Proc. 1995 IEEE International Workshop on Rapid Systems Prototyping
Chapel Hill, North Carolina, June, 1995.

Converting Graphical DSP Programs into
Memory Constrained Software Prototypes

Shuvra S. Bhattacharyya, Hitachi America Ltd.
Praveen K. Murthy, University of California at Berkeley
Edward A. Lee, University of California at Berkeley

Abstract mercial tools, support SDF or closely related models [9,

Since software prototypes of DSP applications are 12, 13, 14]. Here, we focus on programs that are repre-
most efficient when their code and data space require- sented ascyclicSDF graphs.
ments can be accommodated entirely within the on-chip In SDF, a program is represented by a directed graph
memory of the target processor, it is crucial to employ effi- in which each vertexagtor) represents a computation, an
cient memory-minimizing compilation techniques in a edge specifies a FIFO buffer, and each actor produces
DSP software prototyping system. In this paper, we intro- (consumes) a fixed number of data value&éns) onto
duce two techniques for the combined minimization of (from) each output (input) edge per invocation.
code and data when compiling graphical programs that Fig. 1(a) shows a simple SDF graph. Each edge is
are based on the synchronous dataflow (SDF) model. annotated with the number of tokens produced (con-

The first method is a customization to acyclic graphs sumed) by its source (sink) actor, and the “D” on the edge
of a bottom-up technique, called Pairwise Grouping of from actorA to actoB specifies a unit delay. Each unit
Adjacent Nodes (PGAN), that was proposed earlier for of delay is implemented as an initial token on the edge.
general SDF graphs. We show that our customization sig- Given an SDF edge , we denote the source actor, sink
nificantly reduces the complexity of the general PGAN actor, and delay oé bgrc(e) snk(e) , and(e)
algorithm and performs optimally for a certain class of Also, p(e) andc(e) denote the number of tokens pro-
applications. The second approach is a top-down tech- duced ontoe bysrc(e) and consumed fr@m by and
nique, called Recursive Partitioning by Minimum Cuts snk(e) .
(RPMQ), that is based on a generalized minimum cut A scheduleis a sequence of actor firings. We compile
operation. From an extensive experimental study, we con- an SDF graph by first constructingsalid schedule— a
clude that RPMC and our customization of PGAN are finite schedule that fires each actor at least once, does not
complementary, and both should be incorporated into deadlock, and produces no net change in the number of
SDF-based prototyping environments in which the minimi- tokens queued on each edge. Corresponding to each actor

zation of memory requirements is important. in the schedule, we instantiate a code block that is
obtained from a library of predefined actors. The resulting
1: Introduction sequence of code blocks is encapsulated within an infinite

loop to generate a software implementation of the SDF

For the past several years, programmable digital sig- 9raph.
nal processors have been popular in rapid prototyping SDF graphs for which valid schedules exist are called
environments for DSP. The limited on-chip memory of CconsistentSDF graphs. In [10], efficient algorithms are
these processors, together with significant speed penaltiesPresented to determine whether or not a given SDF graph
for off-chip memory access, often render it critical for a

high level software synthesis tool to produce a lean target
program, in the dimensions of both code and data. In this (b) @2 D >1@’>1 @
paper, we present efficient techniques to compile graphical
DSP programs based on the synchronous dataflow (SDF)
model into software implementations that require a mini- (@) @2 D >:]_CB>3 >]@D

mum amount of memory for code and data. Numerous

DSP design environments, including a number of com- Figure 1. Examples of SDF graphs.

is consistent, and to determine the minimum number of centif X is a predecessor or successoryof , and,i¥
times that each actor must be fired in a valid schedule. We are distinct, then[X, Y} is aadjacent pair. If there is a
represent these minimum numbers of firings by a vector path fromX OV toYO V , therX is aancestorof Y,
dg. indexed by the actors i6 . (we often suppress the andY is adescendantof X. If X is neither a descendant

subscript ifG is understood). nor an ancestor of X imdependent ofY. Also,
Given an edge i , we define ttetal number of ancs(X) denotes the set of ancestors>of desc(X)
samples exchangedn e , denotedTNSE(e, G) , or sim- denotes the set of descendantsXof , ardlifV , then
ply TNSE(e) if G is understood, by subgraph(Z) denotes the subgraph associated \&ith
If Z is a subset of actors in a connected, consistent
TNSE(e) = qg(src(e)) xp(e) . Q) SDF graphG ,

Thus, TNSE(e) is the number of tokens produced onto _ 0 01
(consumed fromg in one period of a valid schedule. Pe(2) = ngD{ dg (A) ‘A K4 g

For Fig. 1(a), 9q(AB,C = (362 ,]) N
TNSE((A, B)) = 6, and one valid schedule is and we refer to this quantity as tiepetition count of Z.
B(2AB) CA(3B)C. Here, a parenthesized term _G|ven a connected, consistent SDF graph
(nS,S,..S) specifiesn successive firings of the “sub- G = (V. B) ,asubseZV , and an actorl V. clus-
schedule’SS,...S, , and we may translate such a term tering Z into Q means generating the new SDF graph
into a loop in the target code. This notation naturally (}/,_E) such that V' =V-Z+{Q} and
accommodates nested loops. Each parenthesized termE = E— ({el(src(§ O 2) or (snk(e) U 3}) +E,

(nS,S,.-S) is called achedule loop A looped sched- whereE is a “modification” of the set of edges that con-
ule is a finite sequenc¥,V,...\V, , where eadp is hectactorsirZ to actors outsideof . If for eadi E

either an actor or a schedule loop. Henceforth in this Such thatsrc(e) 0 Z andnk(e) O Z , we defiree by
paper, by a “schedule” we mean a “looped schedule.” src(e') = Q, snk(e') =snk(9,d(e) =d(e),

A more compact valid schedule for Fig. 1(a) is N = "N o=
(3A) (2(3B) C) . We call this schedulesingle appear- P(&) =dg(sre(e))p(e)/pg(2).c(e) =c(e),
ance schedulssince it contains only one lexical appear- and similarly for eacte0 E such thabk(e) O Z and
ance of each actor. To a good first approximation, any src(e) O Z, we definee' by
valid single appearance schedule gives the minimum code snk(e') = Q, src(e) = src(),d(e) =d (e,
space cost for in-line code generation.))

Given an SDF grapis = (V, E) , avalid schedule P (&) =P (&), c(&) =dg(snk(e))c(e)/ps(2) .
S,and an edge G max_tokent¢e, § denotes the ihep
maximum number of tokens that are queuedcton during

an execution ofs . For Fig. 1(a), if E={e€'|(src(e) O Z snk(e) O 2 or (snk(e) O Zsrc(e) D2} .

S, = (3A) (6B) (2€), S, = (3A(2B)) (2C) , then For eache] E , we say that corresponds toe and
max_tokeng (A, B), S;) = 7 and vice versa € corresponds &). The graph that results
max_tokeng (A, B),S,) = 3. We define thebuffer from clusteringZ intoQ inG is denoteclust; (Z, Q)
memory requirementof a schedulé&s by or simply clust; (2) . Intuitively, an invocation of2 in

clust; (Z, Q) corresponds to one invocation of the sub-

systemsubgraph(Z) . We say thaz idusterable if

_ _ clust; (Z) is consistent, and i6 is acyclic, theh

Thus, buffer_memoryS,) = 7+6 = 13 and introduces a cycleif clustg (Z) contains one or more

buffer_memoryS,) = 3+6 = 9. _ cycles. Fig. 2 gives an example of clustering. Here, edge
In this paper we address the problem of computing a (D, Q) corresponds tdD, C) and vice versa.

valid single appearance schedule that minimizes the buffer In [2], a dynamic programming algorithm called

memory requirement over all valid _single appearance spppo is developed for post-optimizing single appear-

schedules. We call such a schedulejtimal schedule ance schedules to reduce the buffer memory requirement

In the remainder of this paper, we discuss two heuristics

buffer_memoryS) = z max_tokeng e)S.
el E

2: Background for constructing single appearance schedules, and we
_ _ report on an experimental study that compares these heu-
Given an SDF graple = (V, B) , actof igee- ristics — with their schedules post-processed by GDPPO

decessorof actorY if there is ared E such that
src(e) = X andsnk(e) = Y, andX is gauccessoof
Y if Y is a predecessor of . Two actoXsY acha- 1. The greatest common divisor is denotedtxy

— against each other and against randomly generatedsignifies that at least one token producedxby is con-

schedules that are post-processed by GDPPO. sumed byy in a valid schedule. PGAN determines
whether or not an adjacent pair is clusterable by checking
3: The Buffer Memory Lower Bound whether or not its consolidation introduces a cycle in the

APG. This check is performed efficiently by applying a
In [2] we derive the following lower bound on reachability matrix which indicates for any two APG ver-
max_tokenge, § , given a consistent SDF gragh , an ticesx, y , whether or not there is a path fram yto

edgee inG , and a valid single appearance scheslule . Unfortunately, the cost to compute and store the APG
reachability matrix can be prohibitively high for some

applications [2]. Since a large proportion of DSP applica-
tions that are amenable to the SDF model can be repre-

Definition 1: Thebuffer memory lower bound (BMLB)
of an SDF edge , denotBMLB(e) |, is given by

BMLB () = { (n(e) +d(e)) if (d(e) <n(e)) sented as acyclic SDF graphs, we propose an adaptation of
d(e) if (d(e) =n(e)) ’ PGAN to acyclic graphs, calledcyclic PGAN
B p(e)c(e (APGAN), that maintains the cluster hierarchy and reach-
wheren (e) = 9cd({p(e).c(O1) ability matrix directly on the input SDF graph rather than

If G=(V,E) is an SDF graph, then onthe APG.

. _ In an acyclic SDF graple |, it is easily verified that a
O O . A
DEEEBMLB(e) 0O is called the BMLB ofG , and a valid subsetZ of actors is not clusterable onlZif introduces a

: e cycle. This condition is easily checked given a reachability
single appearance schedufe fGr that satisfies matrix for G [2]. Since the existence of a cycle in
max_tokenge, § = BMLB(feforallel Eiscalleda clust, (Z, Q) is not a sufficient condition f& not to be
BMLB schedulefor G. clusterable, the clusterability test that we apply in APGAN

In Fig. 1(a), BMLB((A B)) =3, and is notexact it must be viewed as a conservative test. For
BMLB((B, C)) = 3. Thus, a valid single appearance Some graphs, this imprecision can prevent APGAN from
schedule for Fig. 1(a) is a BMLB schedule iff its buffer attaining optimal results [2]. In exchange for some degree
memory requirement i§ . It is easily verified that no such of suboptimality in these cases, our clusterability test
single appearance schedule exists for this graph. In con-attains a large computational savings over the exact test
trast, for Fig. 1(b), it is easily verified tha(2B (3C)) is based on the reachability matrix of the APG.

a BMLB schedule (herg (A, B, C) = (1,2 6)). Fig. 3 illustrates the operation of APGAN. Fig. 3(a)
shows the input SDF graph. Here
4: PGAN for Acyclic Graphs q(ABCDB =(62451, and for

In the originalPairwise Grouping of Adjacent Nodes
(PGAN)technique, developed in [3], a cluster hierarchy is
constructed by clustering exactly two adjacent vertices at
each step. At each clusterization step, a pair of adjacent
actors is chosen that maximizpg, over all clusterable
adjacent pairs.

To check whether or not an adjacent pair is cluster-
able, PGAN maintains the cluster hierarchy onabyclic
precedence graph (APG)10]. Each vertex of the APG
corresponds to an actor invocation, and each ddgg)

~
~

10 '//6) 10,
O OB

Figure 2. An examp|e of C|ustering_ Figure 3. An illustration of APGAN.

i =1,23 4, Q; represents the th hierarchical actor
instantiated by APGAN. The repetition counts of the adja-
cent pairs are given by

p({AB) =p({AC) =p({B.C}) =2,
p({C,D}) =p({ED}) =p({BE}) =1.
Thus, APGAN will select one of the three adjacent pairs
{A B}, {A C},or{B,C} forits first clusterization
step. Clearly,{ A, C} introduces a cycle, while the other
two adjacent pairs do not introduce cycles. Thus, APGAN
chooses arbitrarily betweepA, B} af®, C} as the
first adjacent pair to cluster.

Fig. 3(b) shows the graph that results from clustering
{A B} into the hierarchical actoR, . In this graph,
q(Q,CDE) = (24,51, and itis easily verified
that {Q,, C} uniquely maximizep over all adjacent
pairs. Since{Q;,C} does not introduce a cycle,
APGAN selects this adjacent pair for its second clusteriza-
tion step. Fig. 3(c) shows the resulting graph.

Fig.s 3(d&e) show the results of the remaining two
clusterizations in our illustration of APGAN. We define
the subgraph corresponding toQ; to be the subgraph
that is clustered in the th clusterization step. Thus, for
example, the subgraph correspondingp
actorsQ; andC , and the two edges directed f@m to
C. A valid single appearance schedule for Fig. 3(a) can

and

easily be constructed by recursively traversing the hierar-
s.

chy induced by the subgraphs corresponding tazhe

sponding toQ, become¢3A)B(2C) . Finally, this
schedule gets substituted far, in the top-level schedule
to yield the valid single appearance schedule
SpE (2(3A)B(2C)) (5D) E for Fig. 3(a).

From Sp and Fig. 3(a) it easily verified that

buffer_memoryS,) and S BMLB(e) L, whereE is
Lefre O

the set of edges in Fig. 3(a), are identically equal3o
and thus in the execution of APGAN illustrated in Fig. 3, a
BMLB schedule is returned.

The APGAN approach, as we have defined it here,
does not uniquely specify the sequence of clusterizations
that will be performed. The APGAN technique together
with an unambiguous protocol for deciding between adja-
cent pairs that are tied for the highest repetition count form
an APGAN instance which generates a unique schedule
for a given graph. We say that an adjacent pair is an
APGAN candidateif it does not introduce a cycle, and its
repetition count is greater than or equal to that of all other
adjacent pairs that do not introduce cycles. Thus, an
APGAN instance is any algorithm that takes a consistent,

consists of acyclic SDF graph, repeatedly clusters APGAN candi-

dates, and then outputs the schedule corresponding to a
recursive traversal of the resulting cluster hierarchy.

The following lemma is easily understood from our
discussion of Fig. 3.

We start by constructing a schedule for the top-level sub- | emma 1: SupposeG is a connected, consistent, acyclic

graph, the subgraph correspondingg
G, corresponding to eacd, consists of only 2 ac¥rs
andY; , and all edges iG; are directed fr Yo . If
each edge G, satisfies(e) 2n(e) , then we con-
struct the schedule

EhGi (¥) YiEIIEhGi (%) Xig'
and otherwise we construct
Hig (X)X

It is straightforward to show that the resulting sched-
ule for the subgraph corresponding®o is always opti-
mal [2]. In Fig. 3, this yields the “top-level” schedule
(2Q,) Q4 (we suppress loops that have an iteration count
of one) for the subgraph correspondingp

Next, we recursively descend one level in cluster hier-
archy to the subgraph correspondingg
the schedule(5D) E . This “flattened schedule” then
replaces its corresponding hierarchical actor in the top-

(Y) Y2

- The subgraph spF graph such that (e) <n (e)

. and we obtain ber of {X,VY} , we have thap({Z P})

foreaell E P; is
an APGAN instance; an® is the schedule that results

whenP is applied t&> . Then

buffer_memoryS) = BMLB(¢,

e DZEQ
whereE, is the set of edges that are contained the sub-
graphs corresponding to the hierarchical actors instanti-
ated byP .

5: Deriving BMLB Schedules with APGAN

If G is a consistent SDF graph, addX, Y} is an
adjacent pair i that does not introduce a cycle, we say
that { X, Y} satisfies theroper clustering condition in
G ifforeach actoZz 0 { X, Y} thatis adjacent to a mem-
divides
p({X Y}), foreachP O { X Y} thaZ is adjacent to.

In Fig. 3()q(A,B,C D B = (6,245 1 ,and

level schedule, and the top-level schedule becomes P({B,C}) = 2 is divisible by p({A C}) =2,

(2Q,) (5D) E. Next, descending t®, , we construct

the schedule, (2C) . We then examine the subgraph
corresponding t®@, to obtain the sched(&A) B . Sub-
stituting this forQ, , the schedule for the subgraph corre-

p({AB) =2, p{C,D} =1, p({BE}) =1,
and thus,{ B, C} satisfies the proper clustering condi-
tion.

Theorem 1: [2] SupposeG is a consistent, connected,

delayless SDF graph, andX, Y}
satisfies the proper clustering condition. Then for each
edgee inclusi;({X,Y}) ,BMLB(€¢') = BMLB(¢ |,
wheree' isthe edge i that corresponds to

The following theorem guarantees that whenever an
APGAN instance performs a clustering operation on a
graph that has a BMLB schedule, the adjacent pair
selected satisfies the proper clustering condition.

Theorem 2: [2] SupposeG is a connected, delayless
SDF graph;G has a BMLB schedule; afiX, Y} is an
APGAN candidate inG . Then{X, Y} satisfies the
proper clustering condition i

Theorem 1 guarantees that clustering an adjacent pair

that satisfies the proper clustering condition does not
change the BMLB on an edge. However, to derive a
BMLB schedule whenever one exists, it is not sufficient to

simply ensure that each clusterization step selects an adja

cent pair that satisfies the proper clustering condition,

since although clustering an adjacent pair that satisfies the

proper clustering condition preserves the BMLB values on

each edge, it does not necessarily preserve the existence of

is an adjacent pair that

buffer_memory S, (G)) = g BMLB(k.
el E

Q.E.D.

The following consequence of Lemma 2 gives our
general specification of the optimality of APGAN.
Theorem 4: [2] If G = (V, E) is a connected, acyclic
SDF graph that has a BMLB scheduté{e) <n (e) for

all e E; and P is an APGAN instance, then the
schedule obtained by applyily @& is a BMLB sched-
ule forG.

6: Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a
bottom-up fashion by starting with the innermost loops

and working outward. In this section, we propose an alter-

native approach, which we c&lecursive Partitioning by
Minimum Cuts (RPMQC)that computes the schedule by
recursively partitioning the SDF graph in such a way that
uter loops are constructed before the inner loops. Each

a BMLB schedule [2]. Fortunately, however, the assump- partition is constructed by finding tlait (partition of the

tion that the adjacent pair being clustered has maximum
repetition count is sufficient to preserve the existence of a
BMLB schedule.

Theorem 3: [2] SupposeG is a connected, delayless
SDF graph;G has a BMLB schedule; afiX, Y} is an
APGAN candidate irG . Theoluster({X, Y} ,G) hasa
BMLB schedule.

Lemma 2: If G is a connected, delayless SDF graph that
has a BMLB schedule, arfél is an APGAN instance, then
the schedule obtained by applyily ® is a BMLB
schedule foiG .

Proof: By definition, P repeatedly clusters APGAN can-
didates until the top-level graph contains only one actor.
From Theorem 2, the first adjacent pajr clustered when
P is applied toG satisfies the proper clustering condition,
and from Theorem 3, the top level graph that results
from this clustering operation has a BMLB schedule.
SinceT; has a BMLB schedule we can again apply Theo-
rems 2 and 3 to conclude that the second adjacenppair
clustered byP satisfies the proper clustering condition,
and that the top-level graph, obtained from clustering
p, in T; has a BMLB schedule. Continuing in this man-
ner forpg, py, ..., P, » Wheren is the total number of adja-
cent pairs clustered whé? is applieddo , we conclude
that each adjacent pair clustered®y
clustering condition. From Theorem 1,
BMLB(e') = BMLB(€ , whenevere' an@& are corre-
sponding edges associated with a clusterization stép of
Thus, from Lemma 1,

set of actors) across which the minimum amount of data is
transferred. The cut that is produced must have the prop-
erty that all edges that cross the cut have the same direc-
tion. This is to ensure that we can schedule all actors on
the left side of the partition before scheduling any on the
right side. We also impose the constraint that the partition
is fairly evenly sized. This is to increase the possibility of
having gcd’s that are greater than unity for the repetitions
of the actors in the subsets produced by the partition, thus
reducing the buffer memory requirement [2].

Suppose thaG = (V, E) is a connected, consistent
SDF graph. Acut of G is a partition of the actor s&t
into two disjoint sets/, anWy . The cutiegalif for all
edgese crossingthe cut (that is all edges that have one
incident actor inV, and the other My), we have
src(e) UV, andsnk(e) U Vi . Given &ounding con-
stantK < |V/, the cut results in bounded sets if it satisfies

‘VR‘ <K, (2)

VL‘sK.

The weight of edge is defined ag(€) = TNSE(e)

The weight of the cut is the total weight of all the
edges crossing the cut. The problem then is to find the
minimum weight legal cut into bounded sets for the graph.
Since the related problem of finding a minimum cut (not
necessarily legal) into bounded sets is NP-complete [5],

satisfies the properand the problem of finding an acyclic partition of a graph

is NP-complete [5], we believe this problem to be NP-
complete as well even though we have not discovered a
proof. Kernighan and Lin [7] devised a heuristic procedure
for computing cuts into bounded sets but they considered

only undirected graphs. Methods based on network flows while RPMC generates schedules that have costs about 1.2
[4] do not work because the minimum cut given by the times the optimal. Conversely, the third and fourth entries
max-flow-min-cut theorem may not be legal and may not show that RPMC can outperform APGAN significantly on
be bounded [11]. Hence, we give a heuristic solution for graphs that have more irregular rate changes. These graphs
finding legal minimum cuts into bounded sets. represent nonuniform filterbanks with differing depths.
RPMC examines the set of cuts produced by taking an We have also tested APGAN and RPMC on a large
actor and all of its descendants as the actovget and thenumber of randomly-generated 50-actor graphs. For these
set of cuts produced by taking an actor and all of its ances-graphs, RPMC outperformed APGAN 63% of the time,
tors as the sé¥| . For each such cut, an optimization stepand we also found that both APGAN and RPMC signifi-
is applied that attempts to improve the cost of the cut. cantly outperformed randomly-generated schedules. Our
Consider a cut produced by setting comparisons on random graphs give a worst case estimate
V, = (ancs(y 0 {V}),Vy = V\V of the performance we can expect from these heuristics.

L R L All of our experiments show that APGAN and RPMC
for some actov , and I€f,(v) be the set of indepen- complement each other. For the practical examples,
dent,boundary actorof v in V. A boundary actor in APGAN performs well on graphs that have relatively reg-
Vg is an actor that is not the predecessor of any other ular topological structures and rate changes, and RPMC
actor inVy, . Following Kernighan and Lin [7], for each of performs well on graphs that are more irregular. Since
these actors, we can compute the cost difference thatlarge random graphs can be expected to consistently have
results if the actor is moved ind . This cost difference irregular rate changes and topologies, the average perfor-
for an actora inT(v) is defined to be the difference mance on random graphs of RPMC is better than APGAN
between the total weight of all input edgesaof and the by a wide margin — although we have found that there is a
total weight of output edges af . We then move those significant proportion of random graphs for which
actors across that reduce the cost. We apply this optimiza-APGAN outperforms RPMC by a margin of over 10% [2],
tion step for all cuts of the fornfancs(y O {v}) and which suggests that APGAN is a useful complement to
(deso(y O {v}) foreach actow inthe graph and take RPMC even when mostly irregular graphs are encoun-
the best one as the minimum cut. Since theré\ére actorstered. However, the main advantage of adopting both
in the graph2|V| cuts are examined. Moreover, the cut APGAN and RPMC as a combined solution arises from
produced will have bounded sets since cuts that producecomplementing the strong performance of RPMC on gen-
unbounded sets are discarded. eral graphs with the formal properties of APGAN, as spec-

RPMC now proceeds by partitioning the graph by ified by Theorem 4, and the ability of APGAN to exploit
computing the legal minimum cut and forming the sched- regularity that arises frequently in practical applications.
ule (pg(V)S) (pg(VR) Sg) » where §,S; are
schedules foG, an@, respectively that are obtained 8: Related Work
recursively by partitionings, anGg . It can be shown
that the running time of RPMC for sparse SDF graphs, In [1], Ade, Lauwereins, and Peperstraete develop
including post-optimization by GDPPO,&(/M3) [11]. upper bounds on the minimum buffer memory require-

ment for certain classes of SDF graphs. Since single
7: Experimental Results appearance schedules generally have much larger buffer
memory requirements than schedules that are optimized

Table 1 shows experimental results on the perfor- for minimum buffer memory only, these bounds cannot
mance of APGAN and RPMC that we have developed for consistently give close estimates of the minimum buffer
several practical examples of multirate acyclic SDF memory requirement for single appearance schedules.
graphs. The column titled “average random” gives the In [8], Lauwereins, Wauters, Ade, and Peperstraete
average cost obtained by considering 100 random topolog- present a generalization of SDF cal®alo-static data-
ical sorts and applying GDPPO to each. The data for flow. A major advantage of cyclo-static dataflow is that it
APGAN and RPMC also includes the effect of GDPPO. can significantly reduce the buffer memory requirement

We see that APGAN achieves the BMLB on 5 of the 9 over corresponding (pure) SDF representations, but it is
examples, outperforming RPMC in these cases. Particu- not clear whether this model can in general be used to get
larly interesting are the last three examples, which illus- schedules that are as compact as single appearance sched-
trate the performance of the two heuristics as the graph ules and have lower buffering requirements than those
sizes are increased. The graphs represent a symmetric treearising from the techniques given in this paper.
structured QMF filterbank with differing depths. APGAN A linear programming framework for minimizing the
constructs a BMLB schedule for each of these systems memory requirement of an SDF graph in a parallel pro-

cessing context is explored by Govindarajan and Gao [6]. [3] S. S. Bhattacharyya, E. A. Lee, “Scheduling Synchronous

Here the goal is to minimize the buffer cost without sacri- Dataflow Graphs for Efficient LoopingJournal of VLSI Signal
ficing throughput ProcessingDecember, 1993.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivdstroduction to
Algorithms McGraw-Hill, 1990.

[5] M. R. Garey, D. S. Johnso@Gomputers and Intractability-A
)) guide to the theory of NP-completendageman, 1979.

We have presented_t_lvo_ _Schedullng teChnlques, [6] S.R. Govindarajan, G. R. Gao, P. Desai, “Minimizing Mem-
APGAN and RPMC, for minimizing the memory required ory Requirements in Rate-Optimal Schedul@gc. of the Intl.
for code and data when mapping an acyclic SDF graph Conf. on Application Specific Array Processaksgust, 1994,
into an implementation on a programmable processor. We [7] B. W. Kernighan, S. Lin, “An Efficient Heuristic Procedure
have shown that for a certain class of SDF graphs, for Partitioning Graphs,Bell System Technical Journ&ebru-
APGAN is guaranteed to achieve an optimal solution. We a1y 1970.
have also reported on an experimental study in which we [8] R. Lauwereins, P. Wauters, M. Ade, J. A. Peperstraete, “Geo-
evaluated the performance of APGAN and RPMC. Based metric Parallelism and Cyclo-Static Dataflow in GRAPE-II,”

. ' IEEE Wkshp. on Rapid System Prototypihgne, 1994.
on this study, we have concluded that APGAN and RPMC 1R L ins. M. Engels. J. A P iraete. E. St

: . Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans,

_Compl_ement each_ qther, and th'”.ls’ techniques should beJ. Van Ginderdeuren, “GRAPE: A CASE Tool for Digital Signal
investigated for efficiently com_bmmg the _two methods. In p4rqjjel Processing|EEE ASSP Magazindpril, 1990.
the absence of SL_JCh a Comblned solution, or of a more 10] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Syn-
powerful alternative solution, both of these heuristics chronous Dataflow Programs for Digital Signal Processing,”
should be incorporated into SDF-based DSP prototyping IEEE Trans. on ComputerEebruary, 1987.
and implementation environments in which the minimiza- [11] P. K. Murthy, S. S. Bhattacharyya, E. A. L&ymbined
tion of memory requirements is important. Code and Data Minimization for Synchronous Dataflow Pro-
grams Memorandum No. UCB/ERL M94/93, Electronics
Research Laboratory, University of California at Berkeley,
November, 1994.

[12] D. R. O’Hallaron,The Assign Parallel Program Generator
Memorandum CMU-CS-91-141, School of Computer Science,
Carnegie Mellon University, May, 1991.

9: Conclusions

References
[1] M. Ade, R. Lauwereins, J. A. Peperstraete, “Buffer Memory
Requirements in DSP Applications,” presentetE®E Wkshp.
on Rapid System PrototypinGrenoble, June, 1994.

[2] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, “Two Comple- . ; .

mentary Heuristics for Translating Graphical DSP Programs into L1317 Pino, S. Ha, E. A. Lee, J. T. Buck, “Software Synthesis for

Minimum Memory Software Implementations,” Memorandum DSP Using Ptolemy,” invited paper dournal of VLSI Signal

No. UCB/ERL M95/3, Electronics Research Laboratory, Univer- ProcessingJanuary, 1995.

sity of California at Berkeley, January, 1995. [14] S. Ritz, S. Pankert, H. Meyr, “High Level Software Synthe-
sis for Signal Processing SystemBybc. of the Intl. Conf. on
Application Specific Array Processoisugust, 1992.

Table 1. Performance of APGAN and RPMC on various applications.

System BMLB| APGAN| RPMC| Avg. Random
Fractional decimation 47 47 52 52
Laplacian pyramid 95 99 99 102
Nonuniform filterbank (4 channels 85 137 124 172
Nonuniform filterbank (6 channels 224 756 589 1025
QMF nonuniform-tree filterbank 154 160 171 177
QMF filterbank (one-sided tree) 102 108 11(112
QMF analysis only 35 35 35 43
QMF tree filterbank (4 channels 46 46 55 53
QMF tree filterbank (8 channels 78 78 87 93
QMF tree filterbank (16 channelg 166 166 20D 227

