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we use have running times that are polynomial in the size of the input graph (finding the maxi-
mum cycle mean, finding strongly connected components), the algorithm that finds the periodic
regime (by evaluating successive powers ofBhe -matrix) is not polynomial time since the tran-
sient can be exponentially long in certain instances. A possible polynomial-time algorithm might

make use of repeated-squaring to converge to the periodic-regime in polynomial time.

Possible future work includes studying efficiency issues in detail, in addition to finding
achievable optimal blocking factors when the number of processors is fixed and there is a cost

associated with interprocessor communication.
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Fig 19.a) The graph of the B-matrix for fig. 18. b) The crit-
ical graph of a).

6 Conclusion

In this paper, we have developed a formulation for the problem of finding rate-optimal
blocking factors for blocked, non-overlapped schedules. We have used a max-algebra formulation
to show that the critical path inJ -unfolded HSDF graph becomes cyclic as becomes large
enough. We have shown that it is possible to determine this cyclicity by analyzing the critical
graph of theB -matrix, a matrix that arises out of the model. The cyclicity of the critical path
implies that we have to examine only a finite number of unfoldings to determine whether a rate-
optimal unfolding exists. This number is equal to the sum of the cyclicity and a transient. Unfortu-

nately, the transient can be quite large sometimes.

While this paper has contributed to our theoretical understanding of the dynamics of
increasing the blocking factor, construction of rate-optimal blocked schedules for multiprocessors
is still a difficult problem. In addition, we often have a fixed, finite number of processors avail-
able; finding the best blocking factor when we are processor constrained is an open problem of
more practical interest. The results in this paper certainly provide us with a upper bound on the

performance we can expect with a finite number of processors.

The issue of algorithmic efficiency has not been dealt with in this paper. Clearly, the tech-
nigue of graph expansion alone can cause an exponential blow-up in the size of the actual graphs

that are dealt with if a large number of delays are present on any arc. While some algorithms that
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Fig 18.A non-strongly-connected HSDF graph.
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reach nor are reachable by any of the strongly connected components. We would then use equa-
tion 5 to calculateC (J) for successive unfolding factors. If the maximal element in this matrix
(the critical path), at some unfolding factor, is for some node that can reach or is reachable by a
strongly connected component, then we know that we have finished the first transient. We then
continue until we see cyclic behaviour. The advent of cyclic behaviour in the maximum weight

signals the end of the second transient.

Continuing with the example, we determine e  graph (figure 1®a)). is connected,

but the critical graph oB  has two strongly connected components (figure 19(b)). These have

cyclicities of 1 and 2; hence the cyclicity of the critical path is two. We conﬁ)‘]u_téA;O for
J= 3 and find that
16 J odd . .
M, (J) = thisisM (J) from equation 12).
g (J) O 3 even ( g (J) q )

Therefore, we conclude that even blocking factors greater than 8 are rate-optimal.

In summary, for a non-strongly connected HSDF graph, we first find the strongly con-
nected components of the graph and delete them. The resulting graph is acyclic, and we compute
the path that has the largest weight. Then, an upper bound on the first transient is the weight of
this path divided by the maximum cycle mean. We com@uté) using equation 5 for values of

J past the bound we have until we see the maximum element reach the periodic regime.
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Fig 17.No retiming results in a rate-optimal blocking fac-
tor for this graph.

Example 7:The next example illustrates the analysis for a non-strongly connected HSDF graph
(figure 18). This graph has a sink notle, , and hence the dummy sinEnode is shown explicitly.
In graphs that are not strongly connected, we speak of two transients. The first transient is due to
the fact that a path that does not intersect any cycle in the graph may be critical for a few unfold-
ings. As has been discussed before, this situation can only remain true for the first few unfoldings.
As the number of unfoldings increases, the critical path will be one that traverses some critical
cycles. Hence, the first transient is the number of unfoldings required for some path that does
intersect a cycle to become critical. As can be seen from the figure, the@bit8 is not acces-
sible in its entirety by any m.s.c.s of the graph. Since this path has one delay, its length stays con-
stant for all blocking factors greater than two. The length of the transient is therefore the number
of unfoldings needed for the weight BIGHS  to become non-critical. By evaluating equation 5
for the first two blocking factors, we determine the weight of this path to be 40; hence an upper
bound on the transient #0/A = 40/5 = 8 unfoldings. The second transient is the same as the
transient encountered for strongly-connected graphs; namely, that arising from the interaction of
non-critical cycles with critical cycles as in example 4. Of-course, the second transient may over-
lap the first transient so that the length of the overall transient (i.e., the number of unfoldings
before the periodic regime is reached) need not be equal to the sum of the two. In general, we

would need to find the strongly connected components of the graph and identify nodes that neither
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Fig 16.a) An HSDF graph that does not have a rate-opti-

mal blocking factor, b) A retimed version of graph in a)
that does have a rate-optimal blocking factor.

W)

W)

It is seen that even blocking factors are rate-optimal in the retimed graph.

Example 6:The example in figure 17, taken from [2], shows that sometimes, no retiming results
in a rate-optimal blocking factor. Every retiming of the graph results M a(J) that is greater
than the one for the original graph. Since the graph is perfect-rate (every loop has one delay), the

cyclicity is one and we find that
_ 6
T(J) = A+ 3 0J=1

If every node in the graph has unit execution time, then it has been shown in [4] that there is a

retiming that gives a rate-optimal blocking factor.
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Fig 15. a) An HSDF graph where the transient is large. b) The
graph of the B-matrix. ¢) The critical graph of b)

%+@ J=1246..
T.(9) = O
; A+ J=135..
J
A3 =246
T.(3) = O
P+ J=135.

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedulesl 29 of 35



Examples

6 1
-~
6 ‘\\,\
Fig 14.Critical graph for graph in fig. 13.

The iteration period is thus

n+8  a=147..
3
% 5

T = D+2 J=258.
Oy
D+Z J=369..

From the above equation, we can see that we will get the best performance if we choose a block-

ing factor that is a multiple of 3.

Example 4:There has been no transient in the critical path in all of the previous examples. This
example shows that the transient can exist and can be quite large. The HSDF graph, the graph of
B, and the critical graph appear in figures 15(a,b,c). We havemaleOQ %5 99% = 100

The cyclicity is 1. Simulation gives ub = 146  but the transient for the critical path turns out to

be 50. Thus, blocking factors greater than 50 are rate-optimal. The reason for the long transient is
that we have two interacting loops, one of which has a cycle mean very close to the maximum

cycle mean. It takes a long time for the effect of the critical cycle to start dominating.

Example 5:The next two examples show the effect of retiming [19] on the blocking factor. Con-
sider the HSDF graphs, thédr -graphs, and critical graphs depicted in figure 16(a,b). Both graphs
haveA = 35 . The one in figure 16(b) is a retimed version of the graph in figure 16(a). Using the
same methods as in the previous examples, we find that the iteration period for each of the graphs

is given by
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Fig 11.a) Graph of the B-matrix for graph in fig. 10. b) Critical
graph of graph in a).
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Fig 12.The graph for example 3.
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Fig 13.The graph of the B-matrix for graph in fig. 12
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Fig 10.A graph with a 2-delay and 3-delay critical cycles

o
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+ J=135..

T() =0
A+202-\ J=246..

Notice that although}\_lB has a transient of two before it becomes periodic, the critical path is
cyclic immediately. This will not be true in general. However, we have observed that the transient

for the critical path is usually less than the transient for the matrix.

Example 2:This is an interesting example where the cyclicity is one even though there are no
critical cycles with one delay in the HSDF graph. The graph for this example appears in figure 10.
This graph has\ = 2 . The gragh;  is shown in figure 11(a), and the critical graph in figure
11(b). There are two critical cycles in the HSDF graph and three critical cydigs in of lengths

2,3, and 5. Hence the cyclicity gcd(2, 3,5 = 1 . By simulation, we find that 8 . How-
ever, there is no transient fit; (J) and it is equal to 2 for e¥ery . The iteration period is given
by T(J) = A+ % .

Example 3:This example illustrates a case where the cyclicity of the critical path is smaller than
the cyclicity of the matrix. The graph is depicted in figure 12. The maximum cycle mean for this
graphis 6. The grapB; s given in figure 13, and the critical graph in figure 14. From the critical
graph, we see that the cyclicity is 6. Through simulatibn,  turns out to be 8. The critical path has

no transient and is cyclic with cyclicity 3 as shown by

Mg (1) = 8 Mg(2) =5Mg(3) =4,Mg(4) =8 Mg(5) =5Mg(6) =4
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Fig 8. HSDF graph from figure 1.
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Fig 9. a) The graph of the normalized B-matrix. b) The critical
graph of graph in a)

thatT = 3. HenceBJ+2 =B’ 1J>3 . By calculating the first four power8of , we get the fol-

lowing values foMg (J)
Mg (1) = 0.5Mz(2) = 0.0Mg(3) = 0.5Mg(4) =0.0.

Therefore, for this graph, even blocking factors are rate-optimal while odd blocking fac-

tors are not. The iteration period, as a functiod of , is given by

T(J) = CP(H/I = AI+Mg(J))/d = A +Mg(J)/J, (EQ 15)
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always going to be cyclic because the critical path is eventually going to consist of many travers-
als of a critical circuit. Hence, the starting node in any critical path is going to be a node that can

reachan m.s.c.siB having at least one critical cycle. Formally, we have the following theorem:

Theorem 3: The critical path ip -cyclic, wherg is the cyclicity@F(B)

Proof: The previous results on the cyclicity Bf  have illustrated that a maximum weight path
between two nodes that happens to traverse a critical cycle is cyclic. The critical path ina -
unfolded graph has to consist of several traversals of some critical cykle if is large enough.

Hence, the cyclicity of such a path is equapto

We use the preceding results to find the optimal blocking factors, when they exist, for sev-
eral graphs in the next section. Unfortunately, it will be shown that the trarisient  can be quite

large sometimes. It will also be shown the cyclicityhf (J) is sometimes lesspthan ; this

occurs if there is more than one m.s.c.Ql%(B) and the critical path always traverses critical
cycles from a subset of the total number of m.s.c.s@clm B) . Then, the cyclicity of the critical
path will be the Icm of the cyclicities of that subset of the m.s.c.s’s and this might be smaller than
the cyclicity of B . We note that even if an optimal blocking factor does not exist, we can still

choose blocking factors for whidi ; (J) is the smallest.

5 Examples
|

Example 1:Consider the graph in figure 1, reproduced in figure 8. Since the graph has arcs with

at most one delay, we do not need to do any graph expansion. The relevant matrices are:

Similarly, we can calculatB . The graph for B

by evaluating successive powersBf

ellel geecee 012¢4
eelel leecee €01¢3
ceeee2 andA = g g2 2¢ -Wecalculatdy, = e £ 0¢ 2
€eeeel 33¢e3¢ cee03
€EEEE] eegee eeee0

is shown in figure 9(a) and its critical graph is
shown in figure 9(b). From the critical graph, it is seen that the cyclicity is 2. By simulation (i.e,

and stopping when we see the periodic regime), we find
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p' = gcd(| p1| + |p3|, |p2| + |p3|) . Then there is a path of the same length through if the fol-
lowing equation has a non-trivial solutionkn  and  (thakis; O ):

ki (|pg] +|Pg]) *+|pq| = Kyp +ksp"+ Py (EQ 14)

The right hand side of the equation represents the length of a path that goes through some number
of critical cycles (fromw ), some number of the two non-critical cycles, and the acyclippath

Since p' divides|p1| + |p3| anqlp2| + |p3| , it divides their diﬁerenc}Fp2| —|p1|| . Therefore,
equation 14 can be written d@sp = (k,I,-l,-k;)p' , where= (|p1| + |p3|) /p' , and

l, = (|p2| —|p1|) /p'. We can choosk, suchthiat is an integer. As in the previous case, we
can only generate paths of this kinkif  dnd  are big enough for lemma 6 to apply; therefore,

if we setk3 = k*g +c,c = Eklll—lz—k; Emodp , therk; <ks< k*3 +p wherk; is the
smallest integer such that non-critical circuits of lerigjbi can be generatedkpe ekl*é . Of-

course, all this requires thief  be big enough.

Therefore, for two nodes not on any critical cycle, we can still construct paths between
them (if they exist) that include nodes on critical cycles. This means thapa length path will

have the same weight since we can traverse a critical circuit of larger length (by ).

A final possibility in the case where neither of the nodes is on any critical cycle is if one of
the nodes is not iIGS(B) . This possibility is similar to the above since there is always a path
from such a node to some nodeGﬁ(B) . If both of the nodes are Gﬁ(iB) , then neither

node is reachable and there is no path between them of any I@&dnh.

Theorem 2 tells us that it is enough to consider p blocking factors in order to deter-
mine whether there is a rate-optimal blocking factor, wilere is the length of the transient before
B becomes cyclic. A blocking factdr greater thar p will resuig(J) = Mg (J-p) ,

allowing us to determin®&i; (J)  for all

Let us now consider the case wh&e s not strongly connected. In thi8case, may not
be connected and may have more than one m.s.c.s, with some m.s.c.s’s having strictly negative
weight cycles. If these m.s.c.s’s have no access to critical cycles, then certain WeIBj]hts in will

go to—o asJ — o . Therefor® will not be cyclic in general. However, the critical path is
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Fig 7. The case where two nodes are not on any
critical cycle.

The last possibility for case 1 is if there is no path of ledgth  between v and . If it turns
out that aJ+ kp length path does exist for sokne , then the situation of not ha¥ing a length
path is transitory since we have already shown that if a path of some Jength exists, then so
does a path of length+ (k+ 1) p . If there is no path of lenythkp for any valle of , then
everyJ+ kp length path has a value&f . This completes the proof that the maximum weight

path between nodas amd is cyclic.

For case 2, there is the possibility that for certain valuds of , every path between the two
nodes consists of nodes not on any critical cycle. In this case, we cannot apply our arguments
above since when we increase @y , we cannot traverse a critical circuit of a larger length (by
p) since in order to do so, we have to have a node from some critical circuit in the path. Hence,
for these values af , we might be able to traverse only non-critical circuits, and this will drive the
weight of the path t& . However, we show that this situation cannot exist. Let v and be two
nodes not inG" (B) . However, assume that they do belonigsl(cB) . Since we are concerned
about the case where these nodes can reach each other via arbitrarily long paths having no nodes
from GC(B) , assume that there is a non-critical cycle between vand having no nodes from
G (B) . Figure 7 shows the situation. The paghs  ppd  form the non-critical cycle without
any nodes fronG~ (B) .Thenode issome node on some critical circuit, and b@csa(ufse
is strongly connected, there is a path from wto and fnom v to . These two paths are collec-
tively denotedp, . Therefore, there are paths of lekgitip,| + |p5)) +|p| between v and for
all positivek, , and the weight of these paths goes tok, as  increases. We want to show that we

can construct another path, that goes throwgh , of the same length as these paths. Let
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J = [p+ kpyctKp, (EQ 13)

wherep, is the cyclicity of the non-critical graph®f k;,,  dnd  are large integerp and is
some acyclic path betwean awnd . We claim that forlany expressible as in equation 13, the
integerk, liesin the range; <k, <k} +p-1 , whekg is the smallest integer such that for
all k; >2k; , there is a non-critical circuit of lengtypy  (in lemma 6). The implication of this
claim is that as) increases, even if we have to use non-critical circuitsdn the length path, we
need to only use a bounded number of them. To prove the claim, suppose that tdere is a length
path whered = [g + kpyc*+K,p , withk, and, arbitrary but large enough (for lemma 6 to
apply). We want to show that we can construct anodher length path with fewer non-critical
cycles and a larger number of critical cycles. That is, we want to replace some of the non-critical
circuits with critical circuits. If we are able to do this, then we will produde a length path of
larger weight. Note that we have the same acyclic path in both paths. We want to solve the equa-
tion kK;pyc = K1Pnct Kop Where ki sk;<kj +p—1. This equation represents the parti-
tioning of a non-critical circuit of lengtk,p,,-  into a non-critical circuit of lengtip, - ,and a

critical circuit of lengthk',p . It can be verified that if we set
K, = p_SS(kl—k; -0),

wherec = (k;—kj )modp ,therk, = ki +c andwegk} <k <kj +p-1 . Thisproves

the claim. Thus, if we haved length path witlF [pl + k pyc +K,p , then we can construct a
J+p length path by traversing a critical circuit of lengtk, + 1) p , and this path has the same
weight as thel length path. Moreover, we claim that this is the maximum wikight length
path. Suppose, to the contrary, that this is not the case, anttthe length path has larger
weight. If the maximum weighf + p  length path consists of a non-critical cycle of length
K,Pnc» Wherek, < k', +p—1 (this has to be the case by the above claim), and a critical cycle of
lengthk,p , then we can construcfa length path that has the same weight by traversing a critical
cycle of length(k, —1) p . This contradicts the premise thatithe Iength path had smaller weight.

Hence, for] as in equation 13, the maximum weight pagh is  cyclic.
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given by Erdoés and Graham in [23], and an algorithm for computing the bound i@lﬂnnaﬁ)
is given by Wilf in [22].

Theorem 2: If G is strongly connected, the® @ -cyclic, whgre is the cyclicitysgf(B)

Proof: We wish to show that for any large enou@l%,: B’*P . That is, the maximum weight
over J length paths between any pair of nodeg , in the g&aph , IS equal to the maximum
weight overJ + p length paths between the same pair in the gsaph . Recdlthat is

connected and has one m.s.c.s, den@t%(:B) . There are two cases to consider:
Case 1: One of the nodas v, belongésf:o( B)
Case 2: Neither of the nodes belongsstco( B)

For case 1, assume without loss in generality\tmuGC (B) . Consider a path batween
andv . In general, this path consists of an acyclic path between v and , de(ojedl , some
number of non-critical circuits, and some number of critical circuits. Consider an acyclic path
p* (u,v) of maximum weight betweeru and . Consider values Jof of the form
J = |p'| +kp, for k large enough, where the notatigh denotes the length of theppath . By
lemma 6, we know that there is a critical circuit of leriggph Kk if is large enough, in the m.s.c.s of
o (B) thatv belongs to (note that the critical graph can have more than one m.s.c.s). Actually,
we know that there are critical circuits of lendii in the m.s.cGCOQB) vthat belongs to,
where p' is the cyclicity of that m.s.c.s (defined as the gcd of the lengths of all circuits in the
m.s.c.s). However, we do not want our results to depend on the particular m.@ccz.(sa)f that
v belongs to (since we want to prove cyclicity for paths between all pairs of nodes); hence, it suf-
fices for critical circuits of lengtkp  to exist, whgve is the lcm of the cyclicities of each m.s.c.s
in G© (B) (as per definition 6). Therefore, a path of lengith |p‘| + kp has the same weight as
the pathp” , and this is the maximum possible weight. A path of lehgih = |p*| + (k+ 1) p
also has the same maximum weight. Hence Jfor length paths of thelfernip‘| + kp , the

maximum weight between and @s cyclic.

Consider now the possibility that tde  length path is not expressitilesalp’| + kp in

case 1. In general, if& length path exists at all, it can be expressed as
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o @
@@> N

Fig 6. A graph, its critical graph, and its non-critical graph

The cyclicity of the m.s.c.s containing nodes A and B in the critical graph of figure 6 is 2, and the

cyclicity for the m.s.c.s containing node C is 1. The cyclicity of the critical graph is lcm(1,2)=2.

Definition 7: [6] A matrix A is said to be cyclic if there exigd antd such that

Om> T, ATtd =AM The least sucd is called the cyclicity of mat#hix a@nd is said th be -

cyclic.

21 ¢
For the graph in figure 6, the matx  is givenAy= |_1 ¢ —1 , and by calculating the first
few powers ofA , we get -1¢ 0

o-10f ., |-110 , |000O _ |-110
A=120-2A =|1-1-1,A =|20-2A =|-1-1-1
-10 0 -10 0 -100 -1 0 0

and we see thaim> 2, A 2 = A" Of course, it is also true fhat> 2, AT d_ A"

d=2k, k=12 3...;we pick the least suath , whichis 2, akd is 2-cyclic.

Now we prove the main result in the paper, namely, the cycliciyy of . First we need the

following number-theoretic lemma, stated without proof:

Lemma 6: [21] Givenn integerd<a, <a,<...<a, ,suppose t@at= kCgcd{ g, ...,a }
Then, for eactk> k" , where’ = (a,;-1) (a,—1) ,the Diophantine equation
n
Q=5 ax

i=1
always has a solution in non-negative integers . The value givda for  is not tighe @r ;

the problem of finding the leakt ~ such that the lemma holds is still open [20]. Better bounds are
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where we have abused notation by combining normal algebra and max-algebra; the term uses

normal multiplication while the second term uses max-algebraic operations. Define

-1 [P
My (3) = max{ o\ 'BL) (EQ 10)
If Mg (J) #0, thenJ is not a rate-optimal blocking factor sifce (J) /J> A

For graphs that are not strongly connected, we have to use equation 5 to cGrfjute
(assuming thad is large enough so that rest of the terms in the summation drop out). In this case,
the critical path is given by

J—a1l, 1 [P

CP(J = max{ C(J} max{A~ "[A B[ _1A*NO} (EQ 11)

N -1
JA =N +max{ EP\ 1B%D Ao}

For non strongly connected graphs, redefine

-1 _[P-1
Mg (J) = max{ E}A BO Ayt (EQ 12)
If Mg (J) #A in equation 12, thed is not a rate-optimal blocking factor seé J) /J > A
The following definitions apply to generic, weighted digraphs:
Definition 4: The critical graph of a grap8 denoted , is a graph consisting of those nodes

and arcs ofc that belong to some critical circuit®f . This graph pays a key role in the asymp-

totic analysis oB’ .

Definition 5:  Similarly, the non-critical graph of a gra@ , deno@¥C , Is a graph consisting
of those nodes and arcs@f that belong to some non-critical cira@it of

For example, figure 6 shows a graph, its critical graph, and its non-critical graph.

Definition 6: The cyclicity of an m.s.c.s is the greatest common divisor (gcd) of the lengths of all

its circuits. The cyclicity of a grapd  is the least common multiple (Icm) of the cyclicities of all

its m.s.c.s’s.

18 of 35 On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedules1



Cyclicity of B

the deleted sub-cycles [l s; . Assume that each of these is a simple cycle. Denoting the number
of these sub-cycles b$ we ha®8x n— n because each cycle must have at least one delay. If

m, is the number of delays in cycde] s, , we get that
s s

weight( Q = weight(P = weight( P) + z weight(s0 s) snAg+ Z MAg = NAg
i=1 i=1
We also havaveight(Q = nAg .Hencag<A; .If some of the cydes s are not

simple, then they too can be pruned of sub-cycles and we can use similar arguments as above to

bound the sums.

Lemma 5: If Cis a critical cycle inG , then the cycle constructed fram Gg , as shown in

the first part of the proof in lemma 4, is also critical.

Proof: Lettng C =u, - U, - ... - U, - U, as before, we know that the arcs in
C'=u - u,; - U, - .. - U have weights larger than or equal to the weights of the corre-
sponding paths i€ . If the weights were larggr,  would have a larger weight. By lemma 4, we

know that this cannot be the case; he@te s a critical cy€lg in

4 Cyclicity of B

We are interested in the asymptotic propertieBJof Jas goes to infinity. Bince  has
positive weight cycles, this will be ill-defined since every entry goes to infinity in the limit. There-
fore, we normalizeB by subtractilg from each entry. In max-plus notation, this is represented
as\ B (recall that max-algebra has a multiplicative inverse, namely subtraction). The actual
weight in B’ can be gotten from the formdlé%)le%J . Hence, every cyc}e_llﬂ has non-

positive weight with the critical cycles havifly  weights.

Since we are interested in the critical path ofdhe -unfolded graph, we are interested in

the quantity

CP(J) = max{ C(J} = max{ >EABE} = JA + max{ PA""BE} | (EQ 9)
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Lemma 2: If G is strongly connected, the@; is connected.

Proof: Let u, v be any two nodes i . Than can reach and vice-versa. Since the cycle
uld vO u must have at least one delay, there is at least one node reachable by both and in

Gg. Hence,u, v are in the same connected component.

Lemma 3: Let V [V, be the set of nodes having at least one input delay dkc. If  is strongly

connected, the®; has only one m.s.c.s, and the node set of the m\§;c.s is

Proof: Letu,vOV,. Then [, v OV, st. (U,u), (V,v) are delay arcs by the definition of

V4. Since G is strongly connected, there is a patiGin of the fofmVvV - vO U - u
Therefore,ul v u is a pathi®G; . A node notV cannot be reachalsg, in and hence
cannot be any m.s.c.s. SinGg is connected (from lemma 2), the only m.s.c.s has the node set

Vy.

Lemmad4: Ay = Ag, whereG is the HSDF graph.

Proof: LetC = u; - u, - ... - U, - U, be acritical cycle ic . Theau,,...,u, OVs in

the cycleC such that the incoming arc to each rqule is a delay arc in the cycle. Therefore,
C=u-u,;-U,-..-U isacycleinG; withweight( C) 2weight(Q because the
weight of an ara; - U, g irGg is at least as big as the weight of the corresponding path in

G. Also, the number of nodes @ is equal to the number of dela@s in . Thevefare,;

Let us now prove thahg<A, . Let th€ above be a critical cycleGin . Then
v, vy, ooy V0 Vg such thatP = v, 0 v, > u, 0 v, - ugO0 ... 0 v, - u; isapath i
Each of the arcgv;, u,, ,) iR isadelay arcPif isa simple cycle, then we are done since its
weight is the same as the weight of the cycl&jpn P If is not a simple cycle, then it contains
many sub-cycles. Consider the following algorithm for “pruniRg”  of its sub-cycles. WePscan
from the left until we find a nods,  that repeats. The section of the p&h in  between the two
instances of; is removed from . This is equivalent to “merging” the two instanegs of  and
deleting the path in between. This process is continuedRintil  is free of subcycle's. Let  be the

number of delays in the simple cyd®¢  obtained by pruking . Then there-ame delays in
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If the original graph is strongly connected, then we do not need to add the dummy sink
node since there are no sink nodes in the graph. The following lemma shows that if the original

. . . J J=1.,*
graph is strongly connected, then it suffices to andyze ~ an8'no®,

Lemma 1: Suppose that the original HSDF graph is strongly connected. Suppose also that we

have not added the dummy sink node to the graph. Thar{ B]} = max{ B)_lA:\IO}

Proof: Consider the critical path in t@(9  graph (without the dummy sink). It must be the case
that the terminal node of the critical path has only outgoing unit-delay arcs as pointed out before.
Therefore, if we multiply the right hand side of equation 6 With , then the maximum element of
the right hand side will be the weight of a path where the last arc is a delay arc. The weight of the
last delay arc is equal to the execution time of the last node. Hence, this is equal to the weight of

the critical path.

Therefore the results of analyzing the asymptotic propertieB;J of can be used directly

without having to consider the multiplication D‘;(IO in equation 6.

3.2  Properties of the Gg graph
We denote the maximum cycle mean in a grégh= (V, E) (or the eigenvalue its asso-
ciated matrix representatidd ) By,  (®g ). The symbal'is used to denote paths and the

symbol “-” denotes arcs.

Definition 2:  We define the maximum cycle mean {8y as

AB=MA><,D,\{T|(|—|') (EQ8)

whereA is the set of circuit$,(I)  is the sum of the weights of the arcs on tircuit|l, and is the

number of nodes in circuit .

Definition 3: A maximal strongly connected subgraph (m.s.&s) Gof is a strongly connected
subgraph ofG such that there is no other strongly connected component that properly contains
S.
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original graph. More formally, consider the graph obtained by deleting all of the strongly con-
nected components from the HSDF graph. Let the maximum weight path be in the resulting
graph. Then, the path  can be critical for at mestight( g /A unfoldings. Therefore, the

weight of any cycle unfolded enough times will be greater than the weight of any acyclic path.

If the original graph (without the dummy sink node) is strongly connected, then there is
always a critical path that reaches e copﬁgcf) for all values of . To see this, suppose
that no critical path reaches ae cop)&?‘;[Q . Bét be the dummy sink node that terminates
some such path for sonke<J @&V (by fact 1). Consider the node immediately B&fore in
the path, sayX . Since the original graph s strongly connegted, cannot be a sink@ode in
Hence,v must be the predecessor to another nodet S , and the ajc has either 1 or O
delays. In either case, we can extend the pat (A by including eiftier  uK or , thus
increasing the weight (or keeping it the same). We will be unable to extend the path only when

K = J and every arc leaving is a delay arc.

Hence, we can ignore all of the lower order terms in the summation in equatidn 5 if is
large enough (for a non-strongly connected graph), or if the graph is strongly connected. To sim-
plify things, we will assume that the original HSDF graph is strongly connected. The results of the
analysis for the strongly connected case can be used to analyze the general case. With this simpli-

fication, we get that

C(J) = %A;oAlgj_lA*No (EQ 6)

Define

B = AyA, (EQ 7)

We are interested in the asymptotic behaviouBof J as goes to infinity because we are
interested in the maximum element©f J) , the critical path. Note that the Batrix , defined in
equation 7, corresponds to a grapg = (V, E) whére is the set of nodes from the original
graph, and(u, v) O E' iff there is a path in the original gr&h  from v to  with the last arc in
the path being a unit delay arc. The weight of the edge is the maximum of the weights of all such

paths.
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lowed by a path wittl—1—-i delays. The maximum oteti <J of all such matrix products,

along with the matribC (J—1) gives us the maximum-weighkt1 -delay path.

The argument is similar #> M+ 1 . The difference is that now,ithe -delay arc used to

leave the first copy otBAO can only be in the rahge <M
Corollary 1. If M = 1, then
J1
c()=[ ] tAAidAy, 21 (EQ 5)
k=0
Proof: First off, we haveMIN (J—1,1) = 1 ,fod>2 . Equation 4 can now be written as
C(J) =C(I-1) OARAC(J-1),J22

We can continue by substituting fGr(J—1)

C(J) = C(I-2) OAWA,C(I-2) OALWA,C(I-2) OALRAAGAC(I-2)
_ . O, , [P
= C(J-2) 0 AWAC(I-2) O FAyA0C(I-2) .

The second equality follows from the idempotency of the addition operator in max algebra (i.e,

all a = a). We continue the process of substitution to get equation 5.

Unfortunately, equation 4 is difficult to analyze any further (despite its similarity to convo-
lution). Equation 5 is easier with a few restrictions that will be described below. Therefore, we
would like to modify the original HSDF graph to have arcs with one delay at most. This can be
done using the following technique of graph expansion: for ar{&re) that hds delays,

createm—1 dummy nodes,l, i , With zero execution times, and replace tlia,afc

m-1

with the pathHu, ul, o u ,VH . Each edge in the path has one delay. By this technique, we

can represent an arbitrary graph as a graph containing arcs having at most one delay.

We are interested in critical paths in the -unfolded graph. The maximal elent@(d)of
in equation 5 (the critical path in tlle -unfolded graph)Jfor large enough, is going to traverse a
cycle in the dataflow graph many times. In other words, the critical path is going to be the one that
can reach théth copy @ A, ; a path that does not reach The copy can only be critical for the

first few J . This is because a path that does not reachi'the copy must be an acyclic path in the
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means that an entr¢i,j) 1@(J) is the maximum weight of all paths between nodeg and

havingJd—1 delays or fewer in the original HSDF graph.

Fact 2: The maximum weight patp iG(Y  between a nade and a nbdd=>j>i ,

depends only op—i

Proof: This is because the existence of arcs betweeiithe kand cop}gg, of depends only
on k—i since such an arc exists if there is an arc kith delays in the original HSDF graph.
Theorem 1.
MIN(J-1, M)
C() = C(I-1) DAy | | AC(-K mi>2 (EQ 4)
k=1

whereC (1) = A:\,O ,andM >0 , wher® is the maximum number of delays on any arc in the
original HSDF graph. (IM = 0 ,the& (J) = A*No 0J )

Proof: The proof is by induction od . We want to prove t@4tJ) has the property that it is the

matrix of maximum weight paths (as defined) if t6€ ) have the property dar—1

Assumel = 2 . For any two nodes, consider the largest weight path between tGé# in . This

path can have at most one delay. Hence the path either consists of a subpath in the first copy of

G, , a delay arc to enter the second copysqf , and a subpath in the second Ggpy of , or
0 0 0

just consists of a path in the first copy((b,i0 (i.e, has no delay arcs at all). This can be expressed

asA’,(\Io O A;\loAlA:\,O . This satisfies the equation given in the theorem.

Now suppose that the equation holds forjalJ—1<M +1 . Consider the maximum
weight path between any two nodesy  Git) . If the maximum weight path betweenv and
goes through fewer thah—1  delays, then this weight will be reflect€d i+ 1) because of
fact 2 and the induction hypothesis. If the maximum-weight path doeslhale delays, then the
first delay arc on the path is an - delay arc for sGge <J -1 .iIThis -delay arc is between a
node in the first copy cIBAO and a node in thel™ cop(ﬁgcl)‘ . From here, we want to reach
the Jt" copy ofGAO . An entry(p, ) in the matri€ (J—1i)  corresponds to the maximum
weight J—1—i -delay path betweem amd (by the induction hypothesis). Hence, the matrix

productA:\loAiC(J— i) will give us the maximum weight path containingi an -delay arc fol-
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These represent arcs with
M delays in the original graph

These represent arcs
Arcs with one delay in the

with 2 delays —% original graph
Fig 5. The J-unfolded graph of an HSDF graph G
a pair of nodes consists of only one arc, and that arc is a delay arc. If equation 3 did Bot have in

the maximization, we would not be able to represent this case.

Consider now thd -unfolded graph @Gf , deno@d) . Recall@ak considts of
copies of the graph‘:AO = (V,E)) and some additional arcs. We will refer tohthe copy of a
node u Ga, inG® asu' . There is an af@',vi) @) | wherej , if and only if
(u,v) O Ej _; - Figure 5 makes this notion clearer. The grey arcs between different co@'gos of

represent delay arcs having more than one delay in the original graph.

Fact 1: A critical path inG() must haveX, K<J as the terminal node, witge is the
dummy sink node in th&!"  copy GAO . It must have a node from the first co@xoof as the
initial node.

Indeed, it is clear that the terminal node has to be one @the since if it were not the
case, we could always extend the path by adding‘an , thus increasing the weight of the path

(recall that every node i6 A, is connectedsto , and every node has positive execution time).

Definition 1: The termmax{ A , wherd is a matrix, is defined to be the maximum element of
A.

Define C(J) to be arNx N matrix, whefd is the number of nodes in the original

HSDF graph (including the dummy sink node), containing the largest weight pa@tdin . This
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delays on any arc. Leéél + 1  matricés, ..., A, be defined where a migtrix  represents the
HSDF graph(V, E;) . Notice thatV, E;) , the graph corresponding to the mgjrix , is the APG

defined eatrlier.

The arcs in the graph can be weighted by assigning to each outgoing arc fromua node the
weight t (u) , the execution time of node . This will fail to model the execution time of sink
nodes; hence, we introduce a dummy sink n8de that has an execution time of zero. An edge
(u, S , having zero delays, is added to the graph for every mad¥ . The number of vertices in

the HSDF graphN , now includes the dummy sink node.

Matrix products can be used to find largest weight paths of various types. Théigptry
in the matrix produch,A, , for instance, represents the largest weight two-arc path between and
j with the first arc being a zero-delay arc and the second being a one-delay arc. This is evident

when we write down the expression for the entry:

(AgA) (1)) = max . ny(A(i,Kk) +A; (k) -

Define

Ap=EOAOADADAD. OA (EQ3)
whereE is the max-plus identity matrix with zeros along the diagona¢ and elsewhere. An entry
(i,j),1#),1In A*NO corresponds to the weight of the largest weight path between inodeg and
in GAO' To see this, recall that the series in equation 2 could be truncaMedlat if there were no
cycles inG, . HereA, represents the APG, which is acyclic by definition. Since an(gnjry
in A'B represents the maximum weight over all paths of lekgth  betiveenj and inthe APG, the
maximum overl < k< N-1 of the‘\'f) gives the maximum weight over all paths betiveen and
j . It follows that the largest element of the man\fgfo is the critical path in the APG. The inclu-
sion of the identity matriE in equation 3 means tA*QB (i,1) =0 Oi . This is done to ensure
that paths where the first arc is a delay arc will be representable by appropriate matrix products.
For example, the matrix prodwél',*\loA1 represents maximum weight paths where the last arc in

the path is an arc with one delay. We could have a case where the maximum weight path between
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O O%
o[-l

The longest two-arc path from node 1 to node 1 has weghx(7 + 7, 5+ 3 = 14 . The matrix

We have

notation A% allows us to compactly write down the maximum weight paths of l&ngth  between
any two nodes irG, . We can write down an expression for the matrix with maximum weight

paths between any pair of nodes. It is given by the matrix

At=ADANOA DA D...0A D ... (EQ 2)

This series converges only if there are no positive weight cycles in the graph (if there were, we
would get paths of arbitrarily large weight by traversing positive weight cycles). Hence, if there
are no positive weight cycles, the series can be truncatiid-at , Where is the number of
nodes, since any path of length greater thean  has to traverse a cycle, and the cycle cannot
increase the weight. Notice that the implied computation in equation 2 is actually the dynamic

programming algorithm for finding the all-pairs longest paths in a graph.

It can be shown that the single eigenvaludof is the maximum cycle mean of the corre-
sponding graph if the graph is strongly connected [SE |f is not strongly connected, then there
could be more than one eigenvalue. However, foAthe above, there is only one eigenvalue, given

by A = 7,and[4 (ﬂT is an eigenvector.

3.1  Description of HSDF graphs in max-plus
HSDF graphs can have arcs with delays; hence we need a way of modeling this. Recall
that the delay on an arc represents initial tokens on that arc. Also, the nodes in an HSDF graph

have weights that represent execution times; we need a way of modelling this also. The delays can

be modeled as follows: let the edgeBet in a homogenous GraphV, E) be partitioned as
E= ] E; whereE, is the set of edges having delays,Mnd is the maximum number of
i0{0,...,M}
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vide achievable bounds) to the finite-processor (with IPC) case so that we can use many of the
heuristics present for constructing blocked schedules to construct schedules with optimal block-

ing factors.

3 Max-Plus Algebra Formulation
|

Max-plus algebra is an algebra where maximization is the addition operation and addition
is the multiplication operation [5]. Max-plus addition will be denoted bgnd max-plus multi-
plication will be denoted byl. Thus,50 2 =5 andb 2 = 7 . The additive identity in this
algebra is—o , denoted k&y , and the multiplicative identiy is . There is a multiplicative inverse
(subtraction in normal algebra) but no additive inverse: the equafior = b has no solution if

b < a. Hence, the algebra does not constitute a ring.

The reason that this algebra is attractive is that it provides an elegant way of describing
paths in graphs; this is why it is sometimes referred to as “path algebra”. Because of this short-
hand and elegant way of formulating paths, certain properties about paths become clearer. It
should be emphasized that all of the results derived in this paper have traditional graph-theoretic

proofs, but the ideas have been inspired by the max-algebra formulation.

To see how the algebra is relevant to graphs, consider matrices in max-plés. Let be an
N x N matrix with entries in] [0 {—w} . There is an associated graph With  nodes, called the
graph of A , whereA (i,j) is the weight of the ed@ej) in the grapA.(ifj) = ¢ , then
there is no arc between afpd . Conversely, any weighted, directed graph with real-valued
weights can be represented by a matrix in max-plus. We use the n@gtion to denote the graph

of a matrixA .

An entry in the matrixA , Where the matrix multiplication is done using max-plus opera-

tors, represents thengest two-ar@ath between the corresponding nodes. For example, let

[

This represents the graph
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later on, no blocking factor for this graph is optimal. However, it is always true that increasing the
blocking factor by a finite numben  will reduce the achievable iteration period, and in the limit

asJ goes to infinity, the iteration period will converge to the iteration bound.

There has been considerable work on rate-optimal scheduling in the last five years. Much
of this work has been concerned with blocked, overlapped schedules [2][3][13]. A blocked, over-
lapped schedule is one where not only is the graph unfdlded times before it is scheduled but also
where successive blocks are overlapped with each other. This enables inter-iteration parallelism to
be exploited to the fullest extent, something blocked, non-overlapped schedules only do to a lim-
ited extent. Parhi [2] has shown that it is always possible to unfold a graph a certain number of
times to get a perfect-rate graph (a graph where each circuit has only one delay) and schedule the
resulting perfect-rate graph rate-optimally using an overlapped schedule. The unfolding factor
given by Parhi is the least common multiple (Icm) of all the critical-loop delay counts. Figure 4(b)
shows a rate-optimal overlapped schedule of unfolding factor 2 for the graph in figure 4(a). This
schedule is overlapped because the third invocation of node B begins before the second invoca-
tion of node C has been completed. The rate-optimality of the schedule comes from the fact that
in any time window of 70 units, where the window begins at the start of some invocation of node
X, there will be two invocations of node in that time window. Hence, any rode is executed

once per 35 time units, meeting the iteration throughput bound.

Much of the work on overlapped scheduling assumes that rate-optimal overlapped sched-
ules can be constructed if a large number of processors are available. Parhi gives an upper bound
on the number of processors required, but this number can be quite large. At this time, few heuris-
tics are known for constructing overlapped schedules when the number of processors is fixed and
known beforehand. In contrast, there is rich body of work on such heuristics for blocked sched-
ules [10][11][12]. In addition, there has been some recent work on taking interprocessor commu-
nication (IPC) into account when constructing blocked multiprocessor schedules [7][14].
Therefore, it is of interest to know theoretical lower bounds on the iteration period achievable for
blocked schedules. We cannot hope to know the optimal blocking factor when the number of pro-
cessors is restricted (or when IPC is taken into account) if we do not know it when the number of

processors is unbounded. Therefore, the hope is that our work can be eventually extended (to pro-
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Fig 3. a) Acyclic precedence graph of blocking factor 2 for
SDF graph in fig. 1. b) A blocked, rate-optimal 2-processor
schedule.
a) b) 20
+“—>
P1}l B1 c1 |A2] B3 c3
G G G P2 1| B2 c2 |a3| B4 | ca
A=35

One block of the overlapped

t(A) = 10, t(B) = 20, t(C) = 40 schedule

Fig 4.a) An HSDF graph that does not have a rate-optimal blocking
factor. b) A rate-optimal overlapped schedule of blocking factor 2.

depends on the particular schedule that is constructed, and there may not be an improvement for
some schedules. Of course, there is no improvement if the original blocked schedule (assuming
barrier synchronization) is rate-optimal. Assuming barrier synchronization to determine the
throughput achievable (by calculating the critical path) gives a worst-case estimate for the actual

performance of any blocked schedule.

Unfortunately, it is not always possible to find a blocking factor that will allow a rate-opti-

mal blocked schedule to be constructed. The graph in figure 4 is an example. As will be shown
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Since a blocked schedule of blocking factor 1 does not expleititeration parallelism,
it is useful to schedule the graph over several iterations. A blocked schebidekifig factorJ
consists of a schedule for the HSDF graplfoldedJ times. Unfolding a grapi  times means
considering successive iterations of the graph.Jhe -unfolded precedence graph codsists of
copies of the APG, and some additional arcs. A node iifthe  copy of the APG, andva node
in the jt" copy of the APG, wherje>i , are connected by an arc id the -unfolded precedence
graph if there is an ar¢u, v)  in the original graph hayirg delays.JThe -unfolded prece-
dence graph can also be referred to a®\#@ of blocking factod. In this paper, we will use the
term “APG” for the APG of blocking factor 1, and the terth “ -unfolded graph” interchangeably
with the term “APG of blocking factal " for th@ -unfolded precedence graph. Odce a -block-
ing factor schedule is constructed, it is repeated forever toet a -periodic schedule. Again, bar-

rier synchronization is assumed between successive blocks df the -blocking factor schedule.

It is of interest to determine what the optimal valuel of should be in order to construct
rate-optimal schedules. For example, the critical path in the graph in figure 1(b) is the path
Al - A2 - B, and this path has a weight of 4 (recall that the execution times of ApBe€&
were 1,2, and 3 respectively). This is evident when we look at the acyclic precedence graph,
shown in figure 2. Hence, no schedule (of blocking factor 1) for this graph can have an iteration
period of less than 4. The acyclic precedence graph for a blocking factor of 2 (or, equivalently, the
2-unfolded graph) is shown in figure 3(a). It can be verified that the weight of the critical path in
this graph is 7. Hence, a schedule can be constructed that has an iteration period of 7. Since two
iterations of the original graph occur in 7 time units, the iteration period achieved is 7/2=3.5.
Therefore, a blocking factor of 2 is optimal for this graph since it is theoretically possible to con-
struct a blocked, rate-optimal schedule. A rate-optimal schedule using two processors is shown in
figure 3(b).

When the blocked schedule is implemented, it is not necessary that we actually use barrier
synchronization; the assumption is necessary only for analytical tractability. It has been shown in
[18] that if the blocked schedule is implemented in a self-timed manner (where the interprocessor
communication points (sends and receives) are the only points of synchronization), then some

improvement in throughput can result as the schedule unfolds. However, this improvement
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OlaOg

Fig 2. Acyclic precedence graph for graph in figure 1.

would be infinity. We can achieve infinite throughput by scheduling every iteration in parallel
using an infinite number of processors. Hence, the problem of finding a schedule that maximizes
the throughput is interesting only when the throughput bound is greater than zero (that is, the

graph has cycles).

From the HSDF graph, we can construciaayclic precedence grapi\PG) of blocking
factor one This is the graph obtained by deleting all arcs that have one or more delays on them
from the original graph. The APG for the graph in figure 1a is shown in figure 2. Notice that the

APG shows only thentra-iteration precedences between the nodes.

Define the weight of a path in the APG to be the sum of the execution times of the constit-
uent nodes. Consider now the following strategy for constructing a multiprocessor schedule for an
HSDF graph. Instead of using the precedence relations specified by the HSDF graph, we will use
only the precedences specified by the APG for constructing the schedule. Each node in APG will
be invoked once in the schedule and will be assigned to some processor. Once each processor has
finished its tasks, it waits until all other processors have finished their tasks, and then executes its
tasks again for the next iteration. This implies that we use some form of barrier synchronization
between successive iterations. The first invocation of a node can only occur if all of its prede-
cessor nodes in the APG have been invoked once. Hence, the total length of the schedule (defined
as the maximum of the finishing times for each processor for all of its tasks for one iteration) must
be at least equal to the largest-weight path in the APGritineal path. A multiprocessor sched-
ule of this type is called a blocked, non-overlapped schedideciing factor 11t is non-over-
lapped because the" iteration can only occur after every node has been invoked from the

n—1th iteration.
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the repetitions vector, these numbers are not shown in figure 1(a). The topology matrix and the
repetitions vector for the graph in figure 1(a) are given by
1-20

=10 1 -
-1 0 2

andq = [2 1 ]]T

A homogenou$DF (HSDF) graph is one in which one token is produced and consumed
on each arc. Formally, an HSDF gra@h s the triple E, d) With  being the set of fodes,
the set of arcs, andl  the delay function that denotes the number of initial tokens on the arc. The
graph in figure 1(a) is not homogenous because two tokens are produced on edge CA, and two
tokens are consumed on edge AB. However, it is possible to systematically construct an HSDF
graph from any SDF graph [1]; the resulting graph ¢pé8 copies of ainode in the original
graph. The details of the construction procedure can be found in [1]. The homogenous graph cor-

responding to the graph in figure 1(a) is shown in figure 1(b).

DSP dataflow programs are non-terminating in nature; they operate on infinite streams of
data and produce infinite streams. It is well known that a fundamental upper bound on the

throughput achievable in an HSDF graph is given by the inverse ofakienum cycle med8]:

_ ()
A= MAX oA {5y (EQ1)
where/\ is the set of all circuits in the gragh(l) is the total computation time of ¢ircuit , and

D (I) is the delay count of the circdit . A loop that achieves this maximum is catletical

loop. A schedule for an HSDF graph riaste-optimalif the iteration-period for the schedule is
equal to the maximum cycle mean (also calledtgration-period bounil The maximum cycle
mean for the graph in figure 1(b) is 3.5. The quarkity can be found inQifhd | §) using

Karp’s dynamic programming algorithm [15].

In this paper, we are going to assume that a graph contains at least one cycle. If this were
not the case, the iteration period bound would be 0 (since there are no loops, the set of loops is

empty and equation 1 is defined to be zero over an empty set), and the achievable throughput
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2 Introduction
|
Synchronous Dataflow (SDF) [1] is a subset of dataflow [8] that has been used as a model
for expressing DSP programs [16][17]. An SDF graph is represented by a directed graph
G = (V,E f d whereV is the set of computation nodés, is the set of directed edges (repre-
senting communication channels), ahd - Zx Z is a function on the edges to positive integer
tuples where the first element of the tuple represents the number of tokens produced on the arc
and the second element represents the number of tokens consumed on thedfe) and is the
number of delays (initial tokens) on edge . In addition, eachwod®/ in has an associated posi-
tive integert (v) representing the execution timezof . An example of an SDF graph is given in
figure 1(a). Here, one token is produced and two tokens consumed on edge AB. Edge AC has two
delays. The SDF graph can be represented loyam topology matrix mwhere is the number
of edges and the number of nodes. The dnifiyj) represents the number of tokens produced
by nodej on arc . This number is negative by convention if pode consumes tokens from arc .
The repetitions vectay is the smallest positive integer vector in the null spéce of ; it satisfies
the equatio g = 0 . This vector represents the number of times each node must be invoked in
order to return each buffer (on each of the arcs) in the graph to its starting state. Notice that since

the number of tokens produced and consumed on self-loops has to be the same and does not affect

t(A) =1, t(B) = 2, t(C) = 3

Fig 1.a) An SDF graph. b) The associated homogenous graph
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1 Abstract

This paper addresses the problem of determining the optimal blocking factor for blocked,
non-overlapped multiprocessor schedules for signal processing programs expressed as synchro-
nous dataflow (SDF) graphs. One approach to determining a multiprocessor schedule for an SDF
graphG is to determine a schedule for the -unfolded graggh of (defined to be the precedence
graph of G overJ iterations), wherg>1 , and repeat that schedule forever. This approach
allows us to exploit some of the inter-iteration parallelism that is usually present in the SDF
graph. A schedule for th& -unfolded graph is called a schedule of blockingJactor . Itis of inter-
est to determine the value &f that will allow schedules of optimal throughput to be constructed.
It will be shown that the critical path of tle -unfolded graph becomes cyclic as is increased. It
will be shown that it is possible to determine this cyclicity by analyzing the critical graph of a
matrix that arises in the model that is used. The cyclicity of the critical path implies that we only

have to examine a finite number of blocking factors to determine the optimal one.
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