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ABSTRACT

The ambitious objectives of the Ptolemy project include
practically all aspects of designing signal processing sys-
tems, ranging from the design and simulation of algo-
rithms to the generation of hardware and software, the
parallelizing of algorithms, and the prototyping of real-
time systems. To manage these abilities, it is essential that
the design software be highly modular and extensible, so
that the development of subprojects of manageable scope
can proceed unencumbered and in parallel, while at the
same time allowing subprojects to interact and to be com-
bined into a complete working system description. Since
subprojects must use the best available tools (Which are
often domain-specific), the tools must also be able to inter-
act. The Ptolemy software architecture shows one way in
which such interaction can be achieved, using object-ori-
ented principles of polymorphism and information hiding.

1. Introduction

In signal processing systems, heterogeneity arises in
two ways:

» Diverse implementation technologies are combined
(such as hardware, software, or subsystem integra-
tion).

¢ Diverse models of computation are used to describe
the system being implemented.

Diverse implementation technologies dominate in later
phases of the design, in which validation is complicated by
the mixture of implementation technologies. Diverse mod-
els of computation dominate during early phases of sys-
tem-level design, where domain-specific, high-level tools
are most effectively used. By “model of computation” we
mean the operational semantics of a network of functional
blocks. The objective of the Ptolemy project is to seam-
lessly support both forms of heterogeneity through care-
fully conceived software architecture, and to support
seamless migration from system-level design to detailed
design.

An example of the way that Ptolemy can support
diverse implementation technologies is shown in figure 1.
The design of each subsystem is carried out using the best
available methodology and tools for that subsystem, at the
highest level of abstraction possible. For example, signal
processing software can be specified using a block dia-
gram with dataflow semantics, and hardware can be speci-
fied at the architectural level as an assemblage of high-
level building blocks. The subsystems are then combined
for cosimulation and/or cosynthesis in a modular and
transparent way.

An example of the way that Ptolemy can support
diverse models of computation in a system-level design is
shown in figure 2. In figure 2, the model of a broadband
packet network includes the interactions between three
key elements: signal processing (video and audio com-
pression), transport (ATM, or asynchronous transfer mode,
a high-speed networking protocol), and control (signaling
and call processing). The signal processing is modeled
again using block diagrams with dataflow semantics,
while the transport and control are modeled using discrete-
event semantics.

Ptolemy is an object-oriented system and achieves its
goals using the principle of polymorphism. The system
consists of a kernel and an extensible number of domains.
The Ptolemy kernel, written in C++, defines the basic
classes that allow the components of the system to func-
tion together. These classes are generic, and do not assume
any particular model of computation. From these classes,
application-specific objects are derived to define a domain.
Information hiding and data abstraction are key to the
design; the system is extensible in many dimensions with-
out the need to modify the kernel.

Each design style is supported by one or more
domains. A domain is an extensible library of functional
blocks and a set of classes derived from the kernel classes
to implement a particular model of computation. Key to
Ptolemy is the ability to combine multiple domains in a
single design. Table 1 summarizes some of the domains on
which we are currently working.

Using heterogeneous design styles also requires using
tools from different sources. We have already demon-
strated varying levels of integration between Ptolemy and
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Figure 1. A board-level specification of a hardware design containing programmable DSPs (bottom window) is
combined with a high-level block-diagram representation of the algorithm to be executed by the DSPs. Ptolemy
handles code generation for the DSPs, including partitioning for parallel execution, and hardware/software
cosimulation. (Application developed by Asawaree Kalavade).



a number of externally developed tools, including Matlab ¢ Domain-specific signal processing algorithm design.
(from The MathWorks, Inc.), Hyper (a VLSI hardware

e Hardware/software codesign.
synthesis tool from Berkeley), Thor (an RTL-level circuit W W &

simulator from Stanford), and sim56000 and sim96000 *  Dataflow semantics (for signal processing).
(instruction-set simulators from Motorola for their pro- e Hierarchical finite-state machine semantics
grammable DSPs). (for control).

* Synthesis of embedded software.
2. Research problems yEhests of eibedded sofhware

Key research problems being addressed by this broad 2.1. Algorithm design

project include: Quickly and easily evaluating signal processing algo-

rithms requires access to a variety of tools. Matlab, for
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Figure 2. A multimedia networking application that combines discrete-event modeling of an ATM (asynchronous
ransfer mode) packet-switched network with video and audio coding and decoding (application developed by
Paul Haskell).



example, can be used for rapid prototyping of complex
algorithms; Mathematica can be used for symbolic manipu-
lation of mathematical expressions; filter design programs
are obviously used for filter design; and block-diagram sys-
tems can be used to assemble systems from simpler sub-
systems. These tools do not compete with one another.
They complement one another, and in large designs involv-
ing many engineers, all could come into play.

2.1.1 Matlab integration

Recently, we have built a link to Matlab in Ptolemy
that allows the functionality of a dataflow actor in a block
diagram to be defined using Matlab. This permits designers
to quickly evaluate algorithm alternatives, and to work

together despite disagreements about the tools they use.
Matlab uses one computation model based on matrix-vec-
tor calculations. The Ptolemy interface to Matlab allows
Matlab functions to operate on Ptolemy matrices.

2.1.2 Matrix manipulations

A second aspect of the effort to raise the level of algo-
rithm representation in Ptolemy is the inclusion of a com-
prehensive matrix manipulation mechanism in C++,
cleanly coupled to the block diagram representation. Figure
3 shows one application of this matrix class. Here, the mul-
tiple signal classification (MUSIC) algorithm is being
implemented for identifying sinusoids in noise. This is a
very high-level representation of the algorithm, much akin

Name Expansion Principal Use

SDF synchronous dataflow synchronous signal processing

DDF dynamic dataflow asynchronous signal processing

BDF boolean dataflow asynchronous signal processing

MDSDF | multidimensional dataflow multidimensional signal processing

DE discrete event communication network modeling and
determinate high-level system modeling

FSM finite state machines control

HOF higher-order functions graphical programming

Thor (name given at Stanford) RTL hardware simulation

MQ message queue telecommunications switching software

PN process networks real-time systems

CP communicating processes communication network modeling
nondeterminate system modeling

CGC code generation - C software synthesis (SDF or BDF model)

CG56 code generation - DSP56000 | firmware synthesis (SDF model)

CG96 code generation - DSP96000 | firmware synthesis (SDF model)

Silage a functional language VLSI hardware synthesis (SDF model)

VHDLF | VHDL - functional high-level modeling and design (SDF)

VHDLB | VHDL - behavioral hardware modeling and design (DE)

Sproc a multiprocessor DSP from firmware synthesis (SDF)

Star Semiconductor

Table 1: Some domains that have been implemented in Ptolemy. The shaded area

indicates simulation domains. The rest are code-generation domains.




to the mathematical representations used in such programs
as Matlab. But unlike using Matlab, the designer has much
more control over the details of the implementation of the
algorithm. Thus, this facility provides a beginning point
for a migration from high-level algorithm exploration to
implementation and deployment.

2.2. Animation and visualization

An important part of algorithm design is to visualize
the dynamics of a signal processing system using interac-
tive, animated graphics. We have linked the interpreted
language Tcl [4] and its associated X window toolkit Tk
[5] with the Ptolemy system. This provides a powerful,
extensible environment within which users can construct
customized, animated, interactive simulations. In figure 4,
we show an example of how this is used.

2.3. Visual representation of complex systems

Visual representation of complex systems poses some
unique challenges. Some of these can be effectively
addressed through the use of higher-order functions,
which permit compact, scalable representations. A higher-
order function is simply a function that takes a function as
an argument and/or returns a function. A well-known
example is the mapcar function in Lisp, which applies a
function to each element of a list.

In the visual languages commonly used for signal pro-
cessing, functions are replaced by blocks in a block dia-
gram. Each block has two syntactically distinct types of
arguments, parameters and signals. Signals are streams,
and their values are only known at execution time. Param-
eters have values known when the execution of the system
is being set up. It turns out that allowing parameters to
specify blocks makes a visual language much more conve-
nient for large applications.

A simple example of such a higher-order block in
Ptolemy is shown in figure 5a. The block is called “Map,”
and it has a parameter that specifies a replacement block.
At setup time, the Map block creates one or more
instances of the replacement block and substitutes these
replacement blocks for itself in the graph. The number of
replacement blocks to instantiate is sufficient to process all
input streams. Thus, for example, in figure 5c, there are
three input streams, so if the replacement block has one
input, then three instances will be created.

A variant of the Map block is shown in figure 5b,
where the terminals at the top of this rather intricate icon
provide a dock for an example of the replacement block.
Thus, the replacement block is specified graphically rather
than textually. Variations on this can have no inputs or no
outputs. Such a variation is used in figure 5c, where three
instances of the TkText block are specified graphically.

Another variant of the Map block is the IfThenElse,
which has two possible replacement blocks, and selects
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level representation of algorithms.
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Figure 5. (a) An icon for a simple higher-order function in Ptolemy, Map, that applies a named actor to its input
streams. (b) A variant of Map where the actor to apply to the input streams is specified graphically instead of
textually. (c) A simple use of the two types of Map actors where three ramps (increasing sequences) have three

instances of a named actor applied to them, and the three resulting streams are displayed using TkText.




between them using a predicate parameter. This can be
used to implement recursion, as shown in figure 6. The
first actor is a distributor, which collects two samples each
time it fires, routing the first one to the top output and the
second one to the lower output. The recursive invocation
of this block accomplishes the decimation in time. The
outputs of the distributor are connected to two [fThenElse
blocks, represent one of two possible replacement sub-
systems. When the order parameter is larger than some
threshold, the IfThenElse block replaces itself with a
recursive reference to the galaxy within which it sits.
When it gets below some threshold, then the [fThenElse
block replaces itself with some direct implementation of a
small order FFT. The repeat block takes into account the
periodicity of the DFTs of order N/2 without duplicating
the computation., The expgen block at the bottom simply
generates the W, sequence. The sequence might be pre-
computed, or computed on the fly.

A key observation about these higher-order blocks is
that their substitution of the replacement blocks occurs at
setup time not at runtime. Thus, they have zero run-time
overhead. The recursive specification in figure 6 can be
used even when extremely high performance is required
and traditional implementations of recursion would be
unacceptable.

2.4. Synchronous and dynamic dataflow

Our most heavily used model of computation for sig-
nal processing is synchronous dataflow (SDF) [1][2]. In
this model, an application is described as a graph where
nodes represent computations (“actors”) and arcs represent

the flow of data (“streams”). The actors produce and con-
sume a fixed and known amount of data on each arc each
time they fire. The synchronous dataflow model has the
compelling advantage that the firing pattern of the actors
can be completely determined at compile time.

Algorithms with predictable control flow have been
successfully addressed using the synchronous dataflow
(SDF) model of computation. Recently, however, our
effort has broadened to include applications where control
flow is not predictable. The objective is to preserve the
benefits (especially efficiency) of predictable control flow
whenever possible, but to support dynamic decision mak-
ing, dynamic real-time response, and asynchrony. This
will broaden the application domain to include telecom-
munications systems, real-time control, and hardware and
software co-design. To do this, we are pursuing two lines
of inquiry that avoid discarding the SDF model of compu-
tation in favor of one that is more general. The first is to
mix models of computations, gaining generality through
heterogeneity. The Ptolemy system is focused on support-
ing this. The second is to extend the analytical techniques
of SDF to dynamic dataflow graphs. A token flow model
[3][28] has been devised that replaces numeric solutions to
the balance equations used in the SDF model with sym-
bolic solutions. The dependence of control-flow on Bool-
eans is represented symbolically.

2.5. Heterogeneous targets

We have recently demonstrated the capability in
Ptolemy to jointly synthesize code for a host workstation
and an attached signal processor. Thus, a real-time pro-
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Figure 6. A recursive specification of an FFT implemented in the SDF domain in Ptolemy. The recursion is unfolded
during the setup phase of the execution, so that the graph can be completely scheduled at compile time.



gram running on the attached hardware appears to the user
as part of the process running on the workstation. This
makes the real-time hardware transparently accessible,
greatly enhancing our ability to rapidly prototype systems.
Moreover, the methodology being developed to support
this is generic, in that it can support joint software synthe-
sis for a variety of heterogeneous processor configura-
tions.

2.6. Real-time control

The dataflow capabilities in Ptolemy have advanced
much further than other models of computation useful for
prototyping. We are developing multithreaded dataflow
and hierarchical finite state machine models for mixing
real-time control with signal processing.

2.7. Optimized code generation

Synthesizing efficient assembly code for programma-
ble DSPs has proved to be a rich area for innovation. We
are currently focusing on problems associated with multi-
rate systems that have radically different sample rates in
different parts of the system, or with difficult sample-rate
ratios.

3. Conclusions

In summary, the key idea in the Ptolemy project is to
mix models of computation, rather than trying to develop
one, all-encompassing model. The rationale is that special-
ized models of computation are (1) more useful to the sys-
tem-level designer, and (2) more amenable to high-quality
high-level synthesis of hardware and software. The
Ptolemy kernel demonstrates one way to mix tools that
have fundamentally different semantics, and provides a
laboratory for experimenting with such mixtures.

The latest version of Ptolemy (designated 0.5') has
been publicly available and freely redistributable since
February, 1994. More information about the Ptolemy
project, plus access to all of the software and documenta-
tion, is available on the World Wide Web via the universal
resource locator (URL)  “http://ptolemy.eecs.berke-
ley.edu”.
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