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Abstract

The paper gives an automated procedure to design rational decimation com-

pression systems that resample two-dimensional bandpass signals at their Nyquist

rates. The procedure takes a sketch of the passband in the frequency domain,

circumscribes it with a parallelogram, and linearly maps the parallelogram onto

one period of the frequency domain. Thus, the compression system only has

linear components.

1 INTRODUCTION

Two-dimensional decimation systems can be used to reduce the amount of data for

applications in which the crucial data occupies a certain frequency band. For example,

images are often oversampled, so most of the signal energy resides at low frequencies.

If the high-frequency content (edges, texture, etc.) is not important, then the image

can be decimated to a lower spatial resolution. In video processing, two-dimensional

decimators can be used to convert sequences of images from interlaced to non-interlaced

format. These decimators preserve the frequency content in a diamond-shaped (i.e.,

parallelogram-shaped) passband centered at zero frequency. Seismic data is sampled

in position and time [1]. Data falling on the same position-time line corresponds to

waves having the same velocity. Fan �lters are used to pass ranges of velocities. When

the range of passed velocities is small, the fan �lters produce \narrowband" signals.

The narrowband signals take the shape of a parallelogram in the frequency domain if

the passband includes either frequency axis.
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Figure 1: Flow Graph of a Two-Dimensional Decimator

The paper discusses the automation of the design of compression systems that

resample two-dimensional bandpass signals at their Nyquist rate. The bandpass signal

is represented by a polygon. The engineer can sketch the polygon with a mouse or

specify its vertices with mathematical formulas. From the polygonal passband, the

automated procedure will compute the parameters for the compression system shown in

Figure 1. The entire procedure is encoded in theMathematica [2] symbolicmathematics

environment. Sketching the passband utilizes the notebook interface to Mathematica,

and the conversion from the polygonal passband to a decimation system is handled by

the signal processing packages [3, 4] for Mathematica.

2 THEORY FOR DECIMATOR DESIGN

This section discusses the theory underlying rational decimation systems. Rational dec-

imation systems extract a connected portion of the frequency domain (the passband)

and resample it at a lower rate. To resample the desired passband at the Nyquist rate,

the passband is shifted down to baseband (DC) and mapped onto one period of the

frequency domain while preventing aliasing and imaging e�ects. The period is chosen

to be the fundamental frequency tile !1 2 [��; �)
S
!2 2 [��; �). Using this period,

the steps involved in designing a two-dimensional decimator amount to

1. computing the minimal rectangle with 
oating-point coordinates that circum-

scribes the passband,

2. �nding the parallelogram whose coordinates are rational multiples of �, whose

area is minimal, and whose extent includes the minimal rectangle,

3. shifting the center of the parallelogram to the origin (baseband),

4. de�ning the rational matrixH that maps the parallelogram onto the fundamental

frequency tile, and

5. factoring the rational matrix H into the two integer matrices L and M .
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Step 1 of the design procedure �nds the rectangle of minimal area that circum-

scribes the passband. For each polygon edge of the passband, the polygon is rotated

so that the edge would lie on the horizontal axis. The rectangle of smallest area that

circumscribes the rotated polygon is then computed by �nding the minimum and max-

imum coordinates of the rotated vertices. After all of the edges have been processed,

the rectangle with the smallest area is chosen. Then, the rectangle is rotated to the

location of the passband.

From the rectangle computed in Step 1, Step 2 �nds the parallelogram with minimal

area that circumscribes the rectangle. Unlike the coordinates of the rectangle's vertices,

each coordinate of the parallelogram's vertices must be a rational number times �. The

procedure �rst sorts the vertices of the rectangle such that the �rst vertex is the upper

left corner and the other vertices are in clockwise order. Then, the procedure �nds the

parallelogram that circumscribes the rectangle by (a) rationalizing the division of three

of the four rectangle coordinates with � so that the new coordinates are \outside" the

rectangle, and (b) computing the fourth coordinate from the other three so as to make

sure that the bounding region is a parallelogram.

Step 3 only requires averaging the four vertices of the parallelogram to �nd the shift

vector. We implement Step 4 according to [5]. From the rational matrix H computed

in Step 4, Step 5 decomposes H into its Smith-McMillan form H = U �V , where � is

a diagonal matrix with rational numbers along the diagonal and where U and V are

integer matrices with determinant +1 or �1. Then, we collect terms:

H = U �V = U ��1
L

�M V =
�
�L U

�1

�
�1

(�
M
V ) = L�1M (1)

So, L = �L U�1 and M = �MV , where �L and �M are integer diagonal matrices.

The diagonal elements of �L are the reciprocals of the denominators of the diagonal

elements of �, and the diagonal elements of �M are the numerators of the diagonal

elements of �. In the case of upsampling by L = �L U�1, input samples are �rst

rearranged by U�1 (the rearrangement is lossless because U has a determinant of �1)

and then separably upsampled by �L (upsampled in the �rst dimension by �11 and in

the second dimension by �22). For downsampling by M , the input samples are �rst

separably downsampled by �M and then losslessly rearranged by V . L and M are

relatively prime because the rational numbers along the diagonal elements of � are

reduced by removing common factors before �L and �M are computed (for a de�nition

of relative primeness, see [6, 7]). Because L and M are relatively prime, e�cient

polyphase implementations always exist for our rational decimator designs [6].
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3 DESIGN EXAMPLES

This section describes the automatic design of a two-dimensional decimator for a

sketched passband and a circular passband. The automated procedure is a realization

of the steps outlined in the previous section by the routine DesignDecimationSystem.

This routine takes one argument that is either a polygon or a rational sampling ma-

trix. Given a rational sampling matrix, the routine just carries out the �fth step in

the procedure from the previous section. Given a polygon, the routine performs all of

the steps in the procedure. This routine supports an option Mod which sets an upper

limit on the denominator of the coordinates of the parallelogram computed in step 2

of the procedure. The rest of this section discusses the two design examples.

In the �rst example, the user sketches the desired passband in the frequency domain

with a mouse. Using two keystrokes, the user pastes the vertices of the polygon into

the �rst command in Figure 2, and the second command draws the polygon. In the

third command, the polygon is passed to the DesignDecimationSystem routine. The

routine, because the Dialogue option has been set to All, plots the rectangle (in

black) that circumscribes the passband and also plots the parallelogram (in black) that

circumscribes the rectangle. For both plots, the original passband is shown in grey.

The routine also reports the packing e�ciency of the rectangle and the parallelogram,

as well as the input-output compression ratio obtained by the decimation system. The

compression ratio is de�ned as the area of the bounding parallelogram divided by the

area of the fundamental frequency tile (4�2), and it is computed by jdetM j=jdetLj.

The routine returns the parameters of the compression system: the modulation shift

n0, the upsampling matrix L, and the downsampling matrix M .

We ran the design procedure on a circular passband of radius 1. We approximated

the circle with a twenty-sided polygon whose vertices were given by a simpleMathemat-

ica formula. The design procedure reported a packing e�ciency of 79.2% and an 8-to-1

compression ratio. The best packing e�ciency, 86.6%, is obtained by circumscribing

the passband with a regular hexagon [1]. For non-linear compression, the theoretical

upper limit on the compression ratio is 4�, which is approximately 12.5-to-1.

4 CONCLUSION

In some image, video, seismic applications, only a portion of the frequency content of

the signals is important. This paper gives an automated procedure of the design of the

the two-dimensional compression system shown in Figure 1 to resample the passband

at its Nyquist rate. This approach is based on the knowledge of where the important

passband resides in the frequency domain. The procedure circumscribes the passband

with a parallelogram and maximally decimates the parallelogram.
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poly = Polygon[
(* paste points below and evaluate expression *)
{{-2.846744, -0.443421}, {-2.950194, -0.081346}, 
{-2.743294, 0.50487}, {-2.226045, 1.091086}, 
{-1.777762, 1.470402}, {-1.191546, 1.953168}, 
{-0.81223, 2.280759}, {-0.312222, 2.694558}, 
{0.118819, 2.987666}, {0.618826, 3.056633}, 
{1.032626, 2.798008}, {1.032626, 2.298001}, 
{0.877451, 1.815234}, {0.515377, 1.332469}, 
{0.118819, 0.901428}, {-0.536364, 0.453145}, 
{-0.932921, 0.177279}, {-1.450171, -0.115829}, 
{-2.053628, -0.339971}}
];

Show [ Graphics[ { RGBColor[1,1/2,0], poly } ],
       AspectRatio -> 1, Axes -> True,
       Frame -> True,
       FrameTicks -> { piTicks, piTicks },
       PlotRange -> {{-Pi, Pi}, {-Pi, Pi}} ]

0 π−π

0

π

-Graphics-

{ shift, upMatrix, downMatrix } =
  DesignDecimationSystem[
    poly, Dialogue -> All, Mod -> 10 ]

Best packing efficiency with rotated rectangle
 
   having real-valued coordinates: 78.7%

0 π−π

0

π

Actual packing efficiency: 63.6%  
 
  (out of a best possible 78.7%)

0 π−π

0

π

The compression ratio is 80-to-21.

  -Pi  7 Pi
{{---, ----}, {{21, -21}, {-4, 5}},   --   ---                           
   4    20
 
  {{92, 4}, {-20, 0}}}

This example �nds the two-dimensional

compression system that resamples the

passband (shown directly above) at its

Nyquist rate. The passband is sketched us-

ing a mouse. The software computes the

rectangle that circumscribes the passband

and the parallelogram with rational coordi-

nates that circumscribes the rectangle. The

parts of the circumscribing rectangle and

parallelogram that extend outside of the

fundamental frequency tile wrap around be-

cause the tile is periodic with period 2� in

each frequency variable.

n0 = (
��

4
;
7�

20
)

L =

�
21 �21

�4 5

�

M =

�
92 4

�20 0

�

Figure 2: Automatic Design of a Decimator for an Arbitrarily-Shaped Passband
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We have implemented the ideas in a set of signal processing packages and notebooks

[3, 4] for the computer algebra system Mathematica. Our implementation allows the

designer to specify the passband graphically using a mouse. For example, the designer

could sketch the area of interest on top of a plot of the two-dimensional spectrum. Our

implementation, however, does not design the two-dimensional �lter. The decimation

�lter has a passband that is a parallelepiped symmetric about the origin whose vertices

are �L�1Mvi for i = 1 : : : 4 where v = f(�1; 1); (1; 1); (1;�1); (�1;�1)g [5].

An area of future research could be the automation of the design of perfectly re-

constructing two-dimensional �lter banks [8, 9] based on an arbitrary geometric split

of the fundamental frequency tile. Such an approach would utilize subband geometries

that can be maximally decimated, i.e., parallelograms and regular hexagons.
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