
Abstract
Since software prototypes of DSP applications are

most efficient when their code and data space require-
ments can be accommodated entirely within the on-chip
memory of the target processor, it is crucial to employ effi-
cient memory-minimizing compilation techniques in a
DSP software prototyping system. In this paper, we intro-
duce two techniques for the combined minimization of
code and data when compiling graphical programs that
are based on the synchronous dataflow (SDF) model.

The first method is a customization to acyclic graphs
of a bottom-up technique, called Pairwise Grouping of
Adjacent Nodes (PGAN), that was proposed earlier for
general SDF graphs. We show that our customization sig-
nificantly reduces the complexity of the general PGAN
algorithm and performs optimally for a certain class of
applications. The second approach is a top-down tech-
nique, called Recursive Partitioning by Minimum Cuts
(RPMC), that is based on a generalized minimum cut
operation. From an extensive experimental study, we con-
clude that RPMC and our customization of PGAN are
complementary, and both should be incorporated into
SDF-based prototyping environments in which the minimi-
zation of memory requirements is important.

1: Introduction

For the past several years, programmable digital sig-
nal processors have been popular in rapid prototyping
environments for DSP. The limited on-chip memory of
these processors, together with significant speed penalties
for off-chip memory access, often render it critical for a
high level software synthesis tool to produce a lean target
program, in the dimensions of both code and data. In this
paper, we present efficient techniques to compile graphical
DSP programs based on the synchronous dataflow (SDF)
model into software implementations that require a mini-
mum amount of memory for code and data. Numerous
DSP design environments, including a number of com-

mercial tools, support SDF or closely related models [9,
12, 13, 14]. Here, we focus on programs that are repre-
sented asacyclicSDF graphs.

In SDF, a program is represented by a directed graph
in which each vertex (actor) represents a computation, an
edge specifies a FIFO buffer, and each actor produces
(consumes) a fixed number of data values (tokens) onto
(from) each output (input) edge per invocation.

Fig. 1(a) shows a simple SDF graph. Each edge is
annotated with the number of tokens produced (con-
sumed) by its source (sink) actor, and the “D” on the edge
from actor to actor specifies a unit delay. Each unit
of delay is implemented as an initial token on the edge.
Given an SDF edge , we denote the source actor, sink
actor, and delay of by , , and .
Also, and denote the number of tokens pro-
duced onto by and consumed from by and

.
A schedule is a sequence of actor firings. We compile

an SDF graph by first constructing avalid schedule — a
finite schedule that fires each actor at least once, does not
deadlock, and produces no net change in the number of
tokens queued on each edge. Corresponding to each actor
in the schedule, we instantiate a code block that is
obtained from a library of predefined actors. The resulting
sequence of code blocks is encapsulated within an infinite
loop to generate a software implementation of the SDF
graph.

SDF graphs for which valid schedules exist are called
consistentSDF graphs. In [10], efficient algorithms are
presented to determine whether or not a given SDF graph

Figure 1. Examples of SDF graphs.

A B C2 1 3 1D(a)

A B C2 1 1 3D(b)

A B

e
e e()src e()snk e()d

e()p e()c
e e()src e

e()snk

Converting Graphical DSP Programs into
Memory Constrained Software Prototypes

Shuvra S. Bhattacharyya, Hitachi America Ltd.
Praveen K. Murthy, University of California at Berkeley

Edward A. Lee, University of California at Berkeley

Proc. 1995 IEEE International Workshop on Rapid Systems Prototyping,
Chapel Hill, North Carolina, June, 1995.

is consistent, and to determine the minimum number of
times that each actor must be fired in a valid schedule. We
represent these minimum numbers of firings by a vector

, indexed by the actors in . (we often suppress the
subscript if is understood).

Given an edge in , we define thetotal number of
samples exchanged on , denoted , or sim-
ply if is understood, by

. (1)

Thus, is the number of tokens produced onto
(consumed from) in one period of a valid schedule.

For F ig . 1 (a) , ,
, and one va l id schedu le i s

. Here , a paren thes ized te rm
 specifies successive firings of the “sub-

schedule” , and we may translate such a term
into a loop in the target code. This notation naturally
accommodates nested loops. Each parenthesized term

 is called aschedule loop. A looped sched-
ule is a finite sequence , where each is
either an actor or a schedule loop. Henceforth in this
paper, by a “schedule” we mean a “looped schedule.”

A more compact valid schedule for Fig. 1(a) is
. We call this schedule asingle appear-

ance schedulesince it contains only one lexical appear-
ance of each actor. To a good first approximation, any
valid single appearance schedule gives the minimum code
space cost for in-line code generation.

Given an SDF graph , a valid schedule
, and an edge in , denotes the

maximum number of tokens that are queued on during
an execution of . For Fig. 1(a), if

, then
 and
. We define thebuffer

memory requirement of a schedule by

.

Thus, and
.

In this paper we address the problem of computing a
valid single appearance schedule that minimizes the buffer
memory requirement over all valid single appearance
schedules. We call such a schedule anoptimal schedule.

2: Background

Given an SDF graph , actor is apre-
decessorof actor if there is an such that

 and , and is asuccessorof
 if is a predecessor of . Two actors areadja-

qG G
G

e G
e e G,()TNSE

e()TNSE G

e()TNSE qG e()src() e()p×=

e()TNSE
e

q A B C, ,() 3 6 2, ,()=
A B,()()TNSE 6=

B 2AB() CA 3B() C
nS1S2…Sk() n

S1S2…Sk

nS1S2…Sk()
V1V2…Vk Vi

3A() 2 3B() C()

G V E,()=
S e G e S,()max_tokens

e
S

S1 3A() 6B() 2C()= S2 3A 2B()() 2C()=,
A B,() S1,()max_tokens 7=
A B,() S2,()max_tokens 3=

S

S()buffer_memory e S,()max_tokens
e E∈
∑≡

S1()buffer_memory 7 6+ 13= =
S2()buffer_memory 3 6+ 9= =

G V E,()= X
Y e E∈

e()src X= e()snk Y= X
Y Y X X Y,

cent if is a predecessor or successor of , and if
are distinct, then is anadjacent pair. If there is a
path from to , then is anancestorof ,
and is adescendantof . If is neither a descendant
nor an ancestor of , is independent of . Also,

 denotes the set of ancestors of ,
denotes the set of descendants of , and if , then

 denotes the subgraph associated with .
If is a subset of actors in a connected, consistent

SDF graph ,

,1

and we refer to this quantity as therepetition count of .
G iven a connec ted , cons is ten t SDF graph

, a subset , and an actor ,clus-
tering into means generating the new SDF graph

 such tha t and
,

where is a “modification” of the set of edges that con-
nect actors in to actors outside of . If for each
such that and , we define by

,

,

and similarly for each such that and
, we define by

,

,

then,

.

For each , we say that corresponds to and
vice versa (corresponds to). The graph that results
from clustering into in is denoted ,
or simply . Intuitively, an invocation of in

 corresponds to one invocation of the sub-
system . We say that isclusterable if

 is consistent, and if is acyclic, then
introduces a cycle if contains one or more
cycles. Fig. 2 gives an example of clustering. Here, edge

 corresponds to and vice versa.
In [2], a dynamic programming algorithm called

GDPPO is developed for post-optimizing single appear-
ance schedules to reduce the buffer memory requirement.
In the remainder of this paper, we discuss two heuristics
for constructing single appearance schedules, and we
report on an experimental study that compares these heu-
ristics — with their schedules post-processed by GDPPO

1. The greatest common divisor is denoted bygcd.

X Y X Y,
X Y,{ }

X V∈ Y V∈ X Y
Y X X

Y X Y
X()ancs X X()desc

X Z V⊆
Z()subgraph Z

Z
G

ρG Z() qG A() A Z∈{ } 
 gcd≡

Z

G V E,()= Z V⊆ Ω V∉
Z Ω

V′ E′,() V′ V Z Ω{ }+–=
E′ E e e()src Z∈() e()snk Z∈()or{ }() Ê+–=

Ê
Z Z e E∈
e()src Z∈ e()snk Z∉ e′

e′()src Ω= e′()snk e() e′()d e()d=,snk=,
e′()p qG e()src() e()p ρG Z()⁄= e′()c e()c=,

e E∈ e()snk Z∈
e()src Z∉ e′

e′()snk Ω= e′()src e() e′()d e()d=,src=,
e′()p e()p= e′()c qG e()snk() e()c ρG Z()⁄=,

Ê e′ e()src Z∈ e()snk Z∉,() e()snk Z∈ e()src Z∉,()or{ }≡

e Ê∈ e′ e
e e′

Z Ω G clustG Z Ω,()
clustG Z() Ω

clustG Z Ω,()
Z()subgraph Z

clustG Z() G Z
clustG Z()

D Ω,() D C,()

— against each other and against randomly generated
schedules that are post-processed by GDPPO.

3: The Buffer Memory Lower Bound

In [2] we derive the following lower bound on
, given a consistent SDF graph , an

edge in , and a valid single appearance schedule .

Definition 1: Thebuffer memory lower bound (BMLB)
of an SDF edge , denoted , is given by

,

where .

I f i s an SDF graph , then

 is called the BMLB of , and a valid

single appearance schedule for that satisfies

 for all is called a

BMLB schedule for .
In F ig . 1 (a) , , and

. Thus, a valid single appearance
schedule for Fig. 1(a) is a BMLB schedule iff its buffer
memory requirement is . It is easily verified that no such
single appearance schedule exists for this graph. In con-
trast, for Fig. 1(b), it is easily verified that is
a BMLB schedule (here).

4: PGAN for Acyclic Graphs

In the originalPairwise Grouping of Adjacent Nodes
(PGAN) technique, developed in [3], a cluster hierarchy is
constructed by clustering exactly two adjacent vertices at
each step. At each clusterization step, a pair of adjacent
actors is chosen that maximizes over all clusterable
adjacent pairs.

To check whether or not an adjacent pair is cluster-
able, PGAN maintains the cluster hierarchy on theacyclic
precedence graph (APG)[10]. Each vertex of the APG
corresponds to an actor invocation, and each edge

Figure 2. An example of clustering.

D Ω A10 2 3 10

D C B10 1 6 10
A14

e S,()max_tokens G
e G S

e e()BMLB

e()BMLB
η e() e()d+() if e()d η e()<()

e()d if e()d η e()≥()
{=

η e() e()p e()c
e()p e()c,{ }()gcd

--=

G V E,()=

e()BMLB
e E∈
∑ 

  G

S G

e S,()max_tokens e()BMLB= e E∈
G

A B,()()BMLB 3=
B C,()()BMLB 3=

6

A 2B 3C()()
A B C, ,()q 1 2 6, ,()=

ρG

x y,()

signifies that at least one token produced by is con-
sumed by in a valid schedule. PGAN determines
whether or not an adjacent pair is clusterable by checking
whether or not its consolidation introduces a cycle in the
APG. This check is performed efficiently by applying a
reachability matrix, which indicates for any two APG ver-
tices , whether or not there is a path from to .

Unfortunately, the cost to compute and store the APG
reachability matrix can be prohibitively high for some
applications [2]. Since a large proportion of DSP applica-
tions that are amenable to the SDF model can be repre-
sented as acyclic SDF graphs, we propose an adaptation of
PGAN to acycl ic graphs, cal ledAcycl ic PGAN
(APGAN), that maintains the cluster hierarchy and reach-
ability matrix directly on the input SDF graph rather than
on the APG.

In an acyclic SDF graph , it is easily verified that a
subset of actors is not clusterable only if introduces a
cycle. This condition is easily checked given a reachability
matrix for [2]. Since the existence of a cycle in

 is not a sufficient condition for not to be
clusterable, the clusterability test that we apply in APGAN
is notexact; it must be viewed as a conservative test. For
some graphs, this imprecision can prevent APGAN from
attaining optimal results [2]. In exchange for some degree
of suboptimality in these cases, our clusterability test
attains a large computational savings over the exact test
based on the reachability matrix of the APG.

Fig. 3 illustrates the operation of APGAN. Fig. 3(a)
shows the inpu t SDF graph . Here

, and fo r

x
y

x y, x y

G
Z Z

G
clustG Z Ω,() Z

C

D

Ω1

E

3

21
5

4

2 10

1

2

6

D

Ω2

E

10

4

2 10

1

2

Ω2

Ω3

10

20

1

2
Ω4

(b)

(c)

(d)

(e)

A

C

D

B

E

1

3

2

3

21
5

4

2 10

1

2

(a)

Figure 3. An illustration of APGAN.

A B C D E, , , ,()q 6 2 4 5 1, , , ,()=

, represents the th hierarchical actor
instantiated by APGAN. The repetition counts of the adja-
cent pairs are given by

, and
.

Thus, APGAN will select one of the three adjacent pairs
, , or for its first clusterization

step. Clearly, introduces a cycle, while the other
two adjacent pairs do not introduce cycles. Thus, APGAN
chooses arbitrarily between and as the
first adjacent pair to cluster.

Fig. 3(b) shows the graph that results from clustering
 into the hierarchical actor . In this graph,

, and it is easily verified
that uniquely maximizes over all adjacent
pairs. Since does not introduce a cycle,
APGAN selects this adjacent pair for its second clusteriza-
tion step. Fig. 3(c) shows the resulting graph.

Fig.s 3(d&e) show the results of the remaining two
clusterizations in our illustration of APGAN. We define
the subgraph corresponding to to be the subgraph
that is clustered in the th clusterization step. Thus, for
example, the subgraph corresponding to consists of
actors and , and the two edges directed from to

. A valid single appearance schedule for Fig. 3(a) can
easily be constructed by recursively traversing the hierar-
chy induced by the subgraphs corresponding to the s.
We start by constructing a schedule for the top-level sub-
graph, the subgraph corresponding to . The subgraph

 corresponding to each consists of only 2 actors
and , and all edges in are directed from to . If
each edge in satisfies , then we con-
struct the schedule

,

and otherwise we construct

.

It is straightforward to show that the resulting sched-
ule for the subgraph corresponding to is always opti-
mal [2]. In Fig. 3, this yields the “top-level” schedule

 (we suppress loops that have an iteration count
of one) for the subgraph corresponding to .

Next, we recursively descend one level in cluster hier-
archy to the subgraph corresponding to , and we obtain
the schedule . This “flattened schedule” then
replaces its corresponding hierarchical actor in the top-
level schedule, and the top-level schedule becomes

. Next, descending to , we construct
the schedule . We then examine the subgraph
corresponding to to obtain the schedule . Sub-
stituting this for , the schedule for the subgraph corre-

i 1 2 3 4, , ,= Ωi i

ρ A B,{ }() ρ A C,{ }() ρ B C,{ }() 2= = =
ρ C D,{ }() ρ E D,{ }() ρ B E,{ }() 1= = =

A B,{ } A C,{ } B C,{ }
A C,{ }

A B,{ } B C,{ }

A B,{ } Ω1
Ω1 C D E, , ,()q 2 4 5 1, , ,()=

Ω1 C,{ } ρ
Ω1 C,{ }

Ωi
i

Ω2
Ω1 C Ω1

C

Ωi

Ω4
Gi Ωi Xi

Yi Gi Xi Yi
e Gi e()d η e()≥

qGi
Yi() Yi 

  qGi
Xi() Xi 

 

qGi
Xi() Xi 

  qGi
Yi() Yi 

 

Ωi

2Ω2() Ω3
Ω4

Ω3
5D() E

2Ω2() 5D() E Ω2
Ω1 2C()

Ω1 3A() B
Ω1

sponding to becomes . Finally, this
schedule gets substituted for in the top-level schedule
to y ie ld the va l id s ing le appearance schedu le

 for Fig. 3(a).
From and Fig. 3(a) i t easi ly verified that

 and , where is

the set of edges in Fig. 3(a), are identically equal to ,
and thus in the execution of APGAN illustrated in Fig. 3, a
BMLB schedule is returned.

The APGAN approach, as we have defined it here,
does not uniquely specify the sequence of clusterizations
that will be performed. The APGAN technique together
with an unambiguous protocol for deciding between adja-
cent pairs that are tied for the highest repetition count form
anAPGAN instance, which generates a unique schedule
for a given graph. We say that an adjacent pair is an
APGAN candidate if it does not introduce a cycle, and its
repetition count is greater than or equal to that of all other
adjacent pairs that do not introduce cycles. Thus, an
APGAN instance is any algorithm that takes a consistent,
acyclic SDF graph, repeatedly clusters APGAN candi-
dates, and then outputs the schedule corresponding to a
recursive traversal of the resulting cluster hierarchy.

The following lemma is easily understood from our
discussion of Fig. 3.

Lemma 1: Suppose is a connected, consistent, acyclic
SDF graph such that for each ; is
an APGAN instance; and is the schedule that results
when is applied to . Then

,

where is the set of edges that are contained the sub-
graphs corresponding to the hierarchical actors instanti-
ated by .

5: Deriving BMLB Schedules with APGAN

If is a consistent SDF graph, and is an
adjacent pair in that does not introduce a cycle, we say
that satisfies theproper clustering condition in

 if for each actor that is adjacent to a mem-
ber of , we have that div ides

, for each that is adjacent to.
In Fig. 3(a) , and

 is d iv is ib le by ,
, , ,

and thus, satisfies the proper clustering condi-
tion.

Theorem 1: [2] Suppose is a consistent, connected,

Ω2 3A() B 2C()
Ω2

Sp 2 3A() B 2C()() 5D() E≡
Sp

Sp()buffer_memory e()BMLB
e E∈
∑ 

  E

43

G
e() η e()<d e E∈ P

S
P G

S()buffer_memory e′()BMLB
e′ EΩ∈

∑=

EΩ

P

G X Y,{ }
G

X Y,{ }
G Z X Y,{ }∉

X Y,{ } ρ Z P,{ }()
ρ X Y,{ }() P X Y,{ }∈ Z

A B C D E, , , ,()q 6 2 4 5 1, , , ,()=
ρ B C,{ }() 2= ρ A C,{ }() 2=
ρ A B,{ }() 2= ρ C D,{ } 1= ρ B E,{ }() 1=

B C,{ }

G

delayless SDF graph, and is an adjacent pair that
satisfies the proper clustering condition. Then for each
edge in , ,
where is the edge in that corresponds to .

The following theorem guarantees that whenever an
APGAN instance performs a clustering operation on a
graph that has a BMLB schedule, the adjacent pair
selected satisfies the proper clustering condition.

Theorem 2: [2] Suppose is a connected, delayless
SDF graph; has a BMLB schedule; and is an
APGAN candidate in . Then satisfies the
proper clustering condition in .

Theorem 1 guarantees that clustering an adjacent pair
that satisfies the proper clustering condition does not
change the BMLB on an edge. However, to derive a
BMLB schedule whenever one exists, it is not sufficient to
simply ensure that each clusterization step selects an adja-
cent pair that satisfies the proper clustering condition,
since although clustering an adjacent pair that satisfies the
proper clustering condition preserves the BMLB values on
each edge, it does not necessarily preserve the existence of
a BMLB schedule [2]. Fortunately, however, the assump-
tion that the adjacent pair being clustered has maximum
repetition count is sufficient to preserve the existence of a
BMLB schedule.

Theorem 3: [2] Suppose is a connected, delayless
SDF graph; has a BMLB schedule; and is an
APGAN candidate in . Then has a
BMLB schedule.

Lemma 2: If is a connected, delayless SDF graph that
has a BMLB schedule, and is an APGAN instance, then
the schedule obtained by applying to is a BMLB
schedule for .

Proof: By definition, repeatedly clusters APGAN can-
didates until the top-level graph contains only one actor.
From Theorem 2, the first adjacent pair clustered when

 is applied to satisfies the proper clustering condition,
and from Theorem 3, the top level graph that results
from this clustering operation has a BMLB schedule.
Since has a BMLB schedule we can again apply Theo-
rems 2 and 3 to conclude that the second adjacent pair
clustered by satisfies the proper clustering condition,
and that the top-level graph obtained from clustering

 in has a BMLB schedule. Continuing in this man-
ner for , where is the total number of adja-
cent pairs clustered when is applied to , we conclude
that each adjacent pair clustered by satisfies the proper
c lus te r ing cond i t i on . F rom Theorem 1 ,

, whenever and are corre-
sponding edges associated with a clusterization step of .
Thus, from Lemma 1,

X Y,{ }

e clustG X Y,{ }() e′()BMLB e()BMLB=
e′ G e

G
G X Y,{ }

G X Y,{ }
G

G
G X Y,{ }

G X Y,{ } G,()cluster

G
P

P G
G

P

p1
P G

T1

T1
p2

P
T2

p2 T1
p3 p4 … pn, , , n

P G
P

e′()BMLB e()BMLB= e′ e
P

.

Q.E.D.

The following consequence of Lemma 2 gives our
general specification of the optimality of APGAN.

Theorem 4: [2] If is a connected, acyclic
SDF graph that has a BMLB schedule; for
all ; and is an APGAN instance, then the
schedule obtained by applying to is a BMLB sched-
ule for .

6: Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a
bottom-up fashion by starting with the innermost loops
and working outward. In this section, we propose an alter-
native approach, which we callRecursive Partitioning by
Minimum Cuts (RPMC), that computes the schedule by
recursively partitioning the SDF graph in such a way that
outer loops are constructed before the inner loops. Each
partition is constructed by finding thecut (partition of the
set of actors) across which the minimum amount of data is
transferred. The cut that is produced must have the prop-
erty that all edges that cross the cut have the same direc-
tion. This is to ensure that we can schedule all actors on
the left side of the partition before scheduling any on the
right side. We also impose the constraint that the partition
is fairly evenly sized. This is to increase the possibility of
having gcd’s that are greater than unity for the repetitions
of the actors in the subsets produced by the partition, thus
reducing the buffer memory requirement [2].

Suppose that is a connected, consistent
SDF graph. Acut of is a partition of the actor set
into two disjoint sets and . The cut islegal if for all
edges crossing the cut (that is all edges that have one
incident actor in and the other in), we have

 and . Given abounding con-
stant , the cut results in bounded sets if it satisfies

, . (2)

The weight of edge is defined as .
The weight of the cut is the total weight of all the

edges crossing the cut. The problem then is to find the
minimum weight legal cut into bounded sets for the graph.
Since the related problem of finding a minimum cut (not
necessarily legal) into bounded sets is NP-complete [5],
and the problem of finding an acyclic partition of a graph
is NP-complete [5], we believe this problem to be NP-
complete as well even though we have not discovered a
proof. Kernighan and Lin [7] devised a heuristic procedure
for computing cuts into bounded sets but they considered

SP G()()buffer_memory e()BMLB
e E∈
∑=

G V E,()=
e()d η e()<

e E∈ P
P G

G

G V E,()=
G V

VL VR
e

VL VR
e()src VL∈ e()snk VR∈
K V≤

VR K≤ VL K≤

e w e() e()TNSE≡

only undirected graphs. Methods based on network flows
[4] do not work because the minimum cut given by the
max-flow-min-cut theorem may not be legal and may not
be bounded [11]. Hence, we give a heuristic solution for
finding legal minimum cuts into bounded sets.

RPMC examines the set of cuts produced by taking an
actor and all of its descendants as the actor set and the
set of cuts produced by taking an actor and all of its ances-
tors as the set . For each such cut, an optimization step
is applied that attempts to improve the cost of the cut.
Consider a cut produced by setting

for some actor , and let be the set of indepen-
dent,boundary actors of in . A boundary actor in

 is an actor that is not the predecessor of any other
actor in . Following Kernighan and Lin [7], for each of
these actors, we can compute the cost difference that
results if the actor is moved into . This cost difference
for an actor in is defined to be the difference
between the total weight of all input edges of and the
total weight of output edges of . We then move those
actors across that reduce the cost. We apply this optimiza-
tion step for all cuts of the form and

 for each actor in the graph and take
the best one as the minimum cut. Since there are actors
in the graph, cuts are examined. Moreover, the cut
produced will have bounded sets since cuts that produce
unbounded sets are discarded.

RPMC now proceeds by partitioning the graph by
computing the legal minimum cut and forming the sched-
u le , where a re
schedules for and respectively that are obtained
recursively by partitioning and . It can be shown
that the running time of RPMC for sparse SDF graphs,
including post-optimization by GDPPO, is [11].

7: Experimental Results

Table 1 shows experimental results on the perfor-
mance of APGAN and RPMC that we have developed for
several practical examples of multirate acyclic SDF
graphs. The column titled “average random” gives the
average cost obtained by considering 100 random topolog-
ical sorts and applying GDPPO to each. The data for
APGAN and RPMC also includes the effect of GDPPO.

We see that APGAN achieves the BMLB on 5 of the 9
examples, outperforming RPMC in these cases. Particu-
larly interesting are the last three examples, which illus-
trate the performance of the two heuristics as the graph
sizes are increased. The graphs represent a symmetric tree-
structured QMF filterbank with differing depths. APGAN
constructs a BMLB schedule for each of these systems

VR

VL

VL ancs v() v{ }∪() VR, V \ VL= =

v TR v()
v VR

VR
VR

VL
a TR v()

a
a

ancs v() v{ }∪()
desc v() v{ }∪() v

V
2 V

ρG VL() SL() ρG VR() SR() SL SR,
GL GR

GL GR

O V 3()

while RPMC generates schedules that have costs about 1.2
times the optimal. Conversely, the third and fourth entries
show that RPMC can outperform APGAN significantly on
graphs that have more irregular rate changes. These graphs
represent nonuniform filterbanks with differing depths.

We have also tested APGAN and RPMC on a large
number of randomly-generated 50-actor graphs. For these
graphs, RPMC outperformed APGAN 63% of the time,
and we also found that both APGAN and RPMC signifi-
cantly outperformed randomly-generated schedules. Our
comparisons on random graphs give a worst case estimate
of the performance we can expect from these heuristics.

All of our experiments show that APGAN and RPMC
complement each other. For the practical examples,
APGAN performs well on graphs that have relatively reg-
ular topological structures and rate changes, and RPMC
performs well on graphs that are more irregular. Since
large random graphs can be expected to consistently have
irregular rate changes and topologies, the average perfor-
mance on random graphs of RPMC is better than APGAN
by a wide margin — although we have found that there is a
significant proportion of random graphs for which
APGAN outperforms RPMC by a margin of over 10% [2],
which suggests that APGAN is a useful complement to
RPMC even when mostly irregular graphs are encoun-
tered. However, the main advantage of adopting both
APGAN and RPMC as a combined solution arises from
complementing the strong performance of RPMC on gen-
eral graphs with the formal properties of APGAN, as spec-
ified by Theorem 4, and the ability of APGAN to exploit
regularity that arises frequently in practical applications.

8: Related Work

In [1], Ade, Lauwereins, and Peperstraete develop
upper bounds on the minimum buffer memory require-
ment for certain classes of SDF graphs. Since single
appearance schedules generally have much larger buffer
memory requirements than schedules that are optimized
for minimum buffer memory only, these bounds cannot
consistently give close estimates of the minimum buffer
memory requirement for single appearance schedules.

In [8], Lauwereins, Wauters, Ade, and Peperstraete
present a generalization of SDF calledcyclo-static data-
flow. A major advantage of cyclo-static dataflow is that it
can significantly reduce the buffer memory requirement
over corresponding (pure) SDF representations, but it is
not clear whether this model can in general be used to get
schedules that are as compact as single appearance sched-
ules and have lower buffering requirements than those
arising from the techniques given in this paper.

A linear programming framework for minimizing the
memory requirement of an SDF graph in a parallel pro-

cessing context is explored by Govindarajan and Gao [6].
Here the goal is to minimize the buffer cost without sacri-
ficing throughput.

9: Conclusions

We have presented two scheduling techniques,
APGAN and RPMC, for minimizing the memory required
for code and data when mapping an acyclic SDF graph
into an implementation on a programmable processor. We
have shown that for a certain class of SDF graphs,
APGAN is guaranteed to achieve an optimal solution. We
have also reported on an experimental study in which we
evaluated the performance of APGAN and RPMC. Based
on this study, we have concluded that APGAN and RPMC
complement each other, and thus, techniques should be
investigated for efficiently combining the two methods. In
the absence of such a combined solution, or of a more
powerful alternative solution, both of these heuristics
should be incorporated into SDF-based DSP prototyping
and implementation environments in which the minimiza-
tion of memory requirements is important.

References
[1] M. Ade, R. Lauwereins, J. A. Peperstraete, “Buffer Memory
Requirements in DSP Applications,” presented atIEEE Wkshp.
on Rapid System Prototyping, Grenoble, June, 1994.

[2] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, “Two Comple-
mentary Heuristics for Translating Graphical DSP Programs into
Minimum Memory Software Implementations,” Memorandum
No. UCB/ERL M95/3, Electronics Research Laboratory, Univer-
sity of California at Berkeley, January, 1995.

[3] S. S. Bhattacharyya, E. A. Lee, “Scheduling Synchronous
Dataflow Graphs for Efficient Looping,”Journal of VLSI Signal
Processing, December, 1993.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest,Introduction to
Algorithms, McGraw-Hill, 1990.

[5] M. R. Garey, D. S. Johnson,Computers and Intractability-A
guide to the theory of NP-completeness, Freeman, 1979.

[6] S.R. Govindarajan, G. R. Gao, P. Desai, “Minimizing Mem-
ory Requirements in Rate-Optimal Schedules,”Proc. of the Intl.
Conf. on Application Specific Array Processors, August, 1994.

[7] B. W. Kernighan, S. Lin, “An Efficient Heuristic Procedure
for Partitioning Graphs,”Bell System Technical Journal, Febru-
ary 1970.

[8] R. Lauwereins, P. Wauters, M. Ade, J. A. Peperstraete, “Geo-
metric Parallelism and Cyclo-Static Dataflow in GRAPE-II,”
IEEE Wkshp. on Rapid System Prototyping, June, 1994.

[9] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans,
J. Van Ginderdeuren, “GRAPE: A CASE Tool for Digital Signal
Parallel Processing,”IEEE ASSP Magazine, April, 1990.

[10] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Syn-
chronous Dataflow Programs for Digital Signal Processing,”
IEEE Trans. on Computers, February, 1987.

[11] P. K. Murthy, S. S. Bhattacharyya, E. A. Lee,Combined
Code and Data Minimization for Synchronous Dataflow Pro-
grams, Memorandum No. UCB/ERL M94/93, Electronics
Research Laboratory, University of California at Berkeley,
November, 1994.

[12] D. R. O’Hallaron,The Assign Parallel Program Generator,
Memorandum CMU-CS-91-141, School of Computer Science,
Carnegie Mellon University, May, 1991.

[13] J. Pino, S. Ha, E. A. Lee, J. T. Buck, “Software Synthesis for
DSP Using Ptolemy,” invited paper inJournal of VLSI Signal
Processing, January, 1995.

[14] S. Ritz, S. Pankert, H. Meyr, “High Level Software Synthe-
sis for Signal Processing Systems,”Proc. of the Intl. Conf. on
Application Specific Array Processors, August, 1992.

Table 1. Performance of APGAN and RPMC on various applications.

System BMLB APGAN RPMC Avg. Random

Fractional decimation 47 47 52 52

Laplacian pyramid 95 99 99 102

Nonuniform filterbank (4 channels) 85 137 128 172

Nonuniform filterbank (6 channels) 224 756 589 1025

QMF nonuniform-tree filterbank 154 160 171 177

QMF filterbank (one-sided tree) 102 108 110 112

QMF analysis only 35 35 35 43

QMF tree filterbank (4 channels) 46 46 55 53

QMF tree filterbank (8 channels) 78 78 87 93

QMF tree filterbank (16 channels) 166 166 200 227

