearance schedules for /efi(i) and right(i),
respectively, and (3(3A) (4B))(4(3C) (2D)) is a valid single
appearance schedule for fig. 1.

We can recursively apply this procedure of decomposing a chain-
structured SDF graph into left and right subgraphs to construct a
schedule for the graph. However, different sequences of choices
for i will in general lead to different schedules. For an m-node

graph, the number of distinct schedules obtainable from this
recursive process is
1 (2m-2

m m—1

This expression is Q(4" /m) !, and its values for all m are known
as the Catalan numbers [4].

It can be shown that the set of valid single appearance schedules
obtainable from this recursive scheduling process, which we
refer to as the set of R-schedules, always contains a schedule that
achieves the minimum buffer cost over all valid single appear-
ance schedules. For example, the R-schedules for fig. 1 are
(3(3A)(4B))(4(3C)(2D)), (3(3A)(4(1B)(1C)))(8D),
(3(1(3A)(4B))(4C))(8D), (9A) (4(3(1B)(1C))(2D)),
(9A)(4(3B)(1(3C)(2D))); the corresponding buffering costs are,
respectively, 30, 37, 40, 43, 45; and it can be verified that
(3(3A)(4B))(4(3C)(2D)) has the lowest buffering cost over all
valid single appearance schedules for this example. Note that the
1-iteration loops can be ignored during code generation.

The combinatorial growth in the size of the set of R-schedules
precludes exhaustive evaluation. The following section presents
a dynamic programming algorithm that obtains an optimal
schedule in polynomial time.

4. Dynamic Programming Formulation

The problem of determining the R-schedule that minimizes buft-
ering cost for a chain-structured SDF graph can be formulated as
an optimal parenthesization problem. A familiar example of this
problem is matrix chain multiplication [4][5]. In matrix chain
multiplication, we must compute the matrix product 4,4,...4, .
These matrices are assumed to have compatible dimensions so
that the product is computable. There are several ways in which
the product can be computed. For example, with » = 4 , one
way of computing the product is (4, (4,45)) A, where the
parenthesizations indicate the order in which the multiplies
occur. Suppose that the matrices have dimensions 10x1, 1x10,
10x3, 3x2. It is easily verified that computing the product as
((4,4,) A;) A, requires 460 multiplications whereas comput-
ing itas (4,(4,4;))A4, requires only 120 multiplications
(assuming that we use the standard algorithm for multiplying two
matrices). Thus, we would like to determine the optimal way of
placing the parentheses so that the total number of multiplies is
minimized. This can be done using a dynamic programming
approach. The observation is that any optimal parenthesization
splits the product 4,4,...4, between 4, and 4, ,, for some k
in the range 1 <k <n . The cost of this optimal parenthesization
is therefore the cost of computing the product 4,4,...4, , plus
the cost of computing A4, ,...4, , plus the cost of multiplying
them together. In an optimal parenthesization, the subchain
A,4,...A, must itself be parenthesized optimally. Hence, this
problem has the optimal substructure property and is thus amena-
ble to a dynamic programming solution.

1. fix)is Q(g(x)) (O(g(x))) if f{x) is bounded below (above) by a positive
real multiple of g(x) for sufficiently large x.

Determining the optimal R-schedule for a chain-structured SDF
graph is similar to the matrix chain multiplication problem. For
example, consider fig. 1. Here, q(A,B,C,D) = (9,12,12,8). An
optimal R-schedule is (3((3A)(4B)))(4 ((3C)(2D))), and the asso-
ciated buffering cost is 30. Therefore, as in the matrix chain mul-
tiplication case, the optimal parenthesization contains a break in
the chain at some k£, 1 <k<n . Because the parenthesization is
optimal, the chains to the left of £ and to the right of £ must
both be parenthesized optimally also. Hence, we have the opti-
mal substructure property.

The problem can be formulated as follows: denote by b[i,/] the
cost for optimally parenthesized nodes Nj, Nj.y,...,N;, and let oy
denote the number of tokens produced by each invocation of Ny.
Then we wish to compute b[1, m]. If i#j, then

bli,j1 = MIN{b[i,k] +b[k+1,j] +c,[k]}
i<k<j '

(EQ 1)

where b[i, i]=0 for all i, and c [k] is the memory cost at the
split if we split the chain at £. It is given by

q (N o,

1k =
G @ A,), L a)

(EQ 2)

The ged appears in the denominator because the repetitions vec-
tor qgcij) of subchain {N;, Nj,,,...,N;} satisfies qgcgij) (Ny) =
a(Ny) / ged({a(Ny), q(Niyp),..., aND}) V ke {i,....j} [2].

It can be shown that the running time of the implementation of
this dynamic programming formulation is om).

5. Example: Sample-Rate Conversion

The recently introduced Digital Audio Tape (DAT) technology
operates at a sampling rate of 48 khz while compact disk (CD)
players operate at a sampling rate of 44.1 khz. Interfacing the
two, for example, to record a CD onto a digital tape, requires a
sample rate conversion.

The naive way to do this is shown in fig. 2. It is more efficient to
perform the rate-change in stages. Rate conversion ratios are
chosen by examining the prime factors of the two sampling rates.
The prime factors of 44100 and 48000 are 22325272 and 273153,
respectively. Thus the ratio 44100:48000 is 3172:2351 or
147:160. One way to perform the conversion in three stages is
4:3, 8:7, and 5:7. Fig. 3 shows the multistage implementation.
Explicit upsamplers and downsamplers are omitted; it is assumed
that the FIR filters are general polyphase filters [3].

160 147

CD +@—> FIR *@—» DAT

Figure 2. CD to DAT rate-change system

Here q(A,B,C,D,E) = (147,49,28,32,160). The optimal nesting
for this graph as given by the dynamic programming approach is
(49((3A)B)) (4((7C)(8(D(5E)))), and the associated buffering
cost is 260. In contrast, the naive schedule (147A)(49B)
(28C)(32D)(160E) has a buffering cost of 729. The data-memory
requirement for a graph like this consists of two parts: inter-actor
buffering induced by the schedule, and memory required to hold
variables and states contained in the actors themselves. Clearly,
the first component of the requirement is significant in this case;
hence, it pays to do intelligent scheduling.

6. A Quadratic-Time Heuristic

The time-complexity of our dynamic programming solution is
cubic in the number of nodes. For cases in which the running
time of this exact algorithm is unacceptable or a quicker solution
is desired, we have devised a quadratic-time heuristic that per-
forms quite well in practice. However, as with all heuristics,
examples can be constructed where the heuristic will perform
poorly.

The heuristic is simply to introduce the parenthesization on the
arc where the minimum amount of data is transferred. This is
done recursively for each of the two halves that result. The run-
ning time of the heuristic is given by the recurrence

T(n) = T(n—k) +T (k) +0(n) (EQ 3)
where & is the node at which the split occurs. This is because we
have to compute the gcd of the repetitions of the £ nodes to the
left of the split and the gcd of the repetitions of the n — k£ nodes
to the right. This takes O (n) assuming that the repetitions vec-
tor is bounded. Computing the minimum of the data transfers
takes a further O (n) time since there are O (n) arcs to con-
sider. The worst-case solution to this recurrence is O (nz) , but
the average case running time is O (n - logn) if &k = O(n) .
It is easily seen that this heuristic gives the R-schedule with min-
imum buffering cost, (3(3A)(4B))(4(3C)(2D)), for fig. 1.

We have tested the heuristic on 10,000 randomly generated 50-
node chain-structured SDF graphs, and we have found that on
average, it yields a buffering cost that is within 60% of the opti-
mal cost. For each random graph, we also compared the heuris-
tic’s solution to the worst-case schedule and to a randomly
generated R-schedule. On average, the worst case schedule had
over 9000 times higher cost than the heuristic’s solution, and the
random schedule had 225 times higher cost. Furthermore, the
heuristic outperformed the random schedule on 97.5 percent of
the trials.

A 1 3.4 7.8 .51 B
CD DAT

Figure 3. Multi-stage implementation of CD to
DAT rate-change system.

7. Extensions

There are three simple extensions of our dynamic programming
solution to the optimum R-schedule problem for chain-structured
SDF graphs. In this section, we use the following notation: given
an SDF arc o, we denote the source node and sink node of o by
source (o) and sink (o) , and we denote the number samples
produced on o per invocation of source (o) by produced (o) .
First, our dynamic programming technique applies to the more
general class of well-ordered SDF graphs. A directed acyclic
graph is well-ordered if it has only one topological sort (a topo-
logical sort of a directed graph is an ordering of the nodes such
that for each arc o, source () occurs earlier in the ordering
than sink (o) . All chain-structured graphs are well-ordered but
the converse is obviously not true.

The dynamic programming technique for chain-structured SDF
graphs can be applied to the topological sort corresponding to a
general well-ordered graph with the modification that i [k] ,
the memory cost of splitting subchain {Nj, Nj;,...,N;} between
the nodes N, and Ny, now gets computed as

z (q (source (o))) produced (o)

oe Si,,;k

ged({a(N), q(Niy),.., a(N)) })

where S;;, = {B | (source (B) € {N;, Nisy,..., Ni}) and
(sink (B) € {Niippe-.s N;})}, the set of arcs directed from one
side of the split to the other side.

(EQ 4)

ekl =

The dynamic programming technique of section 3 can also be
applied to reducing the buffering cost of a given single appear-
ance schedule for an arbitrary acyclic SDF graph (not necessarily
chain-structured or well-ordered). Suppose we are given a valid
single appearance schedule S for an acyclic SDF graph and again
for simplicity, assume that arcs in the graph contain no delay. Let
¥ =N, N,, ..., N, denote the sequence of lexical actor appear-
ances in S (for example, for the schedule (4 A(2 CD))F, ¥ = A,
C, D, F). Now it can easily be verified that since S is a valid
schedule, ¥ must be a topological sort of the associated SDF
graph. The technique of section 3 can easily be extended to opti-
mally “re-parenthesize” S into the optimal single appearance
schedule (with regards to buffering cost) associated with the
topological sort . The technique is applied to the sequence ¥,
with ¢ [£] computed as in equation 4.

Thus, given any topological sort ¥ for an acyclic SDF graph,
we can efficiently determine the single appearance schedule that
minimizes the buffering cost over all valid single appearance
schedules for which the sequence of actor appearances is ¥*.

Another extension is to use shared buffers. There are several
ways in which buffers can be shared; the simplest is to have one
shared buffer of size

cs. = MAXiSk<j(okq (k) to,,,q(k+1))
v gcd(q (i), . q0))

(EQ 5)

for the sub-chain consisting of nodes i, ..., j . We modify equa-
tion 1 by

b'li,j1 = MIN (b i1, csy)

Note thatif j = i+ 1, then
B 0,q (i)
cs,; = - - .
7 ged(q(i),q(it+1))
This gives us a combination of shared and non-shared buffers for

different sub-chains. Sharing buffers in a more general way is
beyond the scope of this paper.

Acknowledgment

Tom Parks at UC Berkeley conceived, designed, and imple-
mented the rate-change system of fig. 3.

References

[1] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “A
Scheduling Framework for Minimizing Memory Requirements
of Multirate Signal Processing Algorithm Expressed as Dataflow
Graphs”, VLSI Signal Processing VI, IEEE Special Publications,
1993.

[2] S. S. Bhattacharyya and E. A. Lee, “Looped Schedules for

Dataflow Descriptions of Multirate Signal Processing Algo-
rithms”, to appear in Formal Methods in System Design, 1994.

[3]J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Multirate
Signal Processing in Ptolemy”, Proceedings of /CASSP, Toronto,
April 1991.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduc-
tion to Algorithms”, McGraw Hill 1990.

[5] S. S. Godbole, “On Efficient Computation of Matrix Chain
Products”, IEEE Trans. on Computers, September 1973.

[6] E. A. Lee and D. G. Messerschmitt, “Synchronous Data-
flow”, Proceedings of the IEEE, September, 1987.

[7] P.K.Murthy, “Multiprocessor DSP Code Synthesis in
Ptolemy”, Memo No. UCB/ERL M93/66, ERL, UC-Berkeley,
Ca 94720

[8] J.Pino, S.Ha, E.A.Lee, and J.T.Buck, “Software Synthesis for
DSP Using Ptolemy”, to appear in Journal of VLSI Signal Pro-
cessing, 1993.

MINIMIZING MEMORY REQUIREMENTS FOR CHAIN-
STRUCTURED SYNCHRONOUS DATAFLOW PROGRAMS

Praveen. K. Murthy, Shuvra. S. Bhattacharyya, Edward. A. Lee
EECS Department, University of California, Berkeley CA 94720

This paper addresses trade-offs between the minimization of pro-
gram memory and data memory requirements in the compilation of
dataflow programs for multirate signal processing. Our techniques
are specific to the synchronous dataflow (SDF) model, which has
been used extensively in software synthesis environments for DSP.
We focus on programs that are represented as chain-structured SDF
graphs. We show that there is a dynamic programming algorithm
for determining a schedule that minimizes data memory usage
among the set of schedules that minimize program memory usage.
A practical example to illustrate the efficacy of this approach is
given. Some extensions of this algorithm are also given; for exam-
ple, we show that the algorithm applies to the more general class of
well-ordered graphs.

