The Creative /m

Partnership g}i U"'f%

of Humansand
Technology

PLAT

AND THE

NERL

EDWARD ASHFORD LEE

Plato and the Nerd

The Creative Partnership of Humans and Technology

Edward Ashford Lee

The MIT Press
Cambridge, Massachusetts
London, England

© 2017 Massachusetts Institute of Technology

[@lolse]

CC BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc—-nd/4.0/

This book was set in Times Roman using I&TEX.

Library of Congress Cataloging-in-Publication Data is available.

ISBN electronic: 978-0-262-341202
DOI: https://doi.org/10.7551/mitpress/11180.001.0001

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.7551/mitpress/11180.001.0001

This book is dedicated to my muse, Rhonda Righter, with thanks for many dinnertime
conversations that shaped my thinking.

Contents

Preface e ix
I Yang 1
1 Shadows on the Wall 2
1.1 Nerds s e 3
1.2 Artificialand Natural 7
1.3 Designand Discoveryo 11
1.4 Engineering and Science Lo 18
2 Inventing Laws of Nature 30
2.1 The Unknown Knowns 31
2.2 Modelsof Nature e 36

23 Models Are Wrong e e e 47

CONTENTS

3

vi

Models of Models of Models of Models of Things

3.1 Technological Tapestries,
3.2 Complexity Simplified
3.3 Transitivityof Models
34 Reductionism e e e e

Hardware Is Ephemeral

4.1 Hardand Soft
4.2 SemiconduCtors e e e
4.3 Digital Switches
44 LogicGates o i e e
45 LogicDiagrams L e
4.6 Digital Machines e

Software Endures

5.1 Self-Scaffolding
5.2 Instruction Set Architectures o
5.3 Programming Languageso
54 Operating Systems e e e e e
5.5 Libraries, Languages, and Dialects
56 TheCloud e
Evolution and Revolution

6.1 Normal Engineering
6.2 Crisisand Failure
6.3 Crisisand Opportunity i

54
55
57
62
67

71
72
74
77
78
81
83

88
89
92
97
107
109
114

CONTENTS

IT

10

6.4 Models in Crisis

Yin

Information

7.1 Pessimism Becomes Optimism
7.2 Information-Processing Machines
7.3 Measuring Information

7.4 Continuous Information

The Limits of Software

8.1 Universal Machines?
8.2 Undecidability
8.3 Cardinality
8.4 Digital Physics?

Symbiosis

9.1 The Notion of a Continuum
9.2 The Impossible Becomes Possible
9.3 Digital Psyche?
9.4 Symbiotic Partnership

9.5 Incompleteness

Determinism

10.1 Laplace’s Demon
10.2 The Butterfly Effect

145

146

....................... 147
..................... 149
........................... 151
........................... 158

166

............................ 167
................................ 171
................................. 180
................................ 188

vii

CONTENTS

10.3 Incompleteness of Determinism

10.4 The Hard and the Soft of Determinism

11 Probability and Possibility
11.1 The Bayesians and the Frequentists
11.2 Continuums, Again o vt e

11.3 Impossibility and Improbability

12 Final Thoughts
12.1 Dualism e e e
12.2 Obstacles e

12.3 Autonomy and Intelligence

Bibliography

Index

viii

251
252
263
266

272
273
277
284

288

301

Preface

What This Book Is About

When I was young, my father wanted me to become a lawyer or get an MBA and take over
the family business. Engineers were the people who worked for him. The brightest young
minds, at least those of white Anglo-Saxon stock in the United States, went to law school,
business school, or medical school. Today, engineering schools are much harder to get
into, but that was not true when I was going to college. Yes, my father was profoundly
disappointed in me when I double majored in Computer Science and what Yale called
“Engineering and Applied Science.” I made it worse when I went to MIT for graduate
school in engineering and then went to work as an engineer at Bell Labs, and worse still
when I went to Berkeley for a PhD and then became a professor. This book is perhaps my
last-ditch attempt to justify those decisions.

When I started writing the book, I really didn’t know who my target audience would
be. As it has turned out, this book is targeted toward readers who are either literate
technologists or numerate humanists. I’m not sure how many such people there are, but
I’'m convinced there must be a few. I hope you are one of them.

This book is my attempt to explain why the process of creating technology, a process that
we call engineering, is a deeply creative process, and how this explains why it has become
so hot and competitive, making geeks out of the brightest young minds. The book is about

PREFACE

the culture of technology, about both its power and its limitations, and about how the real
power of technology stems from its partnership with humans. I like to think of the book
as a popular philosophy of technology, but I doubt it will be very popular, and I am not
sure I have the qualifications to write about philosophy. So really, the only guarantee I can
make is that it is about technology and the engineers who create technology. And even
then, it is limited to the part of technology that I understand best, specifically, the digital
and information technology revolutions.

This book is not about the artistry and creativity that is unleashed by using technology
as a medium. For that topic, I recommend the wonderful book by Virginia Heffernan,
Magic and Loss (Heffernan, 2016). Heffernan claims that “the Internet is a massive and
collaborative work of realist art,” but she is referring to the content of the Internet. In my
book, I claim that Internet fechnology itself, and all of digital technology that shores it up,
1s a massive and collaborative creative work, even if not an artistic work.

Digital technology as a medium for this latter sort of creativity has enormous potential,
well beyond what has been accomplished to date. In the first part of this book, I explain
exactly why this technology has been so transformative and liberating. I study how engi-
neers use models and abstractions to build inventive artificial worlds and give us incred-
ible capabilities, such as the ability to carry around in our pockets everything humans
have ever published.

But this is not to say that digital technology has no limitations. Pursuing a yin and yang
balance, in the second part of the book, I attempt to counter a runaway enthusiasm among
some thought leaders about digital technology and computation. Driven by the immense
potential of computers, this enthusiasm has led to unjustified beliefs that go as far as to
assert that everything in the physical world is in fact a computation, in exactly the same
sense as in modern computers. Everything, including such complex phenomena as human
cognition and such unfamiliar objects as quasars, is software operating on digital data. I
will argue that the evidence for such conclusions is weak and the likelihood is remote
that nature has limited itself to only processes that conform with today’s notion of digital
computation. And I will show that this digital hypothesis cannot be tested empirically, and
therefore can never be construed as a scientific theory. Because the likelihood is remote,
the evidence is weak, and the hypothesis is untestable, these conclusions are an act of
faith. My argument here will likely get me into trouble because I’'m swimming against a
considerable current.

Also bucking much current thought, I argue that the goal of artificial intelligence to repro-
duce human cognitive functions in computers is misguided, is unlikely to succeed, and

PREFACE

vastly underestimates the potential of computers. Instead, technology is coevolving with
humans, augmenting our own cognitive and physical capabilities, all the while enabling us
to nurture, evolve, and propagate the technology. We are seeing the emergence of symbi-
otic coevolution, where the complementarity between humans and machines dominates
over their competition.

But most of the book is very much swimming with the current, upbeat about the enormous
potential of technology to improve our lives. But more than just utilitarian, one of my
main messages is that engineering is a deeply creative and intellectual discipline, every bit
as interesting and rewarding as the arts and sciences. In areas where the technology is less
mature, the creative contributions reflect the personalities, aesthetics, and idiosyncrasies
of the creators. In areas that are more mature, the work can become deeply technical and
opaque to outsiders. This happens in all disciplines, so this is hardly surprising.

Like the sciences, engineering is built around accepted paradigms that provide frame-
works for thought. Also like the sciences, engineering is punctuated by paradigm shifts, to
use the words of Thomas Kuhn (Kuhn, 1962). Unlike the sciences, however, the paradigm
shifts are frequent, even relentless. I argue, in fact, that the pace of technological progress
in our current culture is more limited by our human inability to assimilate new paradigms
than by any physical limitations of the technology. I attempt in this book to explain why
this is.

Like the arts, the evolution of the field of engineering is governed by culture, language,
and cross-germination of ideas. Also like the arts, success or failure is often determined
by intangible and inexplicable forces, such as fashion and culture. And in an observa-
tion that may take many readers by surprise, also like the arts, the creative media used to
engineer new artifacts and systems today, particularly digital media, have become aston-
ishingly versatile and expressive. In my opinion, this latter property, the versatility and
expressiveness of digital media, accounts for the attractiveness of the field to bright young
minds, more even than the lucrative job prospects.

Engineering is a broad field, encompassing everything from water supply systems to
social networking software. Any individual, myself included, cannot have more than
a superficial understanding of more than a few of its subdisciplines. My arguments in
this book, therefore, are based on my experience with electronics, electrical engineering,
and computer science. These arguments apply to digital and information technologies
and may or may not apply to other technologies such as bridges and chemical plants.
Nevertheless, I do know from experience that digital technologies have invaded nearly all
other engineering disciplines. Modern chemical plants, for example, include substantial

X1

PREFACE

computer control and therefore become instances of cyberphysical systems, discussed
in chapter 6. Such systems are most certainly subject to the potential, vagaries, and
limitations of digital technology that I point out in this book.

I do not assume of the reader any particular technical background. In some sections of
the book, I do dive more deeply than I probably should into technical topics that are near
and dear to my heart, but I promise the reader that every such indulgence is short, and
hopefully skipping the technical details will not seriously undermine the message. Please
persist. The nerd storm will pass quickly.

I do assume a numerate reader. Against all advice, I have even included 12 equations in
the book. They are not complicated equations. High school math and science is more
than sufficient to fully understand them, but even then full understanding is not needed to
get the message. My publisher has used this argument against me, saying that if it is true,
I should remove them. But I like them. I have confidence that there are more numerate
readers than there used to be. I have assured the publisher that, counting my friends and
family, a few dozen book sales are assured.

The title of this book comes from the wonderful book by Nassim Nicholas Taleb, The
Black Swan (Taleb, 2010), who titled a section of the prologue “Plato and the Nerd.” Taleb
talks about “Platonicity” as “the desire to cut reality into crisp shapes.” Taleb laments the
ensuing specialization and points out that such specialization blinds us to extraordinary
events, which he calls “black swans.” Following Taleb, a theme of my book is that tech-
nical disciplines are also vulnerable to excessive specialization; each speciality unwit-
tingly adopts paradigms that turn the speciality into a slow-moving culture that resists
rather than promotes innovation.

But more fundamentally, the title puts into opposition the notion that knowledge, and
hence technology, consists of Platonic Ideals that exist independent of humans and is
discovered by humans, and an opposing notion that humans create rather than discover
knowledge and technology. The nerd in the title is a creative force, subjective and even
quirky, and not an objective miner of preexisting truths.

I hope that through this book, I can change the public discourse so young people are more
inclined to consider a career in engineering, and not just because of the job prospects.
I am convinced that engineering is fundamentally a creative discipline, and the technical
drudgery that prejudices many people is no more drudgery than found in any other creative
discipline. Yes, hard work is required, but as a reward for that hard work, you can change
the world.

Xii

PREFACE

Overview of the Chapters

Some readers like to be told what they will be told before they are told it. Putting aside
the problematic self-referentiality, for those readers, I provide here a brief overview of
the book. But honestly, I recommend skipping this and going directly to chapter 1. The
story told in this book cannot be accurately summarized in a few paragraphs, and any
such summary will necessarily make the book seem more dense than it is. Nevertheless,
for those who really need it, here is my summary.

Popular perception of technology and engineering is often one of a dispassionate field
dominated by logic and trading in colorless facts and truths. In chapter 1, I explore the idea
of facts and truths in technology, showing that these are not just discovered but more often
invented or designed. Rather than being built on timeless Platonic Ideals, technology is
built on ideas that are more fluid and sometimes quirky. The notion of truth becomes more
subjective; collective wisdom becomes better than individual wisdom; a narrative about
how facts evolve becomes more interesting than the facts themselves; facts and truths may
be wrong; and it can cost billions to show that facts are true. I then develop the idea that
engineering and science, disciplines rooted in facts and truths, are complementary and
overlapping, leveraging each others’ methodologies. In this chapter, I try to understand
the cultural phenomenon that engineering has been considered the “kid sister” of science.

In chapter 2, I focus on the relationship between discovery and invention. A key theme of
this chapter is that models are invented not discovered, and it is the usefulness of models,
not their truth, that gives them value. Note that the usefulness of a model need not be a
practical, utilitarian sort of usefulness. A model may be useful simply because it explains
or predicts observations, even if the phenomena observed have no practical application.

Models are useful to scientists when they are faithful to the natural system being studied,
whereas models are useful to engineers when a physical realization can be constructed
that is faithful to the model. These uses are complementary and, in fact, are often applied
in combination.

Chapter 2 is heavily influenced by Kuhn (1962). But Kuhn focused on science, not engi-
neering. The engineering use of models results in more room for creativity in the construc-
tion of models because it is not necessary for the models to be faithful to some preexisting
natural system. But the use of models can also slow technological change because models
are built on paradigms that frame our thinking and therefore limit our thinking. Models
can also get quite sophisticated, forcing increased specialization, which can also slow
change by impeding communication across specializations.

Xxiii

PREFACE

In chapter 3, I dive into exactly how the engineering use of models enables creativity.
I do this by illustrating the role that models have played in the development of digital
technology, where models are stacked many layers deep, with the design of each layer
affecting the designs both above and below it. Digital technology has, through this multi-
plicity of layers, mostly removed any meaningful physical constraints from a broad class
of engineered systems. Each layer of models conforms with an established paradigm,
a way of modeling and abstracting an engineered design. Innovation, therefore, is less
limited by the physics of the technology than by our imagination and ability to assimilate
new paradigms.

I argue that paradigms play a central role in digital technology because without them,
no human could possibly comprehend the complexity of the systems we routinely build
today. But these paradigms are human constructions, governed by culture and language.
In many cases, the paradigms that have emerged are idiosyncratic, reflecting the person-
ality and aesthetics of their creators.

A notable feature of digital technology is that paradigms are layered one on top of another.
Semiconductor physics gives us the ability to make transistors, which we can use as elec-
trically controlled switches that have two distinct states: “on” and “off.” This enables a
digital abstraction that turns out to be just the first of many layers, building up eventu-
ally to the programming languages that enable us to build databases, machine learning
systems, web servers, and so on. Each of these layers forms through coalescing of
competing paradigms.

In chapter 4, I explore the layered paradigms that make up much of today’s digital tech-
nology hardware. I show that the physical substance of the hardware is not durable, but
the paradigms are. The hardware is routinely discarded every few years as it wears out
and becomes obsolete, but the principles on which the hardware is designed, with all their
warts and idiosyncrasies, persist for decades.

In chapter 5, I explore the layered paradigms that make up much of today’s informa-
tion technology. These paradigms define how we construct software, and software, it
turns out, endures much better than hardware. Paradigms, like human culture, change
slowly, particularly compared with the speed with which technology changes. Although
Kuhn’s scientific paradigms are strictly human constructions, the paradigms of software
are encoded in the software. In an orgy of self-referentiality, software builds its own
scaffolding. The self-scaffolding of software makes it much more durable than hardware,
despite its ephemeral nonsubstantive existence. It could even outlast humans.

X1v

PREFACE

Chapter 6 explores the structure of technology revolutions, with a particular focus on
digital technology. This chapter is also heavily influenced by Kuhn, but it strives to iden-
tify how technology revolutions differ from scientific revolutions. One key difference is
that technology paradigms appear and disappear much more rapidly probably because,
compared with scientific paradigms, they are relatively unconstrained by the physical
world and are layered one upon another many layers deep. Like scientific paradigms,
new technology paradigms do not necessarily replace old ones. They may instead overlay
the old ones, building new platforms on top of existing platforms. The ability to do this
depends on the transitivity of models explored in the three previous chapters. Unlike
scientific paradigms, the crises that trigger new technology paradigms do not arise so
much from the discovery of anomalies but from increasing complexity and technology-
driven opportunity.

To balance the enthusiasm, the next few chapters look at what we cannot do with digital
technology, at least not today. This requires explaining three classic concepts that emerged
in the 20th century: Shannon’s information theory, the Church-Turing thesis, and Godel’s
incompleteness of formal models. In the later chapters, I consider the concept of deter-
minism and examine how we can build models that embrace uncertainty using the notion
of probability. Along the way, I need to confront another paradigm that emerged in 20th
century called digital physics and a view that human cognition is software.

This part of the story begins in chapter 7, where I examine the concept of information
— what it is and how to measure it. In this chapter, I introduce Claude Shannon’s way
of measuring information and show that his notion of information often cannot be repre-
sented digitally. I define an “information-processing machine” more broadly than what
can be realized using software and computers, as they exist today.

In chapter 8, I explain what software cannot do. I point out that the number of information-
processing functions is vastly larger than the number of possible computer programs.
I introduce Alan Turing’s undecidability result, which shows that useful information-
processing functions exist that are not realizable by software on today’s computers. But
it does not follow that if a function is not realizable by software, then it is not realizable
by any machine.

I caution against getting carried away by enthusiasm, marveling at what has already been
accomplished with software, and caution against predicting that natural phenomena such
as cognition and understanding are realizable in software. Here, I am forced to confront a
belief that some people call “digital physics”: that the physical world is somehow software
or equivalent to software. I argue that this idea is unlikely to be either true or useful as a

XV

PREFACE

way of understanding the physical world, at least in its more extreme forms, and I show
that this thesis is not falsifiable and therefore not scientific.

In chapter 9, I go beyond the countable world of computing and argue that computers are
not universal machines and their real power comes from their partnership with humans. I
explain the notion of a continuum, a concept that is out of reach for software and rejected
by digital physics but seemingly essential for modeling the physical world. I examine
the fundamental limitations of formal models that underlie the world of software, and
I argue that the partnership and coevolution of humans and computers is much more
powerful than either alone. In this chapter, I explain Kurt Gédel’s famous incompleteness
theorems, which impose fundamental limits on any modeling formalism that is capable
of self-reference. We need to be humble, but we also need to recognize the as yet vast
unexplored potential that still waits for us to catch up.

In chapter 10, I consider determinism, a property of software and many mathematical
models of nature. I argue that determinism is a property of models not of the physical
world. But it is an extremely valuable property, one that has historically delivered consid-
erable payoffs in engineering and science. However, determinism also has its limits. Even
deterministic models may not be usefully predictive because of chaos and complexity.
Also, families of deterministic models that embrace both discrete and continuous behav-
iors are incomplete. There are unavoidable holes where determinism breaks down, and
deterministic models have their limitations. In many cases, nondeterministic models are
simpler and better reflect what we do not know. Nondeterministic models, used explicitly
and judiciously, play an essential role in engineering.

In chapter 11, I finally confront the meaning of randomness and its measure, probability,
which quantifies the likelihood of nondeterministic events. I argue that probability is
fundamentally a model of uncertainty about something and not directly a model of that
something. It models what we do not know. I examine the long-standing debate between
the frequentists and the Bayesians, coming down solidly on the side of the Bayesians.
I show that the philosophical difficulties presented by randomness vanish when using
models in the engineering sense rather the scientific sense and when interpreting prob-
ability in the Bayesian sense. In this chapter, I also reconsider continuums and argue
that probabilistic models over continuums reinforce the conclusion that digital physics is
extremely unlikely. As a consequence, we should demand incontrovertible evidence for
digital physics before accepting it.

In the final chapter, I tie things together by examining the epistemic role that models
have in technology and the relationship between models and the physical systems they

XVi

PREFACE

ultimately model. I leverage the previous arguments in the book: At least with digital
technology, so many layers of abstraction exist between the models and the physical
reality that the connection between the two becomes tenuous indeed. Moreover, the self-
scaffolding that software paradigms have, described in chapter 5, allows these models to
stand on their own, almost but not completely independent of physical reality. I argue that
this does not lead to a Cartesian mind-body dualism, but it does emphasize the need to
insist, with great determination and discipline, on separating the map from the territory.
Models are best viewed as having a separate reality from the physical world, despite
existing in the physical world.

The most expressive modeling paradigms are capable of self-reference, which enables
them to build their own scaffolding but also makes them necessarily incomplete. This
incompleteness is fundamentally what enables creativity and ensures that what we can
accomplish with technology is limitless. So what holds us back? In this final chapter, I
consider both the obstacles to progress and the threats that technology, when misapplied,
can have on society.

Acknowledgments

The author gratefully acknowledges contributions and helpful suggestions from Christo-
pher Brooks, Malik Ghallab, Thomas Henzinger, Madeline Johnson, Hokeun Kim, Gil
Lederman, Marten Lohstroh, Dave Messerschmitt, Mehrdad Niknami, Rodion Rathbone,
Rhonda Righter, Bernhard Rumpe, Naresh Shanbhag, Joseph Sifakis, Marjan Sirjani,
Kimball Strong, David J. Stump, and Eli Yablonovitch. I would also like to thank
three anonymous reviewers commissioned by the publisher who were extremely helpful.
Several of these people disagreed with major points that I make in the book, and they
thereby helped me to understand where my arguments needed to be strengthened or
reworked. All remaining errors and opinions that I have stubbornly stuck to are entirely
my own, not those of these contributors.

Most especially, however, I would like to thank two very special people who played a
major role in the development of this book. The first is Heather Levien, who, unlike me,
really knows how to write and without whom this book would be a disorganized pile of
random ideas. The second is my mom, Kitty Fassett, a professional musician with an
aversion for mathematics but a true intellectual and also a great writer. Without her help,
this book would be unreadable to nonspecialists. She was my guinea pig, telling me each
place where a nonspecialist might get lost.

Xvii

PREFACE

I also thank the staff at MIT Press and Heather Jefferson for her superb copy editing. In
addition, I thank the many unwitting contributors who have offered their thoughts through
largely anonymous media such as Wikipedia and the contributors who have generously
posted images online that I can (and have) reused because of their choice of creative
commons licenses.

XViil

Part |

Yang

Shadows on the Wall

Contents
) [G 3
1.2 Artificialand Natural 000 eno.. 7
1.3 Designand Discoveryot v vt vttt enas 11
1.4 Engineeringand Science 000 18

- in which I examine the very idea of “facts” and “truths,” showing that:
collective wisdom about them can be better than individual wisdom; a narra-
tive about facts can be more interesting than the facts themselves, facts and
truths may be invented or even designed, not just discovered; facts and truths
may be wrong; and it can cost billions to show that facts are true. And, oh
yes, nerds are misunderstood, and science and engineering get confused.

1.1. NERDS

1.1 Nerds

I am a nerd. According to the Merriam-Webster dictionary, a nerd is

an unstylish, unattractive, or socially inept person; especially: one slavishly
devoted to intellectual or academic pursuits.
a person who is very interested in technical subjects, computers, etc.

Who but a nerd would start a book with a quote from the dictionary? I wouldn’t expect
a nerd to write very well, particularly not for a general audience. Actually, 'm quite
sure this book would be much better if it were written by someone else. But I can’t get
anyone else to write it, so I will compensate by quoting the writing of others, even from
dictionaries.

The previous definition was presumably written by a trustworthy expert on the subject of
nerdiness. We expect that the publishers of dictionaries go to some effort to ensure that
the definitions are written by experts. In contrast, we cannot assume that a Wikipedia
page about nerds would be written by experts. Anyone with Internet access can modify
the contents of a Wikipedia page. There is no vetting of expertise. Nevertheless, the page
for “nerd” largely concurs with Merriam-Webster but offers more:

Though originally derogatory, “Nerd” is a stereotypical term, but as with
other pejoratives, it has been reclaimed and redefined by some as a term of
pride and group identity.

Now I am reassured that I can be proud to be a nerd. Continuing with an etymology,

The first documented appearance of the word “nerd” is as the name of a crea-
ture in Dr. Seuss’s book If I Ran the Zoo (1950), in which the narrator Gerald
McGrew claims that he would collect “a Nerkle, a Nerd, and a Seersucker
too” for his imaginary zoo. [citations to Merriam-Webster and the American
Heritage Dictionary] The slang meaning of the term dates to the next year,
1951, when Newsweek magazine reported on its popular use as a synonym
for “drip” or “square” in Detroit, Michigan. ... At some point, the word took
on connotations of bookishness and social ineptitude.

I like this narrative better than the dictionary definition because it focuses on how the word
came about and how it evolved rather than what it is. Most facts are more interesting when

1. SHADOWS ON THE WALL

we understand how they came to be facts rather than just accepting them as if they were
always there.

But is this Wikipedia article authoritative? The article points out that American satirist
“Weird Al” Yankovic’s song “White and Nerdy” states that editing Wikipedia is a stereo-
typical nerd interest. I am therefore reassured that this article is likely written by experts
on nerdiness.

There is a big difference in style between a dictionary definition and a narrative about
culture. A dictionary definition is usually understood to give a fact, a truth. Merriam-
Webster defines “definition” as “an explanation of the meaning of a word, phrase, etc.”
This definition gives definitions the aura of facts and truths, deemphasizing their insta-
bility and fluidity with human culture.

Most of us approach technology as if it too were a compendium of facts and truths. We
assume that technology advances because people discover more facts and truths. Because
the discovery of facts and truths is the realm of science, science therefore drives tech-
nology. But I doubt that the technology of Wikipedia came about as a consequence of the
discovery of facts and truths.

Wikipedia is a software system created by Jimmy Wales and Larry Sanger, who put the
first version online in 2001. I don’t know them, but one of my prejudices is that many
software people are nerds, so there is a reasonable chance they too are nerds.

According to the Wikipedia article on Wikipedia, Sanger coined its name as “a port-
manteau of wiki and encyclopedia.” Following the link to the page on “wiki,” we learn
that a wiki is a website that “allows collaborative modification of its content and structure
directly from the web browser.” That page tells us that “wiki” is a Hawaiian word meaning
“quick” and credits Ward Cunningham with inventing the wiki. I hope you will agree that
it would be odd to say that Cunningham “discovered” the wiki, so presumably this was
not an advance creditable to science. But the nuanced relationship between discovery and
invention and between science and engineering is not always so clear.

Cunningham’s 2001 book with Bo Leuf describes the wiki concept as follows:

A wiki invites all users to edit any page or to create new pages within the
wiki Web site, using only a plain-vanilla Web browser without any extra add-
ons. Wiki promotes meaningful topic associations between different pages
by making page link creation almost intuitively easy and showing whether an
intended target page exists or not. A wiki is not a carefully crafted site for

1.1. NERDS

casual visitors. Instead, it seeks to involve the visitor in an ongoing process
of creation and collaboration that constantly changes the Web site landscape.
(Leuf and Cunningham, 2001)

I love that web browsers come in “plain vanilla” flavors. I wonder what other flavors are
available.

This description starts to give us the sense that a wiki, and particularly Wikipedia, is as
much a cultural artifact as a technological one. And as with all cultural artifacts, it didn’t
suddenly pop into existence at the instant of invention. In fact, inventions almost never do
and nearly always have a strongly cultural element. The “meaningful topic associations
between different pages” were in fact already present in the World Wide Web, which
according to its Wikipedia article was “invented by English scientist Tim Berners-Lee in
1989.”

It is interesting that this article identifies Sir Timothy John Berners-Lee (he was knighted
by Queen Elizabeth II for his work) as a “scientist.” His recognized contributions were
certainly not of the nature of discovery of facts and truths and certainly not about the
natural world, the main focus of science. Berners-Lee did get a bachelor of arts degree
in physics, unquestionably a science subject, from Oxford, so I suppose calling him a
scientist is justified. But I see no evidence that he is a successful scientist.

Or maybe I am misunderstanding what it means to be a scientist. Returning to trusty
old Merriam-Webster, a scientist is “a person who is trained in a science and whose
job involves doing scientific research or solving scientific problems.” Hmm... Not very
helpful. Looking up “science,” we find it is “knowledge about or study of the natural
world based on facts learned through experiments and observation.” By this definition, if
Berners-Lee’s career goal was to study the natural world, then I would have to conclude
that his career has not (yet) been very successful. If, in contrast, his career goal was to
invent and engineer artifacts that had never before existed, then he has been spectacularly
successful, richly deserving the knighthood. He created mechanisms that are today used
by nearly every person in the developed world. He changed the world.

1. SHADOWS ON THE WALL

Berners-Lee’s contributions are arguably more cultural than technical. The cultural
context of the web and Wikipedia goes back even further. Vannevar Bush,! in a 1945
article “As We May Think,” states,

Wholly new forms of encyclopedias will appear, ready-made with a mesh of
associative trails running through them, ready to be dropped into the memex
and there amplified. (Bush, 1945)

The memex is Bush’s hypothetical microfilm viewer that has a structure analogous to
that of hypertext, the essential feature of Berners-Lee’s web. Berners-Lee’s technical
contribution was to make Bush’s vision a reality.

So why is Berners-Lee identified as a scientist? Possibly whoever wrote the Wikipedia
article intended this as an honorific in the sense that “engineer” would not be. In his
wonderful book, The Black Swan, from which I get the title of this book, Nassim Taleb
used the term “Platonicity” for the “desire to cut reality into crisp shapes” (Taleb, 2010).
My classification of people, including myself, as “engineers” or “scientists” (or even as
“nerds”) stems from such Platonicity. But humans are complex and defy classification.
You may be surprised that I, a nerd, am also an amateur artist (see figure 1.1).

Taleb argues that Platonicity, the desire to categorize, the obsessive focus on taxonomy,
“makes us think that we understand more than we actually do.”

What I call Platonicity, after the ideas (and personality) of the philosopher
Plato, is our tendency to mistake the map for the territory, to focus on pure
and well-defined “forms,” whether objects, like triangles, or social notions,
like utopias (societies built according to some blueprint of what “makes
sense”), even nationalities.

The arbitrariness of categories such as “scientist” and “engineer” is an example of
Platonicity. It makes us sanguine in our understanding of the world, but it can be

I Vannevar Bush, in the Wikipedia article on him, is identified as an “engineer, inventor and science adminis-

trator.” Bush, who died in 1974, was a towering figure. He was an MIT professor, dean of the MIT School
of Engineering, and founder of Raytheon, a major U.S. defense contractor. During World War II, Bush
coordinated several thousand scientists in the application of science to warfare. He started the Manhattan
Project, which led to the development of nuclear weapons. At the end of World War II, Bush pressed
for increased government support for science. His arguments led to the creation of the National Science
Foundation (NSF), which today is one of the premier supporters of research in science and engineering.

1.2. ARTIFICIAL AND NATURAL

Figure 1.1: Self-portrait of a nerd. Acrylic on canvas (2007).

misleading. In the rest of this chapter, I will focus on the difficulties in distinguishing
discovery from invention, invention from design, and scientist from engineer.

1.2 Artificial and Natural

Herbert Simon, a hugely influential twentieth-century thinker and winner of both the
Turing Award in computer science and the Nobel Prize in economics, in his book,
The Sciences of the Artificial, makes a distinction between “artificial” and ‘“natural”
phenomena:

The thesis is that certain phenomena are “artificial” in a very specific sense:
they are as they are only because of a system’s being molded, by goals or
purposes, to the environment in which it lives. (Simon, 1996)

A system is artificial if it is “being molded, by goals or purposes.” But in this statement,
who does the molding? Simon presupposes it is humans. It could instead be God or some
other teleological cause, and then no distinction would exist between the “sciences of the
natural” and the “sciences of the artificial.” One could even take as a definition of God as

1. SHADOWS ON THE WALL

He who molds, by goals or purpose, our entire natural world. But there is a distinction
between the artificial and the natural. A big one, Simon says.

Simon’s examples of artificial phenomena include political systems, economies, engi-
neered artifacts, and administrative organizations. The “molding” of such systems “by
goals or purposes” is the process of design.

Everyone designs who devises courses of action aimed at changing existing
situations into preferred ones. (Simon, 1996)

Engineering, as a discipline, is fundamentally about design in this sense. Wikipedia,
which as you may have realized by now, is my first recourse for many research problems,
defines engineering this way:

Engineering is the application of mathematics, empirical evidence and scien-
tific, economic, social, and practical knowledge in order to invent, innovate,
design, build, maintain, research, and improve structures, machines, tools,
systems, components, materials, and processes. (retrieved March 1, 2016)

It then points out the obvious, “the discipline of engineering is extremely broad,” and
gives the origin of the term:

The term Engineering is derived from the Latin ingenium, meaning “clever-
ness” and ingeniare, meaning “to contrive, devise.”

Note that the word is not derived from “engine,” as many people might assume. Instead,
“engine” is derived from the same Latin roots.

Wikipedia effectively leverages recent triumphs of engineering. But is it authoritative?
It creates collective wisdom, subjugating the role of individual experts, If you are old
enough, you may remember the encyclopedias of the twentieth century, such as the Ency-
clopedia Britannica. According to Wikipedia, the Britannica

is written by about 100 full-time editors and more than 4,000 contributors,
who have included 110 Nobel Prize winners and five American presidents.

The Britannica is built in a very different way than Wikipedia. The editors recruit top
experts to contribute to articles. The focus is on the individual experts, who, through their
reputation, lend authority to the text.

1.2. ARTIFICIAL AND NATURAL

& Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history |Search Q
Engineering: Revision history @ Help
The Free Encyclopedia View logs for this page
Main page Browse history
Content
ontents From year (and earlier): 2016 ¢ From month (and earlier): ' all [T
Featured content X
B Tag filter: Show
Random article
Donate to Wikipedia For any version listed below, click on its date to view it.
UG For more help, see Help:Page history and Help:Edit summary.
Interaction External tools: Revision history statisticsg + Revision history searchg - Edits by userg *
SR Number of watchersg « Page view statistics &
About Wikipedia
Community portal (cur) = difference from current version, (prev) = difference from preceding version,
Recent changes m = minor edit, — = section edit, — = automatic edit summary
Contact page (newest | oldest) View (newer 50 | older 50) (20 1 50 1 100 | 250 | 500)
Tools Compare selected revisions
pViatlivkshere) o (curlprev) @ 01:43, 25 February 2016 ClueBot NG (talk I contribs) m . . (51,952

Related ch:
olated changes bytes) (+1,086) . . (Reverting possible vandalism by 66.190.220.253 to version by Dr.K..

E) Atom
J:’ load file Report False Positive? Thanks, ClueBot NG. (2561447) (Bot)) (undo)
Special pages o (curlprev) @ [01:43, 25 February 2016 66.190.220.253 (talk) . . (50,866 bytes)

Page information

Figure 1.2: Edit history for the Wikipedia page on Engineering, retrieved March 1, 2016.

Not Wikipedia. Anyone can edit a Wikipedia page. So how can these pages have any
authority? At one level, Wikipedia replaces authority with accountability. Figure 1.2
shows the edit history of the Wikipedia page for Engineering quoted earlier. Notice near
the bottom of the figure the most recent edit of this page, on February 25, 2016. This
edit is annotated with the comment, “Reverting possible vandalism.” Indeed, the previous
edit, which was made less than a minute earlier, has the comment, “This is all a lie.” That
edit removed quite a bit of text, including the previous definition of Engineering, and
replaced it with, “This is al a lie” [sic]. The entire history of these edits is accessible on
the Wikipedia site.

So who reversed the vandalism? The user is identified as “ClueBot NG.” Clicking on
that name reveals the page shown in figure 1.3. It turns out that ClueBot NG is a “bot,”

1. SHADOWS ON THE WALL

Q
=

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
User contributions
Logs
Upload file
Special pages
Permanent link
Page information

Print/export
Create a book
Download as PDF
Printable version

Languages

User page Talk

0 N o o A 0 DN

WIKIPEDIA User:ClueBot NG

The Free Encyclopedia From Wikipedia, the free encyclopedia

Read View source View history |Search

This user account is a bot operated by Cobi

extremely tedious to do manually.

Contents [hide]
Documentation
1.1 Administrator emergency shutoff
1.2 Exclusion compliant
Summary
Team
IRC Channel
Dataset Review Interface
Statistics
Frequently Asked Questions
Vandalism Detection Algorithm
8.1 Machine Learning Basics
8.2 Bayesian Classifiers
8.3 Artificial Neural Network
8.4 Threshold Calculation

8.5 Post-Processing Filters

(talk), Crispy1989 (talk) and methecooldude (talk). It is
a legitimate alternative account, used to make repetitive
automated or semi-automated edits that would be

ClueBot NG

This user is a bot
(talk - contribs)

»

& Notlogged in Talk Contributions Create account Log in

Q

ClueBot NG aids in Operation Enduring

Encyclopedia.

Operator Cobi (t), Crispy1989 (t)
(more info)

Approved? Yes, BRFA.
Flagged? Yes.
Task(s) Reverting vandalism.
Edit rate Over 9,000 EPM.
Edit period(s) Continually
Automatic or Automatic

Figure 1.3: User page for the most recent editor shown in figure 1.2, retrieved March 1,

2016.

10

1.3. DESIGN AND DISCOVERY

which Wikipedia defines as “a software application that runs automated tasks (scripts)
over the Internet.” On the page in figure 1.3, listed as item 8, is a description of the
“Vandalism Detection Algorithm,” which evidently is a piece of software that classifies
an edit as either “vandalism” or “not vandalism,” and if it is vandalism, it reverses the
edit. The methods used to perform classification are statistical machine learning methods,
linchpins of the currently hot area of data science. I will examine how this mechanism is
analogous to an immune system and why that is important in chapter 9, and I will explain
the principles behind how it works in chapter 11.

It is worth pausing and reflecting on how profoundly different all of this is compared with
a twentieth-century encyclopedia. I will have more to say about this later, but one of
the trends of the twenty-first century is the subjugation of the individual expert, the high
authority, the intellectual hero. In the twentieth century, the phrase “triumphs of modern
physics” would evoke in our minds Einstein, Bohr, Schrodinger, Heisenberg, and a few
others. Of course, many others contributed, many of them also recognized as heroes.
Experts do contribute to Wikipedia articles, but their text may be modified and elaborated
on by anyone, including vandals. And readers rarely check to see who wrote the text. The
authority of the author seems to be irrelevant. The text reflects a collective wisdom, not
an individual one.

We now face an interesting conundrum. Which is closer to the truth, the collective wisdom
or the individual one? This question gets ensnarled by what we mean by “truth.” The
answer is different if truths can be created rather than just being discovered.

1.3 Design and Discovery

In contrast to Simon’s “sciences of the artificial,” the “sciences of the natural” study what
nature has given us. The goal is to uncover the “secrets of nature,” presupposed to exist
disembodied, independent of humans. These secrets occupy neither time nor space; they
do not come into existence when they are discovered, occupying a time, nor do they exist
at the place they are discovered.

The idea that these secrets exist disembodied dates back at least to Plato, who postu-
lated ideal “Forms,” objective and eternal truths that are impossible to know completely.
Plato states that these Forms are the only objective truths, and that the ultimate goal of a
“philosopher” (a lover of knowledge) is to understand these forms. The Forms represent
the most accurate reality, and Plato calls knowledge of them “the Good.”

11

1. SHADOWS ON THE WALL

' LVX VENIT IN MVNDVN ET DILEXERVNT HOMINES MAGIS TENEBRAS QVAM LVCEM. [0.5.1¢

QMixina_pars Sominiim cecis. inmerse tonehrie o Et Tolfdy Svand Lidantir imagine rerim: H pasitl crroris nabuld digmoscore e ossint —¢c Hurlemensic Frw.
B il e s Bt it fon. s Gl i B o s sl caid Bl 7 e

Abyvice it ohre¢ Tis ttitis in boreat imbris, Secrets i § Toledl' tinks Tudlfria cermine Exirabire in claran licen: conantir, ac illl Honr: Hondius cxeeudls
VEVERI simificra. amnes mivnti amenty, Reriin ombras. restagy cxpendint omie lae: By Nillis amor ficie, tanta e 7 rationis eges . J60#

HL SPIEGEL FIGVRARI ET" SCVLFT CVRAVZT: AC DOCTISS, ORNAZISSQZDPETTAAN 7 LVGDYN, ACAD. PROFESSORI MEDICO DD, |

Figure 1.4: Plato’s Allegory of the Cave by Jan Saenredam, 1604. [©The Trustees of the
British Museum.]

Plato’s Allegory of the Cave (see figure 1.4) suggests that human perception of reality is
always imperfect. In the allegory, prisoners are chained with their backs to a low wall
(bottom right in the figure). Their heads face the blank wall of the cave on which shadows
are cast (top right) from a fire (top center). The shadows are of puppets and figures
manipulated from behind the low wall, and the shadows on the cave wall constitute the
only knowledge of reality that the prisoners experience. If a prisoner is released and can
face the fire creating the light, then he will resist accepting the reality of the fire or the
puppets casting shadows. If the prisoner is further allowed to exit the cave, then he will
be blinded by the sun and further resist the reality of that external “ideal” world. And if
a prisoner does accept some of the truths he is exposed to and tries to convey those truths
to the prisoners behind the low wall, then they will reject his ideas as absurd.

12

1.3. DESIGN AND DISCOVERY

The allegory underscores the difficulty of achieving the Good and explains why those
individuals who do successfully convince others of some newly discovered, seemingly
objective truth, the Einsteins and Bohrs of the world, are eventually deemed to be heroes.

Simon contrasts these objective truths with those of artificial phenomena. “If natural
phenomena have an air of ‘necessity’ about them in their subservience to natural law,
artificial phenomena have an air of ‘contingency’ in their malleability by environment.”
Their “subservience to natural law” presupposes a Platonic, disembodied existence of that
natural law, regardless of whether it can be known.

A contrasting view is that laws of nature are models, created by humans, for how the phys-
ical world works. This view has gained considerable currency in the last few decades,
perhaps beginning with Thomas Kuhn’s groundbreaking and controversial 1962 book,
The Structure of Scientific Revolutions, which postulated that scientific theories are
framed by “paradigms,” which are very much human ways of thinking about the world.

In either case, calling natural laws “laws” is a bit odd. It’s almost as if nature is required
to follow them, as citizens are required to follow the laws of a state. But what happens
when nature violates a law of nature? Nature is not punished! Instead, the law becomes
invalid. Imagine if a state worked that way. Each time a driver exceeded a speed limit, the
speed limit would become invalid. But what about “laws of nature”? How can an ideal
truth become invalid? And yet we’ve seen laws of nature become invalid many times.

David Deutsch, a British physicist at Oxford and a pioneer of quantum computing, in his
2011 book, The Beginning of Infinity, argues that science is more about “good explana-
tions” than about laws of nature. Deutsch attributes these explanations to humans rather
than some preexisting disembodied truth:

Discovering a new explanation is inherently an act of creativity. (Deutsch,
2011, p. 7)

A “law of nature,” in contrast, has a more humble role, that of codifying a connection
between the past and the future:

[A]ny purported law of nature — true or false — about the future and the
past is a claim that they “resemble” each other by both conforming to that
law. (Deutsch, 2011, p. 6, emphasis in the original)

Deutsch goes further to reject empiricism, arguing that neither laws of nature nor good
explanations are derived from observation of the physical world:

13

1. SHADOWS ON THE WALL

Experience is indeed essential to science, but its role is different from that
supposed by empiricism. It is not the source from which theories are derived.
Its main use is to choose between theories that have already been guessed.
(Deutsch, 2011)

Here Deutsch echoes the thesis put forth earlier by the Austrian-British philosopher of
science Karl Popper (1902-1994), who stated that these guesses, hypotheses about nature,
arise from ‘“‘creative intuition” and can only be tested empirically after they have been
advanced (Popper, 1959). Deutsch points out that most of reality in the physical world
is not directly observable to any human being. Black holes, quarks, and nuclear fusion
in the sun involve scales, forces, and temperatures that no human has ever experienced.
They are just as inaccessible as Platonic Forms, observable at best only as shadows on
the wall. It cannot possibly be observations of black holes that lead to our theories about
them, because we cannot observe them.

Plato recognized that the ideal truths of Forms could not be fully known by humans. But
because they cannot be fully known by humans, isn’t it more practical to view what we
do know about nature as human-constructed models or what Deutsch calls good explana-
tions? This would be more humble, tacitly acknowledging that even our most fervently
held beliefs about nature are subject to improvement. I’m not saying that there are no
truths, but just that we should always be required to question them.

Such humility is intrinsic in the Wikipedia model of collective wisdom. No individuals,
no authorities, no matter how many accolades follow their names, can be trusted as the
holders of “the truth.” Knowledge should and must evolve. And as knowledge evolves,
doesn’t “the truth” also evolve? Of course, a realist might reply that it is belief not knowl-
edge that evolves. For that realist, if a belief isn’t true, it isn’t (and never was) knowledge.

Deutsch points out that deference to authority was replaced during the enlightenment by
empiricism, where ideas and theories are based on testing and experience. But he argues
that experience alone is insufficient because so much of the physical world operates in
conditions that cannot support human life and therefore cannot be directly experienced.

Empiricism never did achieve its aim of liberating science from authority. It
denied the legitimacy of traditional authorities, and that was salutary. But
unfortunately it did this by setting up two other false authorities: sensory
experience and whatever fictitious process of “derivation,” such as induction,
one imagines is used to extract theories from experience. (Deutsch, 2011)

14

1.3. DESIGN AND DISCOVERY

Again echoing Popper, he argues that rather than deriving knowledge from experience,
knowledge comes from a fundamentally creative process of conjecture, followed, often
much later, by cleverly devised experiments that support the guesses (usually by failing to
falsify them). Such clever experiments usually observe only indirect side effects. In other
words, knowledge is engineered.

The next chapter will focus on the role that models play in both science and engineering,
but for now suffice it to say that there is a tension here between design and discovery.
Some artificial phenomena are not explicitly designed but rather emerge accidentally from
human activity. The field of economics, for example, is full of the study of such emergent
phenomena. The rules by which these artificial phenomena operate are arguably discov-
ered rather than designed. And although many other artificial phenomena are designed,
surely they too are subject to natural laws, which in the Platonic view at least must be
discovered. But our knowledge of the natural laws is imperfect, so we must construct
models of those laws using mathematics, for example. Are not these models designed?

Sir Isaac Newton’s laws of motion are now known to be violated by nature, in that they
fail at relativistic speeds and quantum scales. Those laws take the form of mathematical
formulae, such as Newton’s second law,”

F =ma, (4096)

which states that force equals mass times acceleration. This looks like an expression of a
Platonic Form, but it is wrong! Despite being wrong, we don’t hesitate to say that Newton
“discovered” it, and people would look at us funny if we said that Newton “invented” it.

For some phenomena, we do not hesitate to use the word “invention” for their discovery.
Consider the transistor, credited to John Bardeen, Walter Brattain, and William Shockley
of Bell Labs (see figure 1.5).> They got the 1956 Nobel Prize in Physics “for their

2 My former PhD thesis advisor, Dave Messerschmitt, once told me that when you publish a book, every
equation you put in the book cuts your readership in half. I will call this principle “Messerschmitt’s Law,”
although Dave tells me he did not discover this law. But I first heard it from him. Throwing caution to the
wind, I am putting in an equation, but in an attempt to have some discipline, I will number each equation
with an estimate of the remaining readership. Here, I’ve assumed optimistically a starting readership of
8,192, so the presence of this equation has cut it to 4,096. The next equation will be numbered 2,048.
These are powers of 2 to make it easier to evenly divide by 2 each time and to underscore that I really am a
nerd. If and when I get down to equation (1), I can write whatever I want because I will presumably have
no more readers. As a side note, my PhD thesis had several dozen equations in it. It makes me wonder
whether Dave ever read it.

Shockley moved in 1956 from New Jersey to Palo Alto, California, and started Shockley Semiconductor
Laboratory in what would later become known as Silicon Valley. Eight of Shockley’s employees left his

15

1. SHADOWS ON THE WALL

Figure 1.5: John Bardeen, Walter Brattain, and William Shockley, who received the 1956
Nobel Prize in Physics for the discovery of the transistor effect.

researches on semiconductors and their discovery of the transistor effect.”” They demon-
strated the transistor effect with a device made of gold and germanium, although today
transistors are realized mostly using silicon crystals with carefully introduced impurities
called dopants. Note the careful phrasing in the Nobel Prize citation, “their discovery of
the transistor effect.” Nobel Prizes are not issued for inventions, only for discoveries. Yet
most of us would say that the transistor was invented at Bell Labs in the 1950s.

But actually, a U.S. patent was awarded to Julius Lilienfeld in 1930 for the 1925 invention
of a type of transistor now called a field-effect transistor (FET) (Lilienfeld, 1930). So if
the transistor effect is a Platonic Form, then it was actually discovered earlier by Julius
Lilienfeld. But patents are not issued for discoveries, only for inventions. According to the
U.S. Patent and Trademark Office, you cannot patent “laws of nature, natural phenomena,
and abstract ideas.” A patent may be issued for a “novel use” of a law of nature, of course,
because presumably everything is subject to the laws of nature. Such a novel use is an
invention, not a discovery.

company in 1957, the year I was born, to found Fairchild Semiconductor, the first successful high-tech
company in Silicon Valley. Many other Silicon Valley giants, including Intel, were founded by former
Fairchild employees. Arguably, Shockley’s move to Palo Alto was the founding of Silicon Valley.

16

1.3. DESIGN AND DISCOVERY

To be fair to the Nobel Prize committee, Lilienfeld’s FET was actually significantly
different from the one developed by Bardeen, Brattain, and Shockley. The Bell Labs
transistor was of a type known today as a bipolar transistor. Interestingly, today, bipolar
transistors are used only in niche applications because of their significantly higher energy
requirements. FETs are used much more commonly, having become the workhorses for
digital technology. An iPhone today contains billions of FETs.

It is not uncommon for inventions and discoveries to be messy in this way. The intellectual
history of an idea is rarely clear, and yet, as a culture, we insist on singling out the “heroes”
who bring these ideas to the fore.*

The tension between discovery and invention is not new. Is the transistor effect a “natural
phenomenon” that has always existed, waiting to be discovered? As far as I know, nobody
has ever found in nature sandwiches of gold and germanium or doped silicon operating
as transistors. So transistors must not be natural phenomena. But when these sandwiches
are constructed by man, nature takes over and regulates the movement of electrons in the
material so as to realize the transistor effect. So a transistor appears to be a novel use of a
law of nature.

But the movement of electrons in crystalline materials with impurities was not well
understood until the transistor had been fabricated and studied; in fact, the phenomenon
continues to be better understood to this day under more study. Is a natural law that
had no manifestation in nature prior to a human-constructed invention, and that was not
understood as a natural law until after such construction, a Platonic Form? It seems to
me questionable to claim that the transistor effect exists and has always existed, timeless
and disembodied. To me, this stretches my understanding of the word “exists” beyond the
breaking point.

This debate about natural laws dates back a long time. Aristotle, a student of Plato’s,
questioned the Platonic ideal Forms, arguing that knowledge is based on the study of
particular things, and that generalizations arise from that study rather than preexisting
in a disembodied Form. Aristotle used the term “natural philosophy” for the study of
phenomena in the natural world, what we now call “science.” Aristotle’s world of facts is
extensible; it can grow with study of the natural world. Plato’s world of facts is fixed; all
the facts are there as Forms, with many of them still waiting to be discovered.

4 And then become embarrassed when those heroes disappoint us, as Shockley did by becoming a proponent
of eugenics later in his life.

17

1. SHADOWS ON THE WALL

But it seems that facts can become wrong. Despite being wrong, Newton’s second law is
amazingly useful. Engineers use it all the time to design cars, airplanes, robots, bridges,
toys, and so on. It provides a good model for how particular things behave, as long as
they are not traveling near the speed of light and are not being examined at subatomic
scales. It cannot be a Platonic Form because it is violated by nature. It can, however,
constitute knowledge in the Aristotelian sense because it generalizes nicely the behavior
of macroscopic objects.

1.4 Engineering and Science

Simon says that design is about “changing existing situations into preferred ones.” But
what do we mean by “preferred” situations? In political systems, this may be highly
subjective. In engineered systems, it may be much more objective. A political leader
may prefer a situation where all immigrants are kept out, even when there is no objec-
tive evidence that this makes anything better for anyone. Engineers, by contrast, are
often called on to defend their preferences with objective measures, such as lower cost
or reduced energy consumption. Simon’s “preferred situations” are open. But it is not
uncommon in popular culture to assume that engineers primarily optimize preexisting
designs. A somewhat silly joke underscores this point:

Question: What is the difference between an optimist, a pessimist, and an
engineer?

Answer: An optimist sees a glass half full. A pessimist sees a glass half
empty. An engineer sees a glass that is twice as big as it needs to be.

This joke plays on our preconception that engineers prefer whatever costs less. Many
engineered systems, however, are “preferred” despite lacking any objective measures
showing them to be better than preceding “existing situations.” Apple’s iPhone, for
example, did not make phone calls better than its Nokia predecessors, and its battery
life was distinctly shorter. And it certainly didn’t cost less! It was “preferred” because of
nonobjective properties. It was fundamentally a creative contribution to humanity, not an
optimization. And yet it was most certainly an engineered artifact.

When using the phrase “sciences of the artificial” for the creation and study of human-
made phenomena, Simon laments the pejorative connotations of the term “artificial,”
saying “our language seems to reflect man’s deep distrust of his own products.” Arguably,

18

1.4. ENGINEERING AND SCIENCE

distrust of the products of nature is equally justified, as suggested by the poem on page 19.
But as a father of teenagers with iPhones, I can attest that distrust of the artificial is real.
Trusted or not, there is no question that smartphones are transformative. The iPhone (and
its subsequent competitors), together with other recent innovations in wireless communi-
cations and computer systems, enable us to carry nearly all of human published informa-
tion in our pockets. To call this “transformative” seems like an extraordinary understate-
ment. It is much more a triumph of engineering, “the sciences of the artificial,” than of
the sciences of the natural. Yet there is little, if any, invention in the iPhone. Nearly every
important aspect of the phone existed already in other products when it was introduced.
The iPhone is much more the result of design than either invention or discovery.

Yet in current Western culture, it seems that most people respect an inventor more than
an engineer and a scientist more than an inventor. Colin Macilwain, in an article in
Nature, attributes to William Wulf, former president of the U.S. National Academy of
Engineering, the following statement:

UNNATURAL

of bombs and instruments of torture,
our nature so human we hide
behind words that disguise and justify.

I’m sure Nature has disapproved of me
for years, as if it had overheard
one of my silent screeds against it,

and my insistence that only the artificial
has a real shot at becoming more

than we started with, designed,
revised, something completely itself.
If it could speak, Nature might say

it contains lilies, the strange beauty

of swamps, the architectureal art

of spiders, the many et ceteras

that make the world the world.
Nothing man-made can compete,
Nature might say. Oh Nature

has been known to go on and on.

And if it wanted to push things further,
it could cite our sleek perfection

But that’s as generous as [want to be

in giving Nature its say. I've seen it
randomly play its violence card —
natural, no-motive crimes

with hail and rain and vicious winds,
taking out, say, trailer courts and
playing fields and homes for the elderly.
So I want to be heard and overheard,
this time for real, out loud, in fact

right in Nature’s face, to say I prefer
the artifice in what’s called artificial,
the often concealed skill involved,
without which we’d have no accurate
view of ourselves, or of lilies in the pond.

— Stephen Dunn

19

1. SHADOWS ON THE WALL

There is a general attitude among the scientific community that science is
superior to engineering. (Macilwain, 2010)

This attitude spills out from the scientific community to the general culture. We use the
term “rocket scientist” for extremely smart people, although most of what the people who
put together the space program do is engineering. Macilwain goes on,

Waulf attributes this partly to the “linear” model of innovation, which holds
that scientific discovery leads to technology, which in turn leads to human
betterment. This model is as firmly entrenched in policy-makers’ minds as it
is intellectually discredited. As any engineer will tell you, innovations, such
as aviation and the steam engine, commonly precede scientific understanding
of how things work.

It is hard to point to any scientific discovery that led to the iPhone, in the sense that every
scientific discovery it depends on was already in widespread use in other products. Never-
theless, it is easy to find evidence that popular culture assumes that this linear model of
innovation is in fact how things work. For example, About.com, an advertising-funded
website centered around articles on a huge variety of subjects, collects reader commen-
tary. On the question of “Engineer vs Scientist - What’s the Difference?” some of the

reader answers are: 3

Scientists are the ones who create the theories, engineers are the ones who
implement them. They compliment [sic] each other...

Science is a lot of high level theory and engineering is implementation and
optimization.
Engineers deal with math, efficiency and optimization while Scientist [sic]

deal with “what is possible.”

Engineers trained [sic] for Using tools, where Scientists are trained for
Making them.

Scientists develop theories and work to verify them, Engineers search in these
theories to “optimize” things in real life.

A scientist invents a law and an engineer applies it.

5 http://chemistry.about.com/od/educationemployment/fl/Engineer-vs-Scientist-Whats-the-Difference.htm,
updated June 29, 2015, retrieved March 1, 2016.

20

1.4. ENGINEERING AND SCIENCE

Scientist for invention of new theories [sic]. Engineers for applying those
theories for piratical [sic] applications.

These views are clearly not authoritative, but rather are reflective of popular perception.
Note the contrast between the style of this website and that of Wikipedia. This one is a
portal for individual wisdom (and stupidity), whereas Wikipedia is a portal for collective
wisdom.

Kuhn, a highly regarded historian of science and a philosopher, in his 1962 book, The
Structure of Scientific Revolutions, echoed what Wulf claimed was the “general attitude
among the scientific community,” stating that certain kinds of scientific measurement
tasks are “hack work to be relegated to engineers or technicians” (Kuhn, 1962). To Kuhn,
clearly engineers were a rung down the ladder from scientists. But like his repeated refer-
ence in the same text to scientists as “men,” we can forgive this disparaging remark about
engineers because at the time he was writing, this view was standard in contemporary
culture and had a strong element of truth.

Kuhn addressed the question of what is science, stating, “to a very great extent the term
‘science’ is reserved for fields that do progress in obvious ways.” But, he points out, many
fields progress in obvious ways:

Part of our difficulty in seeing the profound differences between science and
technology must relate to the fact that progress is an obvious attribute of both
fields.

Kuhn rejects the pervasive idea that the progress of science is toward some Platonic truth:

We may ... have to relinquish the notion, explicit or implicit, that changes of
paradigm carry scientists and those who learn from them closer and closer to
the truth.

If truth is not the goal, then what gives “progress” its directionality? Kuhn postulates that
science may actually have no goal, an observation that he recognizes will be difficult for
many people to swallow.

We are all deeply accustomed to seeing science as the one enterprise that
draws constantly nearer to some goal set by nature in advance.

21

1. SHADOWS ON THE WALL

He then draws an analogy between the progress of science and Darwin’s theory of evolu-
tion:

The Origin of Species recognized no goal set either by God or nature.

The lack of a goal for science may be a shock, but for technology, it seems easier to
accept. It is hard to postulate any ultimate Platonic “truth” of technology, any goal that
when reached finishes the field. Technology progresses if once it is known how to make
certain things, this knowledge is not forgotten.

In a 1984 book, the philosopher John Searle supports Wulf and Kuhn about this twentieth-
century view of science:

“Science” has become something of an honorific term, and all sorts of disci-
plines that are quite unlike physics and chemistry are eager to call themselves
“sciences.” A good rule of thumb to keep in mind is that anything that calls
itself “science” probably isn’t — for example, Christian science, or military
science, and possibly even cognitive science or social science. (Searle, 1984,

p. 11)

Spencer Klaw, in his 1968 book, The New Brahmins — Scientific Life in America, writes
about “the awe that scientists now inspire,” where

science has become a form of established religion, and scientists its priests
and ministers. (Klaw, 1968, p. 12)

Many disciplines seek to emulate the methods of science, hoping for similar payoffs.
The “scientific method,” where a hypothesis is formed and experiments are designed to
attempt to falsify the hypothesis, is useful in many disciplines that have little connection
with natural science. But the value of the scientific method is often not as great in these
nonsciences. Referring to social science, Searle observes, “the methods of the natural
sciences have not given the kind of payoff in the study of human behavior that they have
in physics and chemistry” (Searle, 1984, p. 71).

Popper, before Kuhn, stressed that the core of the scientific method is falsifiability. A
theory or postulate is scientific only if it is falsifiable, according to Popper. To be falsi-
fiable, at least the possibility of an empirical experiment that could disprove the theory
must exist. For example, the postulate that “all swans are white” is not supported by

22

1.4. ENGINEERING AND SCIENCE

any number of observations of white swans. But the postulate is falsifiable because an
experiment may find a black swan. Hence, it is a scientific theory, albeit a false one.

Kuhn rejects Popper’s conclusion that a scientific theory is rejected by falsification,
arguing that even in the face of evidence against it, a theory will not be rejected until
a replacement theory is invented:

[T]he act of judgment that leads scientists to reject a previously accepted
theory is always based upon more than a comparison of that theory with
the world. The decision to reject one paradigm is always simultaneously the
decision to accept another, and the judgment leading to that decision involves
the comparison of both paradigms with nature and with each other. (Kuhn,
1962, pp. 77-88)

Kuhn is saying that even if an experiment seems to falsify a hypothesis, scientists will
not reject the hypothesis until they have a replacement hypothesis. He says, “If any and
every failure to fit were ground for theory rejection, all theories ought to be rejected at all
times.”

Popper’s emphasis on using experiments to falsify hypotheses is healthy. Well-
constructed experiments undermine astrology, phrenology, and many other pseudo-
sciences. But as Kuhn points out, experimental evidence is always subject to interpreta-
tion. If there is no new paradigm aligning with the experiments, then the experimental
results are more likely to be viewed as errors than falsifications.

Experiments are also useful in the “sciences of the artificial.” Engineers and computer
scientists do perform experiments but not usually with an eye toward falsification or to
compare against nature. The mere fact that you do experiments does not make you a
scientist.

In its narrower usage, as reflected by the Merriam-Webster definition previously quoted,
the word “science” refers to the study of nature, not to the study or creation of artifi-
cial artifacts. Under this interpretation, many of the disciplines that call themselves a
“science,” including computer science, are not, even if they do experiments and use the
scientific method.

To be sure, beginning with the information technology revolution in the 1990s, the role of
engineering has been changing. I believe that this is because digital technology and soft-
ware have created an explosion of possibilities in the “sciences of the artificial.” There
is nothing natural about being able to communicate instantaneously with another person

23

1. SHADOWS ON THE WALL

nearly anywhere on the planet. There is nothing natural about being able to see inside the
human body. There is nothing natural about being able to carry all of human published
information in your pocket. These are all the results of engineering more than science.
More important, they are creative products, not inevitable consequences of scientific
discovery.

Nevertheless, science still captures our imaginations and delivers spectacular results. The
announcement on February 11, 2016, of the detection of gravitational waves emitted by
colliding black holes, for example, got a great deal of press (see, e.g., the New York
Times article by Overbye (2016)). Gravitational waves were predicted by Einstein more
than a century ago, but detecting them has turned out to be astonishingly difficult. The
announced detection was accomplished by the Laser Interferometer Gravitational-Wave
Observatory (LIGO), at a cost of approximately $1.1 billion. The detected wave lasted
one fifth of a second, and analysis indicates that it was produced by a collision between
two black holes a billion light years away. This style of science is unlikely to have the
practical consequences that early twentieth-century science had. It is “pure science,” in
that it seeks knowledge for its own sake.

As might be expected, the high cost of this project has drawn some criticism. Horgan
(2016) subtitled his column that reported this result in Scientific American

Was the gravitational-wave experiment worth its $1.1-billion cost if it merely
confirms that Einstein was right?

In his article, he quotes chemist Ashutosh Jogalekar, who blogs as Curious Wavefunction:

Some sources are already calling the putative finding one of the most impor-
tant discoveries in physics of the last few decades. Let me not mince words
here: if that is indeed the case, then physics is in bad shape.

Horgan goes on:

In an email to me, a historian of technology was more blunt: “So a 100 year
old theory has been confirmed experimentally—big whup. Did anyone think
Einstein was wrong? There wasn’t any controversy, was there? Was anyone
credible claiming that spacetime isn’t curved, or that black holes don’t exist?
I can get that this was quite an experimental trick and technological feat. But
this isn’t doing anything to convince me that public funds spent on this stuff

24

1.4. ENGINEERING AND SCIENCE

wouldn’t be better spent on medical research. Or clean fuels, or any number
of things that would apply scientific expertise toward justice or the alleviation
of human suffering.

The acknowledgment that this experiment was “quite an experimental trick and techno-
logical feat” is interesting. It raises the question, is the contribution of LIGO science or
engineering? The basic method used, laser interferometry, has been understood by scien-
tists as a way to measure gravitational waves since the 1970s. But building a system with
adequate sensitivity was not easy.

Given that Einstein’s model predicted gravitational waves 100 years ago, that there seems
to be no controversy among scientists about the correctness of this prediction, and that
the laser interferometry technique for measuring gravitational waves has been known for
decades, it may appear that no new science resulted from the $1.1 billion investment.
But it is probably not the validation of the existence of gravitational waves that is really
the scientific contribution, but rather the demonstration of a new modality for observing
events in the universe that were previously invisible to us. Specifically, this experiment
has given the first observation of two black holes merging. That such events occur is
perhaps not surprising, but most certainly intellectual value can be found in the first
demonstration of a new kind of telescope into the universe that is capable of observing
such events.

So instead, we should probably view the $1.1 billion as an investment in the engineering
of a new device that can now enable a new form of astronomical observation. And the
device is quite a triumph of engineering.

Let me try to explain the magnitude of the engineering challenge that the LIGO team
faced. First, two detectors were built 3,000 kilometers apart so that the difference in time
of arrival of gravitational waves at the two detectors would provide an indication of the
direction of the source, and so that entirely independent observations could corroborate
each other. Building two detectors can’t be more than twice as hard as building one, so
this was not the biggest challenge.

Each detector consists of an L-shaped ultra-high-vacuum cavity 4 kilometers long on each
side (this alone is not easy to build; see figure 1.6). It uses laser interferometry to measure
extremely slight distortions in space-time caused by passing gravitational waves; these
distortions change the distance between the two ends of the 4-km cavity ever so slightly,
by much less than the diameter of a proton! By measuring this change in distance, once all
other possible causes for the change in distance have been eliminated, one can infer that

25

1. SHADOWS ON THE WALL

Figure 1.6: LIGO gravitational wave detector in Livingston, Louisiana. [Courtesy
Caltech/MIT/LIGO Laboratory.]

the change in distance was caused by a passing gravitational wave distorting space-time.
To minimize spurious causes for changes in distance, each detector has to be completely
isolated from sources of vibration such as seismic events and human activity such as auto-
motive traffic. Even the most minor such vibration would render the instrument useless.

It is hard to make the case that a gravitational wave telescope will improve (or even
affect) the human condition in any tangible way. Nevertheless, the project may in fact
have practical and tangible impact by contributing improvements in engineering methods.
The ability to detect such extremely small variations in distance surely has applications
elsewhere.

NASA, whose main mission (I believe) is space exploration in the name of science,
frequently uses their contributions to technology development as further justification for
the expenditure on space exploration. They claim contributions to light-emitting diodes
(LEDs), infrared ear thermometers, artificial limbs, ventricular assist devices, anti-icing

26

1.4. ENGINEERING AND SCIENCE

systems for aircraft, safety grooving on highways, improved automotive tires, chem-
ical detectors, land mine removal, firefighter gear, and many other technologies (NASA,
2016). To me, this reads as a substantial contribution to technology, irrespective of the
contribution to science.

Assuming that LIGO is a triumph, who is the hero? The article announcing the measure-
ment of gravitational waves in Physical Review Letters, published on February 11, 2016,
has 1,019 authors (Abbott et al., 2016). The author list occupies 5 of the 16 pages of the
article. It is hard to identify an “Einstein” from this list. According to the Boston Globe,
Rainer Weiss, now a Professor Emeritus at MIT, is credited by many scientists with being
the mastermind of the project, over significant protests from Weiss, who demurs that
many people contributed a great deal (Moskowitz, 2016). Assuming Weiss is right, the
LIGO project is a form of collective rather than individual wisdom, much like a Wikipedia
article. And it is likely that most of these authors would self-identify as “scientists” and
not as “engineers.” To me, most if not all of these 1,019 authors are engineers as well as
scientists, defying Platonicity.

An engineered artifact such as an iPhone is similarly a form of collective wisdom. It is
impossible to identify all the individuals who contributed significant technical content to
the iPhone, but I'm sure it is many more than 1,019.

In a famous essay, Leonard Edward Read (1898-1983), libertarian and founder of the
Foundation for Economic Education (FEE), accounted for the technical contributions
required to make a humble wooden pencil (Read, 1958). Written from the point of view of
the pencil, it starts with, “Not a single person on the face of this earth knows how to make
me.” He then chronicles the processes and materials that go into fabricating a pencil:

My family tree begins with what in fact is a tree, a cedar of straight grain that
grows in Northern California and Oregon. Now contemplate all the saws and
trucks and rope and the countless other gear used in harvesting and carting the
cedar logs to the railroad siding. Think of all the persons and the numberless
skills that went into their fabrication: the mining of ore, the making of steel
and its refinement into saws, axes, motors; the growing of hemp and bringing
it through all the stages to heavy and strong rope...

He goes on to explain how the wood is milled, kiln dried, and tinted; how the graphite
is mined and then mixed with clay and sulfonated tallow; how the lacquer paint is made
from castor beans and castor oil; how the label is made with carbon black mixed with

27

1. SHADOWS ON THE WALL

resins; how the metal is mined and refined; and how the eraser is made from rape seed oil,
sulfur chloride, rubber, pumice, and cadmium sulfide.

And an iPhone is much more complicated than a pencil. Evidently, even Steve Jobs
wouldn’t know how to make an iPhone (or even a pencil). In a reference to the “invisible
hand” of the economist Adam Smith (1723-1790), Read continues:

There is a fact still more astounding: The absence of a master mind, of
anyone dictating or forcibly directing these countless actions which bring
me into being. No trace of such a person can be found. Instead, we find the
invisible hand at work.

Such an engineered artifact is an embodiment of collective wisdom even more extreme
than Wikipedia, where at least a log is kept of the individual contributions.

Although we can’t even trace the forces behind the invisible hand, widespread recogni-
tion exists that many of these forces are driven by people’s technical skills. Cultivating
such talent is a prerequisite for a modern economy. Today, policymakers and much of
the public recognize the value in Science, Technology, Engineering, and Mathematics
(STEM) education. This term bundles together a broad set of technical disciplines. It still
puts Science first, but this may be as much about being able to pronounce the acronym as
it is about relative priorities. Indeed, Liana Heitin blogs that STEM was originally SMET,
which perhaps better reflected perceived priorities but was not so euphonious (Heitin,
2015).

Much of the political motivation in STEM may be pragmatic; it’s more about being able
to get jobs than it is about intellectual search. But we may be underestimating the intel-
lectual search that is intrinsic in the “sciences of the artificial.” Without the engineering
tour-de-force of the LIGO project, we would not have humankind’s first gravitational tele-
scope. Maybe this telescope will reveal other colliding black holes and other phenomena
that may help us better understand the origin of the universe. So indeed, sometimes engi-
neering does precede science rather than the other way around.

We see many other indicators of a shifting attitude toward technology and engineering.
In the twentieth century, an “institute of technology” would be viewed as primarily a
vocational school rather than a center of intellectual activity. MIT and Caltech changed
that notion, and we are even starting to see “technical high schools” emerge as much more
than vocational training.

28

1.4. ENGINEERING AND SCIENCE

Technology and engineering are distinctly not about discovering preexisting, disem-
bodied truths. They are about creating things, processes, and ideas that never before
existed. Pursuit of the Platonic Good, the preexisting, fixed world of Forms, is no longer
what is driving humanity forward. We are instead creating knowledge and facts that never
before existed, embodied or not.

In the next chapter, I focus on the relationship between discovery and invention. A key
theme of that chapter is to understand the role of models in engineering and science. My
essential claim is that models are invented, and when those models are modeling physical
phenomena, the corresponding physical phenomena, not the models, are discovered. And
even those physical phenomena may be brand new, as was the case with the transistor.

29

Inventing Laws of Nature

Contents
2.1 TheUnknownKnownsc.c0ueeeeeeoeno. 31
22 Modelsof Nature. ¢ v v i v i it ot e et e oo e oo 36
23 Models Are Wrong. v v v v v v vttt vttt e oo 47

- in which I argue that models are invented, not discovered; that engi-
neers and scientists use models in complementary, almost opposite ways;
that all models are wrong, but some are useful; and that the use of models can
slow as well as advance technological progress by establishing a backdrop
of unknown knowns, by forcing increased specialization, and by requiring
humans to assimilate new paradigms.

2.1. THE UNKNOWN KNOWNS

2.1 The Unknown Knowns

Drawn by its provocative title, I recently read Inventing Nature, a wonderful book by
Andrea Wulf (Wulf, 2015). Wulf’s book tells the story of Alexander von Humboldt
(1769-1859), a remarkable Prussian about whom I had previously known nothing except
that Humboldt county and Humboldt Redwoods State Park in California, along with
numerous other places and things, had been named after him. Wulf boldly states,
“Humboldt gave us our concept of nature itself.” Easing somewhat my embarrassment
at my ignorance, she goes on, “The irony is that Humboldt’s views have become so self-
evident that we have largely forgotten the man behind them.” Further easing my embar-
rassment, Sandra Nichols (2006), in an article titled “Why was Humboldt forgotten in
the United States?” reassures me that I am not alone. Nichols postulates many reasons
for our collective amnesia, but to me the most poignant is “shifts in scholarship,” where
“the search for a comprehensive view of science was soon set aside in favor of special-
ization.” In Germany, Humboldt and his brother Wilhelm have most definitely not been
forgotten. The Humboldt University of Berlin is named after the two of them, and the
brother, Wilhelm, is credited with establishing the “Humboldtian model of higher educa-
tion,” which integrates teaching in the arts and sciences with research. This is a defining
principle of all top universities today.

In her claim that Alexander von Humboldt “invented nature,” Wulf shows us that scientific
truths can come into existence and then become part of the human psyche, background
knowledge that we accept with such tenacity that we no longer think of them as scientific
truths. They just are. Wulf summarizes Humboldt’s breakthrough:

Humboldt revolutionized the way we see the natural world. He found connec-
tions everywhere. Nothing, not even the tiniest organism, was looked at on
its own. “In this great chain of causes and effects,” Humboldt said, “no single
fact can be considered in isolation.”

Waulf credits Humboldt with being the first scientist to show evidence of human-induced
climate change, for founding the field of ecology, and for articulating the first modern
notion of “nature” itself. The most astonishing part of this story is that it never occurred to
me that the connectedness of nature was not just a simple self-evident truth. It is so widely
accepted today that it fades into the background of our basic instinct, along with notions
of time and causality. Wulf explains the prevailing scientific thought at Humboldt’s time:

31

2. INVENTING LAWS OF NATURE

Inventions such as telescopes and microscopes revealed new worlds and with
them a belief that the laws of nature could be discovered.

But Wulf points out that these laws of nature were understood one phenomenon at a time,
as in Newton’s laws of motion governing a falling object. Connectedness fell victim to
reductionism.

Connectedness faded from our conscious approach to science into the unconscious, part
of an unseen background, an unknown known. U.S. Secretary of Defense Donald Rums-
feld, at a Department of Defense news briefing in 2002, made the following often quoted
statement:

.-+ as we know, there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know there are
some things we do not know. But there are also unknown unknowns—the
ones we don’t know we don’t know. And if one looks throughout the history
of our country and other free countries, it is the latter category that tend to be
the difficult ones [sic]. (Rumsfeld, 2002)

The Slovenian philosopher Slavoj Zizek pointed out that Rumsfeld didn’t mention an
obvious fourth category of knowledge, the “unknown knowns.” These are the things we
know but don’t know that we know, which Zizek says is “precisely the Freudian uncon-
scious” (Zizek, 2004). The interconnectedness of nature was, until I read Wulf’s book,
one of my unknown knowns. I didn’t know that I knew that. Now I do, and thanks to
Waulf, I also now realize that this “truth” that I know was not always known. She credits
Humboldt with making it known.

Our unknown knowns bias our thinking. Thomas Kuhn, in his 1964 book The Structure
of Scientific Revolutions, disrupted the prevailing view of science as “development-by-
accumulation” (Kuhn, 1962). Instead of an accretion of discovered facts about the world,
a scientific discipline is founded on a “paradigm,” a conceptual framework that prac-
titioners use, often unknowingly, to interpret observations and develop theories. Kuhn
argued that these paradigms make scientific understanding necessarily subjective.

Observation and experience can and must drastically restrict the range of
admissible scientific belief, else there would be no science. But they cannot
alone determine a particular body of such belief. An apparently arbitrary

32

2.1. THE UNKNOWN KNOWNS

element, compounded of personal and historical accident, is always a forma-
tive ingredient of the beliefs espoused by a given scientific community at a
given time. [emphasis added]

Kuhn’s “arbitrary element” often takes the form of unknown knowns. A paradigm
becomes so widely accepted and strongly held that its subjects no longer know it is there.
They accept the paradigm as truth. As argued by Kant, the order we perceive in the world
is shaped by our mind, which provides the distorting lens through which we perceive it.
We impose order on nature rather than the other way around.

Kuhn'’s central claim is that scientific revolution, the truly momentous advances that occur
from time to time, come about through paradigm shifts rather than through accretion
of knowledge. The notion of scientific truth is therefore subjective, defined more by
consensus of a scientific community than by Plato’s ideal disembodied truth. An obvious
corollary is that a paradigm is invented more than discovered.

Kuhn’s position was highly controversial. It went very much against the grain of the
prevailing philosophy of science, best articulated by Popper, which was about seeking
objective truths. In 1965, a colloquium convened in London drew together many of
the most prominent thinkers on the philosophy of science to respond to Kuhn’s thesis.
Imre Lakatos, a Hungarian philosopher of mathematics and science, and co-editor of the
proceedings from the colloquium, wrote, “in Kuhn’s view scientific revolution is irra-
tional, a matter for mob psychology” (Lakatos, 1970, emphasis in the original). He goes
on to criticize the notion of a “paradigm shift,” writing that it is

a mystical conversion which is not and cannot be governed by rules of
reason and which falls totally within the realm of the (social) psychology
of discovery. Scientific change is a kind of religious change. [emphasis in the
original]

Despite these objections, Kuhn’s notion of governing paradigms is useful for under-
standing the evolution of scientific thought. It is even more useful for understanding
technology, where paradigms can be more obviously subjective.

In our modern technological world, our lives are governed by paradigms that are more
obviously invented rather than discovered. These paradigms shape our understanding of
the world, becoming unknown knowns. Consider, for example, the fact that in music and
performing arts, it used to be that performer and observer had to be in the same room
at the same time. Today, we can use Spotify and Hulu, among others, to carry much of

33

2. INVENTING LAWS OF NATURE

DILBERT TS TRAPPED IN THE

: ™
BOWELS OF ACCOUNTING y $

POPPING SOUND?

ORELSE T WILL PUT THIS
CAP ON MY HEAD
BACKWARDS! YOUR
LITTLE HARDWIRED

G
>
Z
$
£

{ T UNDERSTAND

| YOU HAVE DILBERT

SCOTTADAMS@AOL.COM

| IN THERE. FREE ACCOUNTING BRAIN B /| Gorme. |
WILL E\PLODE TUST s A |

LOOKING AT IT WITHOUT A}

CLUTCH. [T |

P L

Figure 2.1: Dilbert, an iconic nerd, in a cartoon by Scott Adams.
[DILBERT ©1995 Scott Adams. Used By permission of UNIVERSAL UCLICK.
All rights reserved.]

the world’s music and theater in our pockets, to be enjoyed whenever and wherever we
choose. Most of us alive today have been able to listen to music without being in the same
room with the musicians. This fact has changed the very meaning of the word “music”
in ways that we don’t notice. Think, for example, about the meaning of the phrase “my
music.” What would that have meant to a citizen of the nineteenth century, before Edison?

I was once telling my wife that a colleague at Berkeley, Miki Lustig, was leading a charge
to teach many students, staff, and faculty at Berkeley about amateur radio, and to help
them prepare to take the test to become licensed to operate amateur radios. My wife
asked me why one would want to operate an amateur radio. The question had never
occurred to me, and off the cuff, the best answer I could come up with was, “So they
can communicate with anyone around the world.” She asked me, “Why don’t they just
send email?” 1 saw a collision of paradigms, less momentous than the collision of two
black holes, but nevertheless notable. Being able to communicate instantaneously with
anyone around the world has become a background fact, an unknown known, a part of the
technological paradigm through which we understand and manage our daily lives.

Paradigms change. Kuhn’s scientific paradigms change relatively infrequently, and the
changes can be quite disruptive to a scientific community. In The Structure of Scientific
Revolutions, Kuhn quotes Max Planck:

A new scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents eventually die,
and a new generation grows up that is familiar with it.

34

2.1. THE UNKNOWN KNOWNS

The same thing happens with technological paradigms. Witness how much of modern
technology becomes inaccessible to an aging brain. Our kids accept technological truths
that are incomprehensible to older people. In fact, I believe that the pace of technological
progress today is more limited by the inability of humans to absorb new paradigms than
it is by any physical limitations of the technology.

Kuhn is generous to scientists whose paradigms are later supplanted by better paradigms:

.-+ those once current views of nature were, as a whole, neither less scientific
nor more the product of human idiosyncrasy than those current today.

.-+ If these out-of-date beliefs are to be called myths, then myths can be
produced by the same sorts of methods and held for the same sorts of reasons
that now lead to scientific knowledge.

We should be similarly generous to humans whose technological paradigms become obso-
lete, rather than thinking of them as luddites or dinosaurs. I would say to my kids, “Don’t
worry, you too someday will be a dinosaur.”

Despite similarities, technological paradigms differ from scientific ones in significant
ways. Technological paradigms are today much more diverse than scientific paradigms,
reflecting immaturity of the field and rapid change. Kuhn argues that scientific paradigms
are incommensurable. One paradigm cannot be understood or judged through the concep-
tual framework and terminology of the other. I will show in chapter 3 that this is less the
case for technological paradigms, which may be layered in such a way as to interoperate.
Nevertheless, incommensurable paradigms do arise, and it becomes necessary to build a
metaparadigm within which to compare technological paradigms. I will attempt to do that
through the notion of modeling.

Science, technology, and engineering are all built on models. Models are artifacts in the
conceptual framework of a paradigm. Newton’s second law, for example, is a model of
the motion of an object subjected to a force. It takes the form of an equation, specifi-
cally equation (4096) on page 15, which has meaning in the paradigm of Newton’s and
Leibniz’s calculus, the concept of force, and the Newtonian notion of time and space.
If you studied physics in high school, you probably got brainwashed sufficiently that
the concepts of force, time, and space are among your unknown knowns. But objectively,
Newton gave no physical explanation for these concepts. Instead, he built a self-consistent
and self-referential model where each of these concepts is defined in terms of the others,
if defined at all.

35

2. INVENTING LAWS OF NATURE

Every engineered design is similarly a model, which can be as simple as a prototype of a
physical shape or as complex as a million lines of code. Each such model has a meaning,
a semantics, only within some modeling paradigm. And the modeling paradigm is all too
often an unknown known, never articulated or consciously chosen. I will attempt now to
break the logjam that is created by failing to recognize these unknown knowns.

2.2 Models of Nature

Merriam-Webster’s online dictionary has no fewer than 14 definitions of the word
“model.” Only a few of these are relevant to how models are used in science and engi-
neering:

4. a usually miniature representation of something; also: a pattern of something to be
made
5. an example for imitation or emulation

7. archetype

11. a description or analogy used to help visualize something (as an atom) that cannot be
directly observed

12. a system of postulates, data, and inferences presented as a mathematical description of
an entity or state of affairs; also: a computer simulation based on such a system.

The first of these definitions is a concrete model, a material object in the physical world,
whereas the last two are abstract models, where any material realization, for example, as
ink on paper, is incidental. The two in the middle could be either concrete or abstract.
Both abstract and concrete models help humans grasp concepts. Both kinds of models
are created by humans. Models, therefore, can serve as a way for humans to record and
communicate concepts.

For Aristotle, concepts about the world arise from the common properties of particular
things (see figure 2.2). Particular things can serve as models for the family of things that
fit the concept or as models for the concept itself. The concept of a horse, for example,
is a generalization formed from the observation of a few horses. A plastic figurine in the
shape of horse, such as the one being printed in figure 2.3, can serve as a concrete model

36

2.2. MODELS OF NATURE

Figure 2.2: Plato and Aristotle in a detail of The School of Athens, a fresco by Raffaello
Sanzio da Urbino (Raphael) in the Vatican. Aristotle is on the right, gesturing toward the
earth, indicating that knowledge arises from the study of things, whereas Plato, on the
left, gestures toward the heavens, indicating that knowledge is discovery of Forms that
exist in an ideal, disembodied world, independent of humans.

37

2. INVENTING LAWS OF NATURE

Figure 2.3: A model of a horse being printed by a 3D printer.
[Photo by Ben Zhang, courtesy of the photographer.]

of a horse. Note that the model need not itself be a horse. A concrete model is a physical
thing that captures some essence of the things being modeled.

The notion of a concrete model connects naturally to another of Merriam-Webster’s defi-
nitions, “one who is employed to display clothes or other merchandise.” Consider the
model in the poster shown in figure 2.4. That model was presumably employed to display
something, but interestingly, the merchandise being advertised by this poster, cologne, is
not shown on the poster. The model instead was employed to be an exemplar of a “sexy
human male” (to be sure, I’m talking about the one in the poster, not the one in the reflec-
tion). The model (a human) was employed to serve as a model (an archetype) of a sexy
human male. The purpose of such a model is to sell cologne to an individual (perhaps the
one in the reflection) by evoking an image of how attractive he might become by wearing
such cologne.

Platonic Forms, according to Plato, exist independent of humans, as disembodied truths.
A Platonic sphere is perfect. The physical world provides no such sphere. It does not
and cannot exist as a physical object. Any physical embodiment of a sphere will be made
of some material composed of atoms and molecules. No matter how smoothly polished
it is, the surface of the sphere will not match the Platonic concept, but rather will have

38

2.2. MODELS OF NATURE

ﬁ‘ ’ ’
7 La référence |
pour les

Figure 2.4: Aspirational self-portrait of the author.

39

2. INVENTING LAWS OF NATURE

dents and undulations and a fuzziness imposed by the quantum mechanical impossibility
of pinning down the location or boundary of the electrons that make up the atoms. Where
and what is the surface? Without a surface, we cannot talk about a surface area, but a
Platonic sphere should have a surface that is exactly equal to 4772, where r is the radius.
But the notion of surface has no rigorous basis in physics at the atomic scale.

So in what sense does the Platonic sphere exist independent of humans? It does not exist
in the physical world. We can construct a mathematical model of a sphere, but this is still
a human construction not a disembodied truth. For example, we can give a mathematical
model of a sphere as follows. A sphere with radius r centered at coordinates (0,0,0) in a
Cartesian coordinate system is the set of points (x,y,z) that satisfy

VAR 2= (2048)

It is no accident that there is nothing sexy about such a Platonic model.

The mathematical model of equation (2048) is a human construction, given in the
language of algebra and the Cartesian three-dimensional model of space. It can be viewed
as an imperfect (i.e., wrong) model of things in the physical world that resemble spheres.
Those things in the physical world can be viewed as models of a mental concept of
a sphere, as can the equation. But nowhere is there any direct evidence of a human-
independent existence of the Platonic Ideal sphere. The mathematical model is not a
Platonic Form, but rather at best a model of a Platonic Form, existing within a modeling
paradigm (algebra and Cartesian space). There are many other ways to model a sphere
mathematically, and as I will discuss in chapter 9, every such way has limitations. So
even an abstract model is a shadow on the wall. Even if it is just a shadow on the wall, it
will be more faithful to a Platonic Form of a sphere than any physical model could be. It
may be the best representation accessible to us of the Platonic Ideal.

A concrete model of a horse is shown in figure 2.3 being printed by a 3D printer. That
printer accepts as input a file containing another kind of model of a horse. Specifically,
the file uses a language called STL (for STereoLithography) that is widely used to specify
three-dimensional shapes. The STL language was created in 1987 by 3D Systems, head-
quartered in Rock Hill, South Carolina, a company that makes and sells 3D printers.

A model of a horse in STL is an abstract model. It is based on a paradigm for modeling
three-dimensional shapes in terms of two-dimensional facets that share edges. An
example of an extremely simple STL model is shown in figure 2.5. The STL text on
the left specifies the pyramid shape at the upper right. It consists of four triangles that

40

2.2. MODELS OF NATURE

form the outer boundary of the object. The vertices of the four triangles are given in a
three-dimensional Cartesian coordinate system.

To fully understand the text in the figure, one needs to first assimilate the paradigm on
which STL is based. If you will forgive a brief nerd storm, that paradigm is of three-
dimensional tessellations of two-dimensional facets, together with rules such as the right-
hand rule, which determines which side of a facet is inside versus outside the shape. If you
had studied computer graphics, the previous sentence would be easy to read. Otherwise,
probably not.

The STL file for the horse being printed in figure 2.3 is much more complicated than the
pyramid, so I will not attempt to show it to you here. It is meant to be read by machines
not by humans. The horse model is rendered from the STL file at the lower right in figure
2.5, where if you look closely, you can see the two-dimensional facets that define the
shape. Such a model of a horse is sometimes called a virtual prototype because it serves
the same purpose as a physical prototype, but it does not have a physical form.

Models are expressed in some physical medium. The concrete model of a horse in figure
2.3 is a three-dimensional printed plastic prototype. The physical medium is plastic as
assembled by a 3D printer. An abstract model of the same design might be a mathematical
formula describing its shape, like equation (2048), or an STL file such as that in figure
2.5. This abstract model can be sent to a 3D printer to produce the concrete model.
Abstract models also have physical form in the sense that equation (2048) is ink on a
page (or pixels on a screen) and an STL file is aligned magnetic iron molecules on a disk
or electric charges in a computer memory, but their physical form is incidental. When
an abstract model is converted from one physical form to another, for example, into your
mental state when you read equation (2048), or when you copy an STL file from one
computer to another, we do not end up with two models. It is still just one model, albeit in
two or more physical representations. The ontology of an abstract model is independent
of its physical embodiment.

Concrete models are exemplars in physical form of a class, whereas abstract models are
abstractions of a class. The possibilities for expressive media are much richer for abstract
models than for concrete models because they are less constrained by the physical world.
STL, in fact, can specify shapes that cannot exist in the physical world, with overlapping
facets or facets that do not share edges. Modeling languages are abstract not concrete.
They yield more readily to human creativity. Moreover, they invite invention, and even
paradigm shifts. A well-chosen modeling language enables elegant expression of complex
designs.

41

2. INVENTING LAWS OF NATURE

solid pyramid
facet normal 000
outer loop
vertex000
vertex 100
vertex 0.5 0 0.866
endloop
endfacet
facet normal 000
outer loop
vertex 100
vertex 0.5 0.901 0.433
vertex 0.5 0 0.866
endloop
endfacet
facet normal 000
outer loop
vertex000
vertex 0.5 0.901 0.433
vertex 100
endloop
endfacet
facet normal 000
outer loop
vertex000
vertex 0.5 0 0.866
vertex 0.5 0.901 0.433
endloop
endfacet

Figure 2.5: Three-dimensional shape specified in STL.

42

2.2. MODELS OF NATURE

Both concrete and abstract models can be used for analysis. A physical prototype of a
component, for example, can be used to determine whether the part that it models will
fit properly within its housing. But abstract models offer much richer possibilities for
analysis. If the modeling medium, the language in which the models are expressed, has
a rigorous semantics, then the model may be subject to automated analysis. A computer
program can determine whether the component will fit within its housing without ever
having to construct a physical prototype.

Figure 2.6 shows a prototype, a concrete model, of an incandescent lightbulb made with a
carbonized bamboo filament. This prototype was made in Thomas Edison’s lab in Menlo
Park, New Jersey. According to The Edison Papers Project (2016), Edison initially tried to
make lamps with platinum wire filaments because the metal has a high melting point. But
he discovered that when heated in air, the metal would change its structure, weakening
the filament, and the melting point would drop. He solved this problem by putting the
filament in a vacuum bulb.

Edison was well known for a style of invention that I will call prototype and test. To
find a material for the filament that would produce a reasonable amount of light with a
reasonable voltage and lifespan, Edison tried many alternatives. Although his starting
point, platinum, worked reasonably well in a vacuum, platinum is an expensive precious
metal. Edison’s platinum bulbs were likely to be too expensive to become commercial
successes. Also from The Edison Papers Project (2016),

He turned to carbon and experimented with some cotton threads, different
kinds of paper and cardboard, various woods, and then with a few long fiber
plant materials before settling on bamboo. Later he had a worldwide search
conducted to see if he could find a better long fiber plant as he did not hold
the key patents on artificial fibers, which were beginning to prove better.

This is an Aristotelian approach to solving a problem: experiment with materials and
infer their properties from observation. The problem he was trying to solve was how to
use electricity to generate light. As a side effect of this engineering work, he did some
science, discovering a property of the natural world. Specifically, he found that a naturally
occurring metal, platinum, when heated in air, changes its structure.

Bamboo filament lightbulbs went into production in 1882 and about six years later were
supplanted with tungsten filament bulbs. Both of these styles require operating in a
vacuum, otherwise the filament will burn, melt, or otherwise quickly degrade. Edison’s

43

2. INVENTING LAWS OF NATURE

Figure 2.6: Prototype from Thomas Edison’s shop of an incandescent lightbulb with
a carbon filament. [Image by Terren - Edison Light Bulb, licensed under the Creative
Commons Attribution 2.0 Generic license. Lightened by the author. Original from Wiki-
media Commons.]

discovery that heated metals degrade in air and do not degrade in a vacuum, a scientific
fact, became central to the development of a practical lightbulb, an engineering invention.

Thomas Edison used an abstract model of what happens in an incandescent lightbulb,
in addition to the physical prototypes. Specifically, he used Ohm’s law, first published
by Georg Simon Ohm in 1827. Ohm’s law relates the current i through a resistor to the

voltage v across the resistor by
i=v/R, (1024)

where the proportionality constant R is called the resistance. The resistance, which has
units of ohms in honor of Georg Ohm, is a property of the material used to make the
resistor and the geometry of the resistor. A lightbulb filament is a resistor, and in Edison’s
day, the resistance of a filament would have been determined empirically.

44

https://commons.wikimedia.org/w/index.php?curid=3401005

2.2. MODELS OF NATURE

Because of its resistance, the filament heats up, and it is because of the heat that the fila-
ment generates light. Platinum conducts electricity easily, which means that its resistance
is low. Carbon-based materials, such as bamboo fibers, have much higher resistance. At
a fixed voltage v, therefore, the current that flows through a platinum filament will be
much higher than the current that flows through a bamboo filament. The low resistance
of platinum is therefore another disadvantage, along with its high cost. To accommodate
the higher currents that result from low resistance, Edison would have had to use thicker
copper wires to deliver electricity to the lightbulbs, driving up system cost.

Ohm’s law is an abstract model. Unlike the model in figure 2.6, there is nothing physical
about this model. It nevertheless represents the “essence of things,” and yet, in a true
Aristotelian manner, was likely derived by Ohm from observation and measurement rather
than from fundamental truths.

Ohm’s law can be viewed as a law of nature, in which case it must be true of any elec-
trical circuit. Alternatively, we can view Ohm’s law as the definition of “resistance” and
“resistor.” Under the latter interpretation, any device is a resistor if the current that flows
through it is proportional to the voltage across it (i.e., if its behavior conforms with the
model given in equation [1024]).

The distinction between these two interpretations is subtle but important. First, note that
there is an implicit assumption in equation (1024) that we are talking about the current i
and voltage v at an instant in time. In almost all electrical circuits, the current and voltage
vary with time. For a lightbulb, the current and voltage are both zero when the light switch
is turned off and are nonzero when the switch is on, so clearly there is a dependence on
time.

A key question now becomes whether the resistance R should also vary with time. It turns
out that neither platinum nor bamboo will satisfy equation (1024) with a constant value
of resistance. In fact, the resistance varies with the temperature of the material, and the
temperature depends on the current. If the filament starts out cold, then as current flows
through it, the material will heat up and its resistance will increase. If the filament heats
up too much, then the material melts and resistance becomes infinite (no current flows).
Hence, the current depends not only on the voltage now, at an instant in time, but also on
the history of the voltage and current at earlier times. How long the lightbulb has been on
will affect its temperature and hence the current.

So it won’t work to fix the resistance R to be constant. We have to let it vary with time.
But then we have a conundrum. If R is an empirically determined value, then Ohm’s law

45

2. INVENTING LAWS OF NATURE

becomes a tautology! It is trivially true of every electrical circuit. At any instant in time,
the resistance is
R=v/i, (512)

which is just a rearrangement of equation (1024). Every electrical circuit with nonzero
voltage and current trivially satisfies Ohm’s law by simply using R as defined in equation
(512) as the definition of the resistance. This defines the resistance at time ¢ to be whatever
value makes Ohm’s law true! Surely Georg Ohm did not get a basic electrical unit named
after him for discovering a tautology. So this cannot be the right interpretation.

One resolution of this conundrum is that the notion of a resistor is a Platonic Ideal Form.
A resistor is a device that at all times satisfies equations (1024) and (512) with a constant
resistance R. But there is no such device in the physical world. At a minimum, every
known material has a resistance that depends on temperature. Moreover, most every
known material heats up as current flows through it.'

Besides temperature, other physical effects, specifically inductance and capacitance,
ensure that physical materials do not exactly obey Ohm’s law with a constant R. These
effects introduce memory and dynamics in the system. For example, inductance is the
tendency for current that is flowing to keep flowing, even if the voltage drops to zero.
A material with nonzero inductance will take some time to adjust the current to a new
voltage. During that time, it will not satisfy Ohm’s law with the same fixed constant R.
All materials, in practice, have some nonzero inductance, even if small.?

' An exception occurs when some materials, called superconductors, are cooled below a critical threshold

where they enter a superconductive state, where the resistance becomes exactly zero. But the temperatures
required are extremely cold. In 1987, Georg Bednorz and K. Alex Miiller got the Nobel Prize in Physics for
discovering a “high temperature superconductor.” Their ceramic compound exhibited superconductivity
at the “high” temperature of —243.15 degrees Celsius or —405.67 degrees Fahrenheit. As of this writing,
the highest temperature at which superconductivity has been observed is about —70°C (—94°F), still
extremely cold, and even then only at extremely high pressures. No practical lightbulb could be expected
to work only at such temperatures and pressures.

An imperfect analogy might help the reader if the reader has not studied electricity. An electric current
can be visualized as water flowing down a sluice or channel that is tilted. The degree of tilt is analogous
to the voltage. The rate of water flow is analogous to the current. A smaller channel will have a higher
resistance than a larger channel (the smaller channel lets through less water for a given tilt). Inductance
is analogous to the tendency of water that is flowing to keep flowing (it has inertia). If water is flowing
down a tilted sluice and you suddenly flatten the sluice, removing the tilt, the water will not instantly stop
flowing. This analogy is imperfect for several reasons. Electric current does not have inertia, or at least
not much, and inductance is a property of the channel not the current. But it nevertheless provides a nice
visual analogy that can be used to get the basic idea.

46

2.3. MODELS ARE WRONG

In fact, no physical object is a resistor. Because no physical object obeys Ohm’s law, how
can we take this to be a law of nature? Plato’s allegory of the cave states that human
perception is limited to shadows of reality, but it appears that physical objects are but
shadows of the Platonic Ideal Form of a resistor. This Platonic Form is not only inacces-
sible to humans, it is also inaccessible to nature!

As a consequence, Ohm’s law is either trivial or wrong. I see no choice but to conclude
that Ohm’s law is a human-constructed model, not a fundamental truth about nature. It
did not exist as a fundamental truth before Georg Ohm because no physical object in the
world obeys it. To the extent that it is a fundamental truth, it is so because we declare
it to be so. We define a “resistor” to be a physical object whose behavior is reasonably
closely modeled by Ohm’s equation, and we define the resistance to be the ratio of voltage
across that object to current through that object. An ideal resistor, which does not exist in
nature, does not in fact exist at all except in the human mind. Ohm’s law was invented,
not discovered.

2.3 Models Are Wrong

Modeling is central to every scientific and engineering enterprise. Solomon Wolf Golomb
(1932-2016), who has written eloquently about the use of models in science and engi-
neering, emphasizes understanding the distinction between a model and thing being
modeled. He famously stated, ““You will never strike oil by drilling through the map”
(Golomb, 1971). A map is a model. The territory is the thing being modeled. You should
drill through the territory, not the map.

For both scientists and engineers, the “thing being modeled” is typically an object,
process, or system in the physical world.? Let us call the thing being modeled the target
of the model. The fidelity of a model is the degree to which it emulates the target.

When the target is a physical object, process, or system, the model fidelity is never perfect.
Box and Draper (1987) state, “essentially, all models are wrong, but some are useful.”
The model in figure 2.4 is not useful (at least not to me). Ohm’s law, in contrast, is quite
useful. It models certain physical devices, such as Edison’s lightbulb filaments. Although
it models them imperfectly, Edison used this model to understand that a bamboo filament
was a better choice than a platinum filament in a lightbulb.

3 The “thing being modeled” can also be another model. T will examine that issue later in chapter 3.

47

2. INVENTING LAWS OF NATURE

Figure 2.7: Drilling through a map.
[Photo by Rusi Mchedlishvili, courtesy of the photographer.]

48

2.3. MODELS ARE WRONG

A useful model has to have a purpose, and the fidelity of the model needs to be evaluated
against that purpose. Ohm’s law, as a model for a lightbulb, will tell Edison how much
current will flow through the filament, but it will not tell him how much light will be
generated. A different model is needed for that purpose.

Note that a model may be “useful” in ways that are not practical or mercenary. Merriam-
Webster defines “useful” as “helping to do or achieve something.” That “something” may
be further intellectual inquiry or pure science. That is, a model may be useful because
it explains or predicts a phenomenon even if there is no practical application for that
phenomenon. Einstein’s model of gravitational waves is useful because, among other
things, it suggests a way to observe the collision of black holes, as done by LIGO, even if
we have no practical use for colliding black holes.

When using models, it is important to apply them only within their regime of applicability,
which is limited for all models. Ohm’s law, by itself, will not be applicable to a resistor
that has melted. Gravitational waves are not useful when studying the interactions of
subatomic particles.*

Models are generally more useful when their fidelity is higher. So how do we get good
model fidelity? We have two different mechanisms available to us. We can either choose
(or invent) a model that is faithful to the target, or we can choose (or invent) a target that
is faithful to the model. The former is the essence of what a scientist does. The latter is
the essence of what an engineer does. Both require assuming that the target is operating
within some regime of applicability of the model.

Edison was a quintessential engineer of his time. In selecting a lightbulb filament (a
target), among other properties (durability, tolerance for high temperature), Edison needed
a filament that was well modeled by Ohm’s law. Suppose that Edison had chosen instead
a filament that was well modeled by a different law known as Faraday’s law of induction.
This choice would have resulted in a poor lightbulb. If you will indulge me a brief nerd
storm, I will attempt to explain why.

As I pointed out before, inductance is the tendency for current that is flowing to keep
flowing, even if the voltage drops to zero. An inductor is a device that resists changes in
current, as opposed to a resistor, which simply resists current. By analogy, a resistor is
like a lazy person and an inductor is like a stubborn person. It takes more effort to get a

4 Penrose (1989) speculates that gravitational waves may in fact be implicated in certain subatomic quantum
mechanical phenomena, but as of this writing, there is no experimental corroboration for this thesis and
no wide support among physicists.

49

2. INVENTING LAWS OF NATURE

iy,
il

W

-

Figure 2.8: A few mostly hand-made inductors.
[Image by “me,” licensed under CC BY-SA 3.0. Original available at:
https://commons.wikimedia.org/w/index.php?curid=1534586.]

lazy person to work for you and to keep him working, whereas once a stubborn person
is working at something, that person will keep working at it (like me with this book). A
person may be both lazy and stubborn, just as a physical device may have both resistance
and inductance.

In one of the simpler forms of Faraday’s law, the current i and voltage v of an inductor

are related by’
di(t)
t)=L—-, 256
W0 =17 (256)
where the constant L is called the inductance.® This equation states that the voltage v(z) at
time ¢ is proportional to the rate of change of current i at time ¢, where the proportionality
constant is L. This means that if the current changes rapidly, the voltage is high. Vice

versa, if the voltage is high, the current changes rapidly.

According to Wikipedia,

5 Messerschmitt’s law (see footnote on page 2) probably becomes overly conservative when the equation

uses calculus, as this one does. I suspect that this equation will drop my readership by more than half, but
I will nevertheless stick to the numbering scheme previously established.

The units of the inductance L are called “henries” after Joseph Henry. It is customary to use the symbol L
for inductance.

50

http://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/w/index.php?curid=1534586

2.3. MODELS ARE WRONG

Electromagnetic induction was discovered independently by Michael
Faraday in 1831 and Joseph Henry in 1832. Faraday was the first to publish
the results of his experiments. (Retrieved March 15, 2016)

We might be tempted to change “discovered” to “invented” on the Wikipedia page, but
that would not be quite right. The word “discovered” is correct for induction but not for
equation (256). Equation (256) is an invention. It is an idealized model, and just like
Ohm’s law, no physical object perfectly obeys it (with constant L). As a model, therefore,
it is wrong, but it is extremely useful.

Kuhn (1962) takes a stand on the relationship between discovery and invention, stating,
“Discovery and invention are inseparable because the theory to explain the discovery must
occur for the discovery to occur.” The discovery that a current that is flowing tends to keep
flowing (inductance) and that this property is accentuated in certain devices (inductors) is
inextricably linked to the model represented in equation (256), in the sense that some form
of this model has to be understood to recognize the discovery. This link between discovery
and invention, Kuhn says, also makes it much more difficult to pinpoint a discovery,
assigning it to a particular person at a particular time:

- the sentence, “Oxygen was discovered,” misleads by suggesting that
discovering something is a single simple act assimilable to our usual (and
also questionable) concept of seeing. That is why we so readily assume that
discovering, like seeing or touching, should be unequivocally attributable to
an individual and to a moment in time. But the latter attribution is always
impossible, and the former often is as well. (Kuhn, 1962, p. 55)

Discoveries never occur at an instant in time and are rarely properly attributable to an
individual. The messiness with the discovery of the transistor effect, leading to a Nobel
Prize, years after the transistor had been patented as an invention, underscores this point.

Let me illustrate how Edison might have used the model of inductance in equation (256).
Suppose that he had chosen as a lightbulb filament an inductor like those in figure 2.8.
The first problem he would have run into is that these filaments would not have generated
any light. But this would only be the start of his problems. Suppose for simplicity that
L =1 henry.” Suppose that we now apply a constant voltage of one volt to the lightbulb.

7 One henry is actually a very large inductance, but it makes the math simpler and therefore will damage my
readership less than a more reasonable choice of, say, one millihenry.

51

2. INVENTING LAWS OF NATURE

By equation (256), the rate of change of current becomes

di(t)

ek 1. (128)
This has units of amps per second. It means that for every second that passes, the current
increases by one amp. If the current is initially zero when we turn on the lightbulb, then
after 10 seconds, the current will be 10 amps. After one minute, the current will be 60
amps. After one hour, the current will be 3,600 amps. After a few days, the house will
have burned down, the transformer on the power pole outside the house will have blown
up, and the electric bill will have become more than the cost of a college education. Edison
would not have been able to sell us more than one such lightbulb.?

I have already concluded that both Ohm’s law and Faraday’s law are wrong, in the sense
that no physical object obeys either law exactly. But a bamboo fiber in a vacuum bulb
comes pretty close to obeying Ohm’s law, and a coil of copper around an iron core, as
on the left in figure 2.8, comes pretty close to obeying Faraday’s law. However, in both
cases, the model is wrong.

Edison was an engineer, but he also made contributions to science, and he relied heavily
on experimentation, as many scientists do. To a scientist, the value of a model lies in how
well its properties match those of a target, typically an object found in nature. The value
of Ohm’s and Faraday’s laws lies in how well they describe the properties of some object
under study. But to an engineer such as Edison, the value of an object, say a bamboo fiber,
lies in how well its properties match a model, in this case, Ohm’s law. Edison understood
enough about electricity to know that an inductive filament would be of no use. Instead,
he knew that he needed a filament for which Ohm’s law was a faithful model (and that
also generated light), and he went about the task of finding a filament (a target) for that
model.

According to Popper’s philosophy of science, a scientific model, a “theory,” must be
falsifiable to be scientific. Under this principle, Ohm’s and Faraday’s laws are either
unscientific or false. If the laws are tautologies, then they are not falsifiable, and if not,

8 Most household circuits in the United States have fuses that trip, interrupting the current, when the current
exceeds 15 or 20 amps, so this scenario would not play out this way in your house. Also, the voltage
supplied in a household circuit is much larger, typically 170 volts at its peak in the United States (see Lee
and Varaiya (2011), sidebar on page 11 for an explanation of household electric power). Hence, during the
time that the voltage is 170 volts, the current will increase at a rate of 170 amps per second, which means
it will reach 15 amps in 11 milliseconds. At this point, it will trip the fuse, leaving you in the dark. So the
bulb would operate for only 11 milliseconds.

52

2.3. MODELS ARE WRONG

then no physical object obeys them, so they are false. Ohm’s and Faraday’s laws are usefu!l
not true.

In what Simon might have called the “sciences of the natural,” to distinguish them from
the “sciences of the artificial,” a scientist is, by definition, given the target. It exists in
nature. Such a scientist constructs models to help understand the target. An engineer,
in contrast, constructs targets to emulate the properties of a model. An engineer uses
or invents models for things that do not exist and then tries to construct physical objects
(targets) for which the models are reasonably faithful. For an engineer, a model provides
a design and the target is the implementation. The task is to find an implementation that
is faithful to the model.

These two uses of models are complementary. Engineers and scientists will typically use
models both ways. Edison spent a great deal of effort characterizing the electrical prop-
erties of all sorts of natural materials before settling on bamboo fibers. Good engineering
requires doing good science. And at least for experimental science, good science requires
doing good engineering, as we saw in the last chapter with the LIGO gravitational wave
detector.

In both cases, the models are wrong. In engineering, a model is useful if we can find an
implementation that is reasonably faithful to the model. In science, a model is useful if
it is reasonably faithful to a target given to us by nature. A scientist asks, “Can I make a
model for this thing?” An engineer asks, “Can I make a thing for this model?”

Models are human constructions. Modeling paradigms are also human constructions.
Therefore, both are subject to creativity. They are invented not discovered. Because an
engineer constructs models for things that do not yet exist, there is much more room for
creativity than for a scientist, at least one focusing on the sciences of the natural, who is
stuck crafting models for things that already exist. Moreover, I claim that digital tech-
nology has smashed open the possibilities for what could exist, so the room for creativity
is vast indeed. I examine how digital technology does this in the next chapter.

53

Models of Models of Models of
Models of Things

Contents
3.1 Technological Tapestries vttt unsenos 55
3.2 Complexity Simplified 57
3.3 Transitivityof Models00 62
34 Reductionismt v vt vt ittt teeeensons 67

- in which I argue that in engineering, models are stacked many layers
deep, with the design of each layer affecting the designs both above and
below it; and that the engineering use of models enables creativity because
the layering of models distances designers from the physical constraints
of the realization. Digital technology, particularly, has, in effect, mostly
removed any meaningful physical constraints from a broad class of engi-
neered systems. Innovation, therefore, is less limited by the physics of the
technology than it is by our human imagination and ability to assimilate new
paradigms.

3.1. TECHNOLOGICAL TAPESTRIES

3.1 Technological Tapestries

Consider the engineer’s question, “Can I make a thing for this model?” Suppose that the
answer is “yes” for a broad class of models. For example, technology today gives us the
ability to make networks of electrically controlled switches, where closing one switch can
cause another switch to open or close. A semiconductor chip is such a network, where
the switches are realized as transistors and the network consists of wires that connect the
transistors. The medium in which such a network is crafted is the silicon and metal of
semiconductors, a physical medium.

Once the answer to the question is “yes, we can make the thing” for networks of switches,
then networks of switches become a medium for making models. This medium has its
own paradigm, much like Kuhn’s scientific paradigms. Just as a scientist uses a paradigm
to construct a model of a thing, so does an engineer. The paradigm gives the conceptual
framework within which to understand the model.

So what can we build with networks of switches? The network of switches paradigm is
quite an expressive one. With just two states for each switch, on and off, it might not seem
so expressive, but it turns out that we can interconnect such switches to perform logic
functions corresponding to natural language words such as “and,” “or,” and “not.” We can
interconnect those logic functions to compare and manipulate strings of bits that repre-
sent text and to perform arithmetic on numbers represented in binary. In fact, networks
of switches are capable of enormously rich manipulation of any information that is repre-
sentable as sequences of zeros and ones. It is no accident that transistors functioning as
binary switches are the linchpins of information technology.

Once we have the ability to perform arithmetic, we open up the possibility of using another
paradigm for design, namely, arithmetic expressions. This paradigm is distinctly different
from the network of switches paradigm, but models in the arithmetic expression paradigm
are implementable as models in the network of switches paradigm. So if an engineer
has a model consisting of arithmetic operations on binary numbers and again asks the
question, “Can I make a thing for this model,” then again the answer is “yes.” To realize
the “thing,” however, the arithmetic model needs to be first translated into a network of
switches model, which then in turn is translated into a silicon chip. Arithmetic expressions
become a virtual medium, not directly physical, but translatable into something physical
through one level of indirection. This is my first example of transitive models.

It turns out that we can do much more with networks of switches. We can make memory,
which stores binary patterns. For example, a bank balance of $256 can be represented

55

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

by the binary pattern 0000000100000000. There are 16 bits in this representation. It is
possible to design a network of 96 switches that can store this number indefinitely. If
a customer deposits $16, representable by the binary number 0000000000010000, then
a network of switches can add the two numbers, getting 0000000100010000, the binary
representation for the number 272. It can then update the memory with the new balance.
We can start to see the glimmer of how a computer banking system can emerge from
networks of switches.

But thinking about a computer banking system as a network of switches is not practical.
For one thing, the number of switches actually required will be vastly more than I've
indicated above, and the operations that need to be performed are vastly more complex.
A bank will not hire an engineer to wire together transistors, which realize the switches,
to make a computer banking system. Instead, the bank will hire an engineer who will
write software that will be translated by a computer into a binary pattern that will control
a machine that is ultimately composed of a network of transistors. This engineer need not
know anything about how to craft a transistor, nor how to perform binary arithmetic using
networks of switches, nor how to organize networks of switches to make memories.

In fact, there are many layers of models between the bank engineer and the physical real-
ization. The bank application, a computer program represented as a sequence of letters,
numbers, and punctuation, is in fact a model of a model, which in turn is a model of
another model, which in turn is yet another model of a model, until ultimately we get
down to a model of a thing. Each of these layers of modeling has a paradigm, and each
paradigm is a human invention. Only the lowest level physics is given to us by nature.

In this chapter, I will attempt to articulate why such layering of paradigms is so powerful
and how the layers turn paradigms into a creative medium that other engineers can use
to realize their models. You may come at this with the preconception that these layers of
paradigms will be dry, fact-laden technologies, intricate and boring at the same time. But
they are not. They are shaped by what is physically possible, but particularly with digital
technology, it turns out that so much is possible that they are much more shaped by the
personalities and idiosyncrasies of the engineers who create them.

Educators all too often belie the personality of the technology. They present technology
as Platonic facts about the world that must be mastered. This is how the educators learned
about it. But the creators of the technology did not learn it that way. They invented it,
and like literature and art, their inventions reflect the predilections of the creators and the
(technological) culture in which they lived. The culture in which they lived was, in turn,
defined by the inventions of others. Technology is not a collection of Platonic truths that

56

3.2. COMPLEXITY SIMPLIFIED

have always been lurking in the background, waiting to be discovered, but is rather a rich
sociological tapestry of ideas created by human inventors. It is shaped by those humans,
and had a different set of humans created it, including more women, for example, the
technology would unquestionably be different.

I will defer many details to the next two chapters, where I attempt to capture the paradigms
and cultures that have manifested in hardware and software technology. In this chapter, 1
keep a high-level view.

3.2 Complexity Simplified

Engineering of simple systems, like Edison’s lightbulb, can be carried out with a
prototype-and-test approach. But this approach breaks down as systems get more
complex. With more complex systems, the use of models becomes much more impor-
tant.

Complexity is a difficult concept to pin down. Roughly speaking, something is complex
when it strains our human minds to comprehend it. Complexity is therefore a relation
between an artifact or a concept and a human observer.

One source of complexity is large numbers of parts. The human brain has difficulty
keeping in mind simultaneously more than a few distinct components. In the early days
of the telephone network, for example, extensive human studies conducted by Bell Labs
determined that people could reliably keep seven numbers in short-term memory but not
more. So telephone numbers were constructed with seven digits.

Computers have no such difficulty. They can easily keep billions of numbers “in mind”
simultaneously. Computers, therefore, become both a source of complexity for us (we
can’t understand what they are doing with all those numbers) and a way to help us manage
complexity (we delegate to them our memory).

Consider the horse model shown being 3D printed in figure 2.3. The virtual prototype
shown in figure 2.5 has more than 23,000 triangular facets. Each facet is specified by nine
numbers, so the STL file that defines the virtual prototype contains more than 207,000
numbers represented by more than 46 million bits. Yet my laptop computer gener-
ates from these numbers the graphic image shown in the figure, complete with simu-
lated lighting, in less than one second. I can interactively rotate that graphical image
to examine all sides of the horse with no noticeable delay for the computer to re-render

57

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

Date :18 Apr 2001

20nm* 200nm* EHT = 10.00 kV g
Mag= 7780 KX - Time :9:43
H L i WD= Smm Signal A = InLens

Figure 3.1: Prototype of a modern transistor.
[Courtesy of Tsu-Jae King-Liu.]

and re-simulate the lighting at each angle. The rendering of the image requires millions of
arithmetic computations on the numbers that represent the vertices of the 23,000 triangles.

It is harder to design a complex system using Edison’s prototype-and-test approach
because there are so many more possible configurations to try. Nevertheless, prototypes
and tests on those prototypes continue to play a major role in engineering today. A modern
prototype of an electrical device is shown in figure 3.1 and reported in Choi et al. (2001).
This is a transistor of a type called a FinFET, invented at Berkeley by Jeff Bokor, Tsu-Jae
King, Chenming Hu, and their students. The prototype shown in the figure, made in 2001,
uses the same principles as the field-effect transistor (FET) patented by Julius Lilienfeld
(Lilienfeld, 1930).

The innovation in this transistor is its structure, which is more vertical than its predeces-
sors in integrated circuits. Its vertical structure enables many more of these transistors to
be packed into a given area of a silicon chip.

I would like to emphasize the dimensions indicated in the figure. The “fin” on the FinFET
is 20 nanometers wide. There are one billion nanometers in a meter, so this is quite small
indeed.

58

3.2. COMPLEXITY SIMPLIFIED

Consider the implications of being able to realize a transistor that is so small. A modest
sized silicon chip is about one centimeter squared. How many 20-nm squares fit in one
centimeter squared? Shall I pause for you to do the calculation?

Pause.

OK, hopefully you got the same answer I did, which is 2.5 x 10'!, or 250 billion! This is
a square centimeter:

It is hard to imagine fitting 250 billion distinct human-made objects into the space above.

As of 2016, nobody has made a chip with 250 billion transistors (yet), in part, because
a chip includes many other things besides transistors, such as wires to connect the tran-
sistors. Also, each transistor needs some space around it to separate it from neighboring
transistors. So how many transistors can a chip have in practice?

Intel makes a family of microprocessor chips that they call their Haswell line using 22-nm
FinFETs. You may have such a chip in your computer. Figure 3.2 shows a portion of a
silicon wafer containing several such chips. A “fab” is a high-tech factory that produces
such wafers then cuts them into individual chips and packages them for inclusion in a
computer. Each chip in the figure occupies 1.77 centimeters squared, nearly twice as big
as the square shown above, and has 1.4 billion transistors (Shimpi, 2013). This is far
fewer than 250 billion, but it is still a large number.'

Much writing about such technology, including what I’ve written above, has a breathless
enthusiasm about the big numbers. But most of us actually have quite a bit of difficulty
assigning any meaning to such numbers because they are so much bigger than anything
we encounter in daily life. In fact, the point I want to make is that the human brain is

' The particular chip shown in figure 3.2 is a “quad-core + GPU” version of the Haswell product, meaning
that each chip actually contains five computers, four “cores” that execute your programs and one “graphics
processing unit” that manages the rendering of graphics and text on a screen. The GPU is also a computer,
albeit a rather specialized one. If you squint at the figure, you can see the dies for each chip, the rectangular
repeating pattern. Within each die, you can see four identical patterns; these are the four cores. The GPU
is above the four cores. The rest of the chip is probably mostly memory. As of this writing (August 2016),
the largest Haswell chip has 5.56 billion transistors, is about 6.6 centimeters squared, and has 18 cores.

59

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

Figure 3.2: Photo of a silicon wafer with several Intel Haswell microprocessor chips. The
pin on top is for scale.

[Photo by Intel Free Press (Flickr: Haswell Chip), released under a CC BY 2.0 license,
via Wikimedia Commons.]

60

http://creativecommons.org/licenses/by/2.0

3.2. COMPLEXITY SIMPLIFIED

incapable of comprehending any design that has 1.4 billion individual components, each
with a potentially different function, despite the fact that the human brain has some 100
billion neurons, each of which does more than a transistor!

Each transistor can function as an electronic switch. It has a control input that either
turns the switch on or turns it off. It can turn on and off billions of times per second.
Billions of transistors switching billions of times per second creates unimaginable poten-
tial complexity.

How can we design anything using this technology? Can we use Edison’s prototype-and-
test style of experimentation? Bokor, King, and Hu probably did some prototyping and
testing before getting a single FinFET to work. Even so, it was much harder for them
than for Edison simply because of the dimensions involved. It is extremely difficult to
sculpt a physical structure 20-nm wide. You can’t do this with a hammer and chisel. As a
consequence, they would have had to make much more use of models than Edison did.

But more to the point, if you want to design a system based on a silicon chip, would you
start your design by assembling and interconnecting transistors? Consider, for example,
the system I am using to write this book. I'm using a software package called I&TEX
that converts text that I type into a formatted book that can be distributed electronically or
printed. Suppose I want to design such a system. Should I start with a bagful of transistors
and start connecting them in various ways to see what they do? Most certainly not.

IXTEX is an interesting story. It provides me, a book author, with a paradigm for modeling
a book. I construct a model of my book in a text editor that contains annotations such as
\footnote{Footnote contents} to create a footnote, such as this one.? I then run a ISTEX
program to convert the text model into a PDF file, another model of pages to be printed.
IATEX was created by Leslie Lamport in the early 1980s, when he was at SRI International.
Lamport is an astonishingly prolific and influential computer scientist who received the
2013 Turing Award, sometimes called the Nobel Prize of computer science, for his work
on distributed software systems. I&TEX stands for “Lamport’s TgX” and is built on top
of TgX, designed in the late 1970s by Donald Knuth from Stanford University, another
Turing Award winner. Knuth is most well known for his monumental multi-volume work
The Art of Computer Programming, an encyclopedic compendium of algorithms and prin-
ciples of programming. Vikram Chandra, in his wonderful book about the aesthetics of
software, Geek Sublime, said,

2 Footnote contents

61

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

If ever there was a person who fluently spoke the native idiom of machines,
it is Knuth, computing’s great living sage. (Chandra, 2014)

In an article called “Literate Programming,” Knuth argued that software is a literature
where code can be written as much to communicate with other human beings as to tell the
computer what to do:

Let us change our traditional attitude to the construction of programs: Instead
of imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer
to do. (Knuth, 1984, emphasis in the original)

Knuth created TeX over about 10 years starting in the late 1970s because he found the
typography of phototypesetting systems of the day ugly. Today, thousands of people have
contributed to TgX and IKIEX, primarily through a system of packages that support an
astonishing variety of document preparation needs. It is a thriving, open-source commu-
nity where nearly all software is free. Almost as if in homage to Knuth, the code gets read
and improved by others. The typography that TeX produces, in my opinion, is better than
any commercial word processor that I have encountered. In chapter 5, I will have much
more to say about the human expressiveness of software.

3.3 Transitivity of Models

A word processing system, such as the one I’'m using to write this book, runs on a micro-
processor like that in figure 3.2, which uses transistors based on the prototype in figure
3.1. Many levels of modeling exist between the physics of silicon and the word processor.
Even more layers can be found between the physics and a system like Wikipedia. Like a
pencil, no individual person knows how to make such a system. The fact that such systems
exist, however, is a direct consequence of human ingenuity and creativity. Each layer of
modeling allows individuals to contribute to the design without knowledge of or concern
for how the layers of modeling they are using came about and without knowledge of how
the layers of modeling they are creating will be used by other designers.

A few of the layers involved in the construction of a system such as Wikipedia are shown
in figure 3.3. My friend and colleague Alberto Sangiovanni-Vincentelli calls these layers
“platforms” (Sangiovanni-Vincentelli, 2007), an apt term because each platform forms a

62

3.3. TRANSITIVITY OF MODELS

cloud computing page 114
libraries, languages, and dialects | page 109
programming languages page 97
instruction set architectures page 92
digital machines page 83
logic diagrams page 81
logic gates page 78
digital switches page 77
semiconductors page 74

Figure 3.3: Layers of paradigms.

substrate for construction of the models above it. Some of the models above it define
platforms for further construction. Sangiovanni-Vincentelli points out that the platforms
give designers “freedom from choice.” Below a platform there are many possibilities,
offering more choices than any human designer can handle. Above the platform, there
are fewer choices to be made. You can design more systems by creating a network of
transistors than you can using logic gates (explained in chapter 4), for example. But when
logic gates provide a suitable platform, the design job becomes much easier if you use
logic gates rather than networks of transistors.

Occasionally, one encounters the use of such layers of abstraction in science. But
compared with engineering, it is relatively rare, and depth of the layering is much more
shallow. Scientists wish to construct models of physical reality, and models of models of
physical reality become more suspect simply because they are further from the physical
reality.

An example from science where layering of models has been successful is the gas laws
developed at the end of the eighteenth century. These laws relate pressure, tempera-
ture, volume, and mass of a gas, including Boyle’s law, Charles’ law, Gay-Lussac’s law,
and Avogadro’s law. These models describe phenomena that are ultimately due to the
motion of large numbers of molecules in a gas, but they do not describe the phenomena
in terms of the individual molecules. For example, Boyle’s law states that at a fixed
temperature, the pressure of a gas is inversely proportional to the volume it occupies. So,
for example, if you reduce the volume (compress the gas), then pressure will increase.
These are useful models of models, where the lower level model is of randomly moving
molecules colliding with one another and with the surface of the enclosure.

63

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

(phenotype)
C

mechanisms

(e)
O
C >

functional modules

bio-logic gates

C >
- >

genes, proteins, metabolites

Figure 3.4: Layers of abstraction proposed by Fisher et al. (2011) for synthetic biology.

In biology, arguably the most complex of the natural sciences, some researchers have
argued that only through such layering can natural biological systems become compre-
hensible. Fisher et al. (2011), for example, propose the layers shown in figure 3.4 “to
tame complexity of living systems.” They explicitly propose these layers in analogy to
computer hardware systems, even naming some of the layers accordingly, such as “bio-
logic gates.” The question marks in the figure, however, reveal that this approach is not
mature. Biology appears less able to exploit the transitivity of models, compared with
engineering, at least so far.

I believe this limitation is quite fundamental. Science cannot benefit as much as engi-
neering from the layering of modeling paradigms. The root of the reason, which I explore
more fully in the subsequent chapters, is that engineers build systems to match models
rather than models to match systems.

Even without layering, many phenomena in our physical world (maybe even most
phenomena) defy scientific modeling. John Searle has written extensively about the
inability of scientific models to address cognitive and social phenomena, for example,
even though those phenomena are clearly physical. Recall his claim that “the methods
of the natural sciences have not given the kind of payoff in the study of human behavior
that they have in physics and chemistry” (Searle, 1984, p. 71). His explanation, to my
understanding, is a form of failure of transitivity of models. As an illustrative example,

64

3.3. TRANSITIVITY OF MODELS

he looks at our inability to predict wars and revolutions in terms of lower level physical
phenomena:

Whatever else wars and revolutions are, they involve lots of molecule move-
ments. But that has the consequence that any strict law about wars and revo-
lutions would have to match perfectly with the laws about molecule move-
ments. (Searle, 1984, p. 75)

He points out that we have no laws (in the sense of physical laws) about the occurrence
of wars and revolutions, although, ultimately, “wars and revolutions, like everything else,
consist of molecule movements.”

It is not that higher level phenomena cannot be explained in terms molecule movements.
Some can. Searle cites Boyle’s law and Charles’ law, which can be shown consistent with
models of molecule movements. The relationship is relatively simple and the models
become predictive. But not so with wars and revolutions. Wars and revolutions are so
distant from molecule movements that no such relationship makes sense.

Searle argues that such relationships are impossible not just difficult. His reason is quite
deep and thought provoking. To make his case, he asks us to consider the concept of
“money,” which as he points out is “whatever people use and think of as money” (Searle,
1984, p. 78). The fact that this concept is self-referential is a key part of Searle’s
argument, in that “the concept that names the phenomenon is itself a constituent of the
phenomenon.” Money can take the form of printed paper, gold coins, or (today) bits
stored in a computer and displayed as numbers on a screen. An attempt to explain money
as a neurophysiological phenomenon, Searle says, gets tripped up by the many forms that
money can take. As we see money in these various forms, the stimulus on the visual
cortex will be completely different. Searle asks how these completely different stimuli
could have the same effect on the brain:

[F]rom the fact that money can have an indefinite range of physical forms it
follows that it can have an indefinite range of stimulus effects on our nervous
systems. But since it can have an indefinite range of stimulus patterns on our
visual systems, it would ... be a miracle if they all produced exactly the same
neurophysiological effect on the brain. (Searle, 1984, p. 80)

So the concept of money must be more than a neurophysiological effect, Searle claims.

65

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

[T]here can’t be any systematic connections between the physical and the
social or mental properties of the phenomenon. (Searle, 1984, p. 78)

The same argument seems to apply to effects that are quite unlike the sociological concept
of money, such as face recognition. We recognize our mother’s face in a black-and-white
picture of her taken before we were born, for example, despite enormous differences
in the physical structure of the face and the material nature of a black-and-white photo
versus a real face. It seems that Searle would have to conclude that this too is not a
neurophysiological effect. But I suspect it is. The human brain has evolved to categorize
visual stimuli into discrete bins despite huge variability in the stimulus.

I’m an engineer, not a philosopher, and not a neuroscientist. I can’t credibly reject
or defend Searle’s argument, but frankly I don’t need it to reach essentially the same
conclusion. I am perfectly willing to accept that nobody will ever establish any mean-
ingful connection between the physical stimulus to the visual system and the sociological
concept of money. Even if we could construct the layers of epiphenomena,? their relation-
ships would be so complex, or there would be so many layers, that nothing meaningful
could ever arise from their connections. The phenomena at the higher levels are emergent
phenomena, in that they comprise the lower level phenomena but have their own identity
and properties. In later chapters, I will examine the fundamental limits of modeling that
make such connections improbable even if the concept of money really is a neurophysio-
logical effect.

But perhaps more interesting, even for some phenomena where we know exactly how to
explain how they arise from physical effects, it is not useful to do so. In chapter 5, I
argue that, although software is ultimately electrons sloshing around in silicon, there are
so many layers of modeling between the physics and the software that the connection to
the physical is practically meaningless.

I claim that a high-level technology such as Wikipedia has little (and declining) mean-
ingful connection with the underlying physical phenomena in semiconductor physics
that make it all work. For digital technology, we can in fact trace the connection from
Wikipedia all the way down to semiconductor physics. I will do this for you in chapters
4 and 5. But in doing so, I will show you that there are so many levels of indirection that
what happens at the higher level has little meaningful connection with what happens at
the lower levels.

3 An epiphenomenon is a phenomenon that can be completely explained in terms of more fundamental
phenomena.

66

3.4. REDUCTIONISM

Engineers have an advantage over scientists when dealing with layers of models. Natural
biological systems and wars and revolutions are givens in our world. Engineered systems
are not. For engineered systems, the goal is not to explain them in terms of lower level
phenomena. The goal instead is to design them using lower level phenomena. This
different goal makes it much easier to exploit the transitivity of models.

Consider synthetic biology, which is concerned with designing artificial biological
systems. This field is less focused on explaining naturally occurring systems and more
focused on leveraging natural biological pathways to synthesize new systems. In synthetic
biology, researchers have embraced layered abstractions, to great effect. Endy (2005), for
example, argues for using predefined functional modules to create biological systems.
Indeed, an engineering discipline such as synthetic biology can more readily use layered
abstractions because the models need only to model the systems being created. The
bioengineers choose the systems to be modeled, and they choose them in part because
they can model them. To be effective, scientific models need to model the systems given
to us by nature, which are much more numerous. And we can’t choose those. They are
given.

In the next two chapters, I will elaborate on the layers in figure 3.3, with an emphasis on
understanding how they came about and with the goal of showing that the specific design
of such layers is the creative work of humans, not a collection of God-given facts. But
first I would like to spend a little time thinking about how to decide which layer to focus
on for any given task.

3.4 Reductionism

At the lowest level, a word processor and Wikipedia are electrons sloshing around in
silicon and metal, and the programs that make up Wikipedia are models of models of
models of --- models of electrons sloshing around in silicon and metal. It is tempting
to fall into a reductionist trap and say that Wikipedia is “nothing but” electrons sloshing
around in silicon, but this would grossly misrepresent reality.

A reductionist perspective explains a system at any level of modeling in terms of the
level below it. For example, we could explain how a Wikipedia search uses operators in
a programming language that compare text, which are realized by comparisons between
binary representations of text in machine code, which uses a compare instruction in an
instruction set architecture, which is implemented by microarchitecture with an arith-

67

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

metic logic unit (ALU) that can do comparison, which is made up of logic gates that
implement the comparison, which gates are interconnections of transistors, which transis-
tors are three-dimensional structures of doped silicon. This is a terrible explanation of the
search function of Wikipedia.

One of the implications of reductionism is that an epiphenomenon has no effect on the
phenomena that explain it. The epiphenomena of temperature and pressure of a gas,
for example, can be explained in terms of the underlying molecule movements, but
molecule movements would exist unchanged even if we had no concepts of temperature
and pressure. But this implication is patently false for the layers of figure 3.3. Only
the lowest foundation of these layers, electrons moving an electric field, is given to us
by nature. Every other layer is constructed by humankind, often distinctly with an eye
toward servicing better the layer above. It is perfectly valid to explain the operation of a
logic gate in terms of its role in the design of digital machines and the design of digital
machines in terms of the software they are expected to execute. The design of each layer
is affected by the layers below and above it.

In the sciences of the natural, if scientists were to use such layers, it would be a teleo-
logical leap of faith to claim that higher levels of the stack affect lower ones. How could
the existence of a biologic gates abstraction in figure 3.4 affect nature’s realization of
signaling pathways? In contrast, in the stack of figure 3.3, it is not farfetched to claim that
transistors are pretty good switches to enable Wikipedia.

In fact, designers of physics-based electronics are constantly trying to improve transistors
to make them more like ideal switches. Fundamentally, a transistor is not a switch. It is an
amplifier. But engineers tune the design of transistors to make them more like switches.
For example, when a transistor is off, it is desirable that little current leak through it. This
will reduce energy consumption, making it possible to pack more transistors into a small
space without generating excessive heat that could melt the silicon. Hence, engineers
will tweak the design of the physical structure to reduce leakage. They do this so that
Wikipedia can work better. Teleological explanations in this case are perfectly reasonable.

The resemblance, therefore, between the stack of models in figure 3.3 and the one in figure
3.4 is superficial at best. I come back to the point I made in section 2.3, which is that in
science, the value of a model lies in how well its properties match those of the target,
whereas in engineering, the value of the target lies in how well its properties match those
of the model. If our model of a transistor is a switch, then the most valuable transistors
are the ones that most perfectly behave like ideal switches.

68

3.4. REDUCTIONISM

With sufficient positivist dogmatic determination, we could still insist on a reductionist
approach. Once we are given transistors by the physical electronics engineers, gates by
the VLSI design software, a microarchitecture by Intel, an instruction set architecture
by Intel, a Java compiler by Oracle, and a library of Java components by the Eclipse
Foundation, then we could explain how Wikipedia works in terms of these foundations.

But this is too nerdy even for me. First, these foundations aren’t static, so our laboriously
constructed explanation could only be valid at an instant. But more important, it vastly
understates what Wikipedia really is. At the higher layers of abstraction properties emerge
that are difficult if not impossible to explain in terms of the lower level abstractions.
An enormous part of the value of Wikipedia lies in its essence as a partnership between
technology and culture. I admit a genuine aesthetic delight when I encounter a particularly
well-written Wikipedia page and a sense of frustration and gloom when I find a more
poorly written page or one that too clearly reflects the views of too few people. A well-
written Wikipedia page is difficult to explain in terms of sloshing electrons.

Technology alone does not create a phenomenon such as Wikipedia. Any reductionist
explanation of the phenomenon would be naive. In later chapters, I will argue that the
failure of reductionism is fundamental and unavoidable in complex technology.

Notice that our layering need not stop at the top of figure 3.3. The software in Wikipedia
is created within the modeling paradigms at the top of the figure, but in large part that
technology is molded to support a sociological layer above it. But am a nerd, and I don’t
understand people, so I won’t try to extend my analysis to those sociological levels. I will
leave that to the social scientists.

In the next chapter, I will focus on hardware technologies. I point out that hardware does
not last nearly as long as the models of the same hardware. Models and the paradigms
on which they are based, despite having no material form, are more durable than the
things they model, despite those being physical. I focus on digital technology because as
we move up from the physical layer (silicon chips), we quickly get extremely expressive
media capable of realizing enormously complex and intricate models. The expressive-
ness of these media unleashes the creativity of humans, enabling the emergence of such
transformative technologies as Wikipedia.

In chapter 5, I focus on software technologies. Here, I point out that software encodes
the very paradigms on which it is constructed. This self-scaffolding enables the boot-
strapping of truly innovative artifacts, ones that can profoundly affect human culture. In

69

3. MODELS OF MODELS OF MODELS OF MODELS OF THINGS

later chapters, I will explain what software cannot do. The door remains open to further
creativity.

70

Hardware Is Ephemeral

Contents
41 HardandSoftttt eneennn 72
42 Semiconductorso vt vttt 74
43 Digital Switches, 77
44 LogicGates . . v v v v v it v it e et e e e e e e e e e e 78
45 LogicDiagrams i vt ittt ittt 81
4.6 DigitalMachines it e 83

- in which I show that hardware is soft, a transient expression of ideas,
and those ideas are more durable than the hardware itself. And in which I
trace the layered paradigms that make possible digital machines made with
billions of transistors.

4. HARDWARE IS EPHEMERAL

4.1 Hard and Soft

Steven Connor, professor of modern literature and theory at Birkbeck, University of
London, credits the French philosopher Michel Serres, now a Professor of French at Stan-
ford, with developing a subtle and beautiful theory of “the hard and the soft.” Serres’
thesis, according to Connor, is woven throughout his prolific writings, many of which
have not been translated into English. Connor comments that it is difficult to quote Serres,
so I will quote Connor instead:

[T]he contrast between the hard and the soft refers to this distinction between
the domain of nature, the object of attention of what we call the “hard
sciences,” and the domain of culture. The hard means the given, as opposed
to the made. It means the physical, as opposed to the conceptual. It means
hardware as opposed to software. It means object as opposed to idea, form
as opposed to information, world as opposed to word. (Connor, 2009)

Connor finds allusions in Serres’ writings to an astonishing array of oppositions between
hard and soft, including body and language, science and humanities, things and signs,
physical and conceptual, object and idea, form and information, physics and language, a
stone and a ghost, motors and information theory, the manual and the digital, sound and
meaning, bridge and hyphen, energy and information, flesh and word, the real and the
virtual, forces and codes, solids and geometry, objective and subjective, war and religion,
a book and a story, or sound and music.

But Serres does not succumb to Platonicity, requiring a sharp delineation between the
hard and the soft. Quite the contrary. According to Connor,

Serres’s principal effort is to allow his reader to grasp [the] intermixture [of
the hard and the soft.] ... The hard can always evaporate into the soft, the soft
calcify into the hard. (Connor, 2009)

In Serres’ own words (translated from the French by Connor),

Hard things display a soft side; material, of course, they engram and
programme themselves like software. There is software [logiciel] in the hard-
ware [matériel]. (Serres, 2003, p. 73)

72

4.1. HARD AND SOFT

We then find the more subtle oppositions between the hard and the soft, such as wax
and wax, nature and nature, ropes and ropes, or mathematics and mathematics. Each of
these, depending on its role and use, can be either hard or soft. “Hardness in softness and
softness in hardness,” according to Serres.

Following Serres, the three-word summary of this chapter would need to be “hardware and
hardware.” Hardware is both hard and soft. I will argue that for an engineer who works
with digital technology, hardware is merely an ephemeral expression of an idea, lasting
longer than a spoken word, which vanishes from the room in a few milliseconds, but
still ephemeral, in the grand scheme. The ideas articulated by the hardware, in contrast,
although undoubtably mutating and evolving, can last a long time indeed. These ideas are
expressed using layers of paradigms that shape and constrain the ideas in ways that even
the designer of the hardware is not aware of.

In the rest of this chapter, I outline the layers of modeling used specifically for computer
hardware. With apologies to the reader, I confess that the rest of this chapter is a bit of a
nerd storm. If you are an impatient reader, or you have no interest in hardware, and you
are willing to grant my basic thesis, then please feel free to skip reading the rest of this
chapter.

My basic thesis is that the hardware of modern computers is far too complex to design
directly. Layers of abstraction are essential, and except for the bottom layer, semicon-
ductor physics, none of these layers is given to us by nature. They are all human construc-
tions, paradigms in Kuhn’s sense that frame our thinking about hardware design.

Moreover, I claim that these paradigms, despite having no physical form, are more durable
than the hardware. Paradigm shifts are difficult for humans. They can also be quite costly
because changes in technology paradigms can mean significant retooling. Software that
supports design, such as hardware description languages and their compilers, may have
to be redesigned with significant paradigm shifts. Even manufacturing plants may have
to change.

Nevertheless, the layering of paradigms makes paradigm shifts easier than they would
otherwise be. The design of a microprocessor, for example, often does not need to change
when moving to a new semiconductor technology. The emphasis of this chapter is on how
this layering of paradigms enables creativity and technological advances. In chapter 6, I
will explain how technological advances trigger paradigm shifts.

If you persist in reading this chapter, my primary goal is to show a reader with little or no
prior exposure to electronics how the basic operations of an application such as Wikipedia

73

4. HARDWARE IS EPHEMERAL

are realized by transistors operating as switches. This explanation cannot be given all at
once. It has to be built up in layers. Otherwise, the complexity is simply too much for
the human brain. But starting from an abstraction of a single transistor as a switch, we
quickly get to abstractions that when realized in a chip require thousands, millions, and
billions of transistors. My goal is to show how these layered abstractions enable such
scaling up.

4.2 Semiconductors

Modern microprocessors are made from silicon crystals with carefully introduced impu-
rities called dopants. The crystals are sculpted into tiny patterns and shapes like those
shown in figure 3.1 in a “fab,” a facility where people in bunny suits shepherd silicon
wafers through clean rooms, where even the tiniest speck of dust can ruin a chip. The
output of a fab is a wafer like that shown in figure 3.2, which is then cut up into individual
dies that are inserted into a plastic or ceramic package with metal pins coming out.

When electrical voltages are applied to the chip through the metal pins, currents flow, and
models such as Ohm’s law, Faraday’s law, and quite a few others can be used to understand
what happens. A field-effect transistor (FET), for example, uses an electric field to vary
the resistance of a “channel” in silicon. When the resistance is low, the transistor is
“on.” When the resistance is high, the transistor is “off.” Because the material may or
may not conduct electricity, it is neither an insulator nor a conductor, so it is called a
“semiconductor.”

Ultimately, an electrical current is the movement of electrons, and voltages and electric
fields arise from electrons piling up in or vacating a location. The behavior of a micro-
processor, therefore, is at its root electrons sloshing around in silicon.

Semiconductor physics is a deeply technical specialization that is more science than engi-
neering. In this specialization, the facts of the physical world dominate. Nevertheless,
patterns of design have emerged, enabling designers to reuse patterns with rules of thumb
to design useful electronic circuits without a deep understanding of the physics. These
design patterns constitute a paradigm, and such a paradigm enables an industry to evolve
beyond one-off science experiments in the lab.

A chip designer can, in principle, design structures like those in figure 3.1 by carefully
specifying how to construct the structure. Such a design takes the form of a set of “masks”
that are used in a lithographic process to “print” the chip. An example of a small portion

74

4.2. SEMICONDUCTORS

‘ VDD D METAL1 D N DIFFUSION

- D POLY D P DIFFUSION

I [l contacT IN-WELL
[]] []]

‘ Ground

Figure 4.1: Mask design for a four-transistor CMOS NAND gate.

of a mask is shown in figure 4.1. This mask specifies which regions of the silicon crystal
should be doped with which dopant, which regions should be covered with polycrystalline
silicon, and which regions should be covered with metal. By the late 1970s, when it had
become possible to put on the order of 20,000 transistors on a chip, it became impractical
to manually design such masks for each circuit.

The layout in figure 4.1 specifies only four transistors. Figure 4.2 shows a die that contains
four instances of a similar design to that shown in figure 4.1. That chip has only 16
transistors. The large pads around the periphery of the chip are provided so that wires can
be soldered to the chip and connected to metal pins on the exterior of the packaged chip,
shown on the right in the figure.

In the late 1970s, Carver Mead of Caltech and Lynn Conway,1 then at Xerox PARC,
wrote a textbook called Introduction to VLSI System Design’ that revolutionized the field
by introducing the use of scalable “design rules.” Their approach is now universally called
the Mead-Conway approach to circuit design.

' To emphasize that paradigms are invented by humans, and sometimes interesting humans, I feel compelled

to point out that before working at Xerox Parc, Lynn Conway had been fired by IBM in 1968 after
announcing her intention to transition from a male to a female gender role. I cannot even begin to imagine
the courage this must have required at that time. She has since become a vocal advocate for transgender
rights.

The term Very Large Scale Integration (VLSI) started to come into use in the 1970s when chips began to
have thousands of transistors. The term is still used for chips with billions of transistors.

75

4. HARDWARE IS EPHEMERAL

Figure 4.2: Die photo (left) and packaged product photo (right) of an NXP 74AHCO00,
which contains four 2-input CMOS NAND gates. [Die photo by Mikhail Svarichevsky of
ZeptoBars, licensed under Creative Commons Attribution 3.0 Unported License.]

The design rules define standard layout patterns according to a variable parameter called
A (the Greek letter lambda), which is the minimum distance between features in a layout.
The 22-nm Intel process used to fabricate the Haswell chips shown in figure 3.2, for
example, has A = 22 x 10~° meters. With these design rules, chip designers can reuse
layouts over and over again, greatly simplifying the design process, even as the feature
sizes in chips keep declining.

Mead and Conway triggered a paradigm shift, and as with most paradigm shifts, they
met with some resistance. Diehard circuit designers insisted that they could design better
chips without the constraints imposed by the Mead-Conway approach. They refused to
accept this “freedom from choice.” Such designers have almost entirely vanished. Today,
you may find them in corners of the industry designing specialized chips or performing
research on fabrication technologies.

The use of design rules enables a separation between the chip designers and semicon-
ductor physicists. The physicists can specify the design rules, and software can synthesize
the masks. This separation also enabled new business models, where chips are fabricated
by “silicon foundries,” companies such as TSMC (for Taiwan Semiconductor Manufac-
turing Company) or GLOBALFOUNDRIES, that just need to publish their design rules to

76

http://creativecommons.org/licenses/by/3.0/

4.3. DIGITAL SWITCHES

their customers. Because of the Mead-Conway approach, system design companies can
be “fabless,” not needing to invest the multiple billions of dollars that it takes to open a
fab to make chips. Instead, they contract with the silicon foundries to make their chips.

4.3 Digital Switches

Although transistors can be used for other things (e.g., to amplify a signal), most of the
transistors in a microprocessor are used as digital switches. This means that we can
understand the behavior of a circuit by understanding whether the transistors are “on” or
“off.” We don’t really have to worry about the behaviors in between.

The following is a standard symbol used to represent a field-effect transistor (FET) like
that in figure 3.1:

drain

g

source

The transistor has a control input wire (called the gate) that is used to turn the transistor on
or off. Each transistor has two additional terminals (called the source and drain). When
a transistor is “on,” we model its behavior as a simple wire connecting the source and the
drain. When it is “off,” we model its behavior as disconnecting the same two terminals.

The voltage at the gate determines whether the transistor is on or off. For the above tran-
sistor, when the gate voltage is sufficiently higher than the source voltage, the transistor
is on. Otherwise, it is off.

A “complementary” transistor can also be made, one that is turned on when the gate
voltage is sufficiently /ower than the source voltage. Such a transistor is shown with a
circle at the gate:

source

gate |

drain

77

4. HARDWARE IS EPHEMERAL

A technology that combines these two types of transistors is called a CMOS technology,
for complementary metal oxide semiconductor. The MOS part of this acronym is actually
obsolete. It originates from the structure originally used to make these transistors, but
the name persists nevertheless. CMOS has ceased to be an acronym in the culture of
semiconductor technology. It is simply a noun, pronounced “sea moss.”

This switch model of a transistor is an approximation but a particularly useful one. It is a
digital abstraction, cleanly separating exactly two states, on and off. The real transistor is
not so clean: it is electrons sloshing around in silicon. Even good transistors fail to match
the digital abstraction perfectly.

4.4 Logic Gates

The digital switch model for a transistor provides a paradigm that we can use to build
circuits that perform logic functions. Figure 4.3 shows a circuit diagram for an inverter,
which converts a high voltage into a low one and, conversely, a low voltage into a high
one. If a high voltage represents a digit 1 and a low voltage represents a digit O, then an
inverter converts 1 to 0 and O to 1. This is called a “logic gate” because it realizes a simple
logical operation: negation.

3 volts 3 volts 3 volts
off on
_(1 l: source _(i l: _4
in grain in=3 out=0 in=0 ut=3
out] — ! J
”: drain | ”:
source
on off
0 volts 0 volts 0 volts

Figure 4.3: Circuit diagram for an inverter logic gate (left). When the input voltage is
high (3 volts), the lower transistor is on (center). When the input voltage is low (0 volts),
the upper transistor is on (right).

78

4.4. LOGIC GATES

The circuit is easy to understand even if you have never studied electrical circuits before.
The two shaded boxes represent complementary FETs. The top transistor, the one with
an extra circle, complements the lower one. In this circuit, the gates of the two transistors
are connected together, so when one is off, the other is on.

The figure shows a voltage supplied to the terminal at the bottom of the figure of 0 volts.
When the bottom transistor is on, the output will be connected to the 0 volt line, so the
output voltage will be 0, as shown in the center diagram. The bottom transistor is on when
the gate voltage is 3 volts. So if the input (the gate voltage) is 3 volts, then the output is 0
volts.

The voltage supplied to the top terminal is 3 volts. When the top transistor is on, this
3-volt line is directly connected to the output, so the voltage on the output will be 3 volts.
This is illustrated at the right in the figure. The upper transistor is on when the input
voltage is 0. So when the input is 0, the output is 3. Hence, the circuit indeed realizes
an inverter, assuming that 3 volts represents the binary digit 1 and O volts represents the
binary digit 0.

The transistor symbols in the diagram represent a simple model for some fairly compli-
cated physics. The circuit is further abstracted to the logic symbol for an inverter:

in |> - out

This represents a digital “logic gate,” specifically an inverter. This abstraction has a partic-
ularly simple meaning. When the input is the binary digit 1, the output is the binary digit
0 and vice versa.

An inverter is also called a NOT gate because it can be viewed as realizing a logical
negation. If the digit 1 represents “true” and the digit O represents “false,” then the NOT
gate converts truth to falsehood and vice versa. When using such a symbol, we no longer
explicitly show the supply voltages (connected to the top and bottom terminals). Those
are implied.

The connection between switching circuits and logic was apparently first made fully by
Claude Shannon, an electrical engineer who will appear again in chapter 7 as the father
of information theory. In 1940, Shannon was a 22-year-old master’s student at MIT. He
wrote a master’s thesis that may well be the most influential master’s thesis ever written
(Shannon, 1940). In his thesis, he showed that electrical switches could be interconnected
in a variety of ways to realize any symbolic logic function. For example, one could

79

4. HARDWARE IS EPHEMERAL

express with electrical switches a statement such as, “x is true if y is true and z is false or
if y is false and z is true.” Shannon showed that such logic statements could be designed,
analyzed, and optimized using an algebra for logic that had been developed in the previous
century by the English mathematician George Boole. Ever since, such circuits have been
referred to as Boolean logic circuits. When Shannon was working on his master’s thesis,
electrical switches were realized using either mechanical relays or vacuum tubes. The
transistor hadn’t been discovered yet, and although it had already been invented in the
1920s (see chapter 1), it was not widely known or used.

There are a few other useful Boolean logic gates. For example, an AND gate may have
two inputs and one output. An AND gate is represented with this symbol:

A

B

When both inputs are 1, the output is 1. Otherwise, the output is 0. A NAND gate is
equivalent to an AND gate followed by a NOT. It has the following symbol:

B

An implementation of a NAND gate is shown in figure 4.4; if you now understand how
the inverter in figure 4.3 works, then you can probably figure out how the NAND gate
works. Shannon designed similar gates using mechanical relays as switches.

An OR gate produces output 1 if any input is 1, rather than if all inputs are 1, as in an
AND gate. An XOR (exclusive OR) gate with two inputs produces 1 if exactly one of the
inputs is 1 and the other is 0. In other words, XOR determines whether the inputs differ.
I will spare you the implementations of these and even their symbols.

So far, we have three levels of abstraction toward our goal of a Wikipedia system: We
have the physical object out of which we will build the system, transistors such as those
in figure 3.1, with design rules that free us from having to give detailed geometries for
each device; circuit diagrams as in figure 4.3 that abstract transistors as switches; and
gates like that at the right in figure 4.3 that abstract the circuit as a logic function. Each
of these layers has its own paradigm, with its own lexicon and symbology. But we are
still nowhere near being able to build Wikipedia. Let’s keep going. I promise we will
get there!

80

4.5. LOGIC DIAGRAMS

4.5 Logic Diagrams

Figure 4.5 shows a logic diagram with 67 logic gates (abstracting roughly 400 transistors
that are needed to realize these gates). Some of the gates are inverters like the one in
figure 4.3, and the rest are other gates representing logical AND, OR, NAND, NOR, and
XOR functions. You need not study this diagram, but rather let’s use it to get a sense of
this level of abstraction toward the design of Wikipedia.

This diagram specifies the design of an arithmetic logic unit (ALU), an important part
of any microprocessor. The inputs to this ALU are four-bit binary numbers. They come
into the ALU on lines labeled Ag---A3z and By - - - B3 at the top. Each input wire carries
one bit.? There are various outputs at the bottom, including, for example, one output wire
labeled A = B. This output tells us whether the two four-bit inputs are equal. Hence, one
of the functions performed by an ALU is to compare two numbers for equality. This ALU
can also add and subtract two binary numbers, among other functions. In his master’s
thesis, Shannon showed a simpler but similar adder circuit and showed that each output
from such a circuit could be expressed using Boole’s symbolic logic algebra.

In a Wikipedia search, each character that I type in a search box to look up a topic is
represented by a number, typically an 8- or 16-bit number, not a 4-bit number, so we will

3 Shannon credits John Tukey, a mathematician at Princeton and Bell Labs, for the word “bit,” a shortening
of “binary digit” (Shannon, 1948).

3 volts

out A_
out
B

0 volts

Figure 4.4: Circuit diagram for a NAND logic gate and its logic symbol. When both
inputs A and B are high, the output is low. Otherwise, the output is high.

81

4. HARDWARE IS EPHEMERAL

Ch M A By Al B M By A3 B3

v 5 & G
ﬁu
Y

Fo

P Ch+4 G

gy

1
F3

Figure 4.5: Logic diagram for four-bit ALU (Arithmetic Logic Unit).
[Image licensed under CC BY-SA 3.0 by Poil, via WikiMedia Commons.
From https://commons.wikimedia.org/w/index.php?curid=168473]

A=8B Fo

82

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://fr.wikipedia.org/wiki/Utilisateur:Poil
https://commons.wikimedia.org/w/index.php?curid=168473

4.6. DIGITAL MACHINES

need a bigger ALU. But the bigger ALU follows the same principles as this 4-bit ALU,
and its logic diagram would be far more intimidating.

To find a page that satisfies my search, Wikipedia needs to compare numbers for equality.
The search mechanism is more sophisticated than just comparing numbers, but without
being able to compare numbers, it would not be possible to do the search. So we have the
first real connection between the hardware and the application, albeit still a tenuous one.
We still have a ways to go.

Notice that only by spanning the four levels of abstraction that we have looked at so far
can we understand why the world of computers is so obsessed with binary numbers. The
reason is simple. Transistors are either on or off. Two states, two numbers, 0 and 1, false
and true. That’s all we’ve got, so we have to work with it. There is no 2.

A typical microprocessor today has a much more complicated ALU than this. Today’s
microprocessors operate on 32- or 64-bit numbers, not 4-bit numbers, so the size of this
circuit will be at least 16 times bigger, comprising perhaps 1,000 gates and 6,400 tran-
sistors instead of 67 and 400. Typically it is much larger than that, offering many more
functions. Clearly a model like that in figure 4.5 becomes unwieldy. You are probably now
quite grateful that I didn’t show you the logic diagram for the ALU in the laptop computer
that I’m using to write this book. It would look similar but with many more gates.

Note that when a logic diagram like that in figure 4.5 is first created by an engineer,
although it is a model, no physical realization exists of which it is a model. This under-
scores the point made in chapter 2 that the model serves a different purpose than a typical
scientific model. It can’t be true that the value of the model lies in how well it matches the
physical system that it models because that physical system does not yet exist. The value
of the model does depend, however, on our ability to construct a physical system whose
behavior will match the model. Indeed, the magic of digital technology is that we know
how to construct circuits that can match the logic of the model figure 4.5 with almost
perfect fidelity, performing the specified operations a billion times per second for years!

4.6 Digital Machines

The ALU of figure 4.5 is just one of many pieces of a microprocessor. If a 32- or 64-bit
ALU by itself is too complex to represent with a logic diagram, then certainly a micro-
processor will also be too complex. So how does an engineer design a microprocessor?

83

4. HARDWARE IS EPHEMERAL

An ALU can be further abstracted into a single component, as it is in figure 4.6. Near the
middle of the diagram is a funny-shaped box labeled “ALU” (or more accurately, labeled

-
“ <_EI ””) that represents a 32- or 64-bit version of the logic diagram shown in figure 4.5.

The other boxes in the diagram similarly represent complex logic with many thousands
or even millions of transistors. This diagram is easily readable to someone trained in the
art of computer architecture. That person could tell you what each of the boxes does. 1
will not attempt to do that here, but instead I will try to explain the overall style of the
diagram.

Figure 4.6 represents the heart of a microprocessor, its central processing unit (CPU).
It shows, left to right, four stages of the execution of a sequence of instructions that
comprise a computer program. At the very left, the components in the diagram fetch
instructions from the “instruction memory,” where the program is stored (in the form of
binary numbers). The decode stage immediately to the right uses logic gates to figure
out how to control various parts of the CPU, including the ALU, so that it performs the
function demanded by an instruction. For example, if an instruction wants to add two
numbers, then the decoder will construct the control input for the ALU to perform addi-
tion. The third stage, labeled “execute,” uses the ALU to perform the function demanded
by the program. The fourth stage, labeled “memory,” stores the result of the instruction in
memory or uses the result of an instruction as an address for data to fetch from memory.

branch
taken

Decode

data
memory

Mux

Instruction
Register
bank

data hazard (memory read or ALU result)
fetch decode execute memory writeback

Figure 4.6: Digital machine model of the main pipeline of simple microprocessor (after
Patterson and Hennessy (1996)).

84

4.6. DIGITAL MACHINES

Figure 4.6 is not a logic diagram. There are no logic gates. Each box represents a compo-
nent that is realized with many logic gates. The “wires” in this diagram are not simple
wires either. The two “wires” into the ALU, for example, represent not one wire, but 32
or 64 wires, depending on whether this is a 32- or 64-bit ALU.

A key idea in the design shown in figure 4.6 is the separation of a memory that stores
the program from the logic circuits that execute the program. Earlier computers might
have been programmed by actually rewiring the logic circuits, for example, using patch
panels with cables and plugs. An architecture with a program memory separated from
an ALU, almost universal in computers today, is called a von Neumann architecture,
after the Hungarian-American mathematician and computer scientist John von Neumann.
Von Neumann first described this style of architecture in an incomplete report titled
First Draft of a Report on the EDVAC, dated June 30, 1945. Von Neumann had been
working on the Manhattan Project, developing the mathematical models for atomic
bombs, and was consulting with a project run by the University of Pennsylvania to design
a computer called the EDVAC (for Electronic Discrete Variable Automatic Computer).
The EDVAC was made with vacuum tubes and used a binary (base 2) representation for
numbers, unlike its predecessor the ENIAC, which used a decimal (base 10) representa-
tion. Although von Neumann is listed as the only author on the report, it appears that
many others from Penn had contributed significantly to this design, so referring to this
architecture as a von Neumann architecture may once again reflect our need for heroes
more than it accurately represents history.*

Today, digital designers often assemble designs using hardware components such as
ALUs that are reasonably standardized. The ALU shown in figure 4.5 is in fact a stan-
dard design called a 74181. Dating back to the 1970s, a series of standard component
designs were produced by various manufacturers as a series called the 7400 series, and
the four-bit ALU in figure 4.5 was a member of that series. Today, semiconductor manu-
facturers and computer-aided design (CAD) software provide libraries of standard cells
that designers can use to assemble designs. More complex cells are often called simply IP,
for intellectual property, and are sold as commodities to designers to use as components
in designs.

The tall grey boxes in figure 4.6 represent latches or registers. A latch is a circuit that,
when triggered by the tick of clock, records its inputs. It then holds the input value at its
output until the next tick of the clock. In the computer that I am using to write this book,

4 For a wonderful chronicle of von Neumann’s pioneering contributions to computation, see George Dyson’s
2012 book, Turing’s Cathedral (Dyson, 2012).

85

4. HARDWARE IS EPHEMERAL

the clock ticks 2.6 billion times per second. At this clock rate, the ALU is presented with
an input that lasts only 1/2.6 x 10~ seconds or about 1/3 of a nanosecond. In that 1/3
of a nanosecond, its gates determine the value of its output so that on the next tick of the
clock, the result of the ALU computation can be recorded by the downstream latch.

This clocked style of design is known as synchronous digital logic. 1t is synchronous in
that, conceptually, all the latches are clocked simultaneously. The synchronous digital
logic paradigm abstracts away the propagation delays within and between logic gates.
As long as the gates are fast enough to correctly perform their function within a clock
period, 1/3 of a nanosecond, there is no need to worry about the exact time delay of each
gate. The delay can be ignored. The paradigm of logic gates becomes a simple one: they
perform their logic function instantaneously.

Figure 4.6 is clearly much more abstract than the logic diagram in figure 4.5. Chip
designers call this style of diagram a register transfer level (RTL) diagram. I will call
it more simply a digital machine because it is a machine operating on words made up of
bits. The diagram describes the structure of the microprocessor at the level of operations
performed on 32- or 64-bit words and numbers that are exchanged between relatively
complicated components. Today’s CPUs are actually quite a lot more complex than the
one shown in figure 4.6. The Intel Haswell line of processors, for example, has up to
19 stages of latches rather than the four shown in figure 4.6. Moreover, these CPUs get
combined with complicated hierarchical memory systems. Then they get assembled into
servers that contain several CPUs. Then those get assembled into data centers with many
thousands of servers and elaborate networks. Only then do we have the hardware for a
system such as Wikipedia.

We now have four levels of abstraction, but we still don’t have a word processor, much
less a system such as Wikipedia. All we have is the hardware. We still have to figure
out how to tell the hardware what to do. At this point, we need to make a transition from
the world of hardware to the world of software. There will be several more levels of
abstraction on the software side. I will discuss those in the next chapter. Bear with me.
We will get there.

Notice that all four levels of abstraction have existed essentially in their current form for
decades. But it would be hard to find any physical piece of such hardware that is several
decades old, except in a museum. The abstractions are more durable than the hardware.

The layering of the abstractions is essential to technological progress. When King, Bokor,
and Hu introduced the FinFET in 2001, and when it went into production in 2014, the only

86

4.6. DIGITAL MACHINES

effect on the other layers is that now they had more transistors to work with. No paradigm
change was needed at the upper levels because a FinFET, like previous transistors, makes
a pretty good switch. It’s just smaller and faster, and it uses less power. This creates
opportunities at the upper levels, and as I will explain in chapter 6, these opportunities can
in fact trigger a crisis that will result in a paradigm shift. But such a “crisis of opportunity”
does not demand a change at the upper levels. It just enables one.

87

Software Endures

Contents
5.1 Self-Scaffoldingo, 89
5.2 Instruction Set Architectures 92
5.3 Programming Languagest 97
5.4 Operating Systemst v vt vttt et 107
5.5 Libraries, Languages,and Dialects 109
56 TheCloudttt iineeeennnes 114

- in which I argue that the layers of paradigms for software are so deep
that the physical world largely becomes irrelevant; that software reflects the
personalities and idiosyncrasies of its creators; that software endures much
better than hardware in no small part because it encodes its own layered
paradigms; and that connected machines in server farms dream.

5.1. SELF-SCAFFOLDING

5.1 Self-Scaffolding

In principle, engineers who wish to write programs could set individual bits in the program
memory to get the hardware to do their bidding. In practice, this would be mind-
numbingly tedious. A typical program might consist of, say, 10 million bits stored in
program memory. That’s a lot of zeros and ones. No human could write those zeros and
ones without making many, many errors.

The bit patterns that constitute a program are called machine code. They are meant for the
machine to read, not for the human designer to write. So how do they get written? How
does a human designer build a program like a word processor or a system like Wikipedia?
Here’s where the next stack of abstractions comes into play, those focused on software.

A modern computer program will typically consist of hundreds or thousands of “modules”
or “packages,” each of which consists of dozens or hundreds of “classes,” each of which
has dozens or hundreds of “methods,” each of which has dozens or hundreds of lines of
code. The lines of code are written in a programming language that is translated by a
compiler into machine code (often indirectly, first translating into another language, then
another language, then to machine code). These layers of design are essential to being
able to form any sort of understanding of the behavior of the program.

Way back in 1972, Edsger Dijkstra, a Dutch computer scientist, then a mathematics
professor at the Eindhoven University of Technology in The Netherlands, described soft-
ware as a “hierarchical system,” which he defined by analogy,

We understand walls in terms of bricks, bricks in terms of crystals, crystals
in terms of molecules, etc. (Dijkstra, 1972)

He then observed that the number of levels in such hierarchical abstractions is small unless
the “ratio between the largest and the smallest grain” is large. The number of molecules
in a wall is very large, and yet Dijkstra gives us only four layers.

For the structure of programs, the ratio between a bit of machine code and a program may
easily be in the millions. However, in addition, there is layering in the temporal behavior
of a program. An individual line of code may execute in a few nanoseconds, whereas the
overall function of the program may span hours, days, or months. Dijkstra comments on
this ratio:

89

5. SOFTWARE ENDURES

I do not know of any other technology covering a ratio of 10'” or more: the
computer, by virtue of its fantastic speed, seems to be the first to provide us
with an environment where highly hierarchical artifacts are both possible and
necessary. (Dijkstra, 1972)

To assess Dijkstra’s “ratio between the largest and the smallest grain” for software, we
need to combine three effects. A computer program may have a million lines of code and
get translated into a few million bits of machine code. The machine code is executed on
a chip that has billions of transistors, each acting as a switch. And these switches are
switching billions of times per second. If the smallest grain is the switching of a transistor
and the largest is the computer program, then the ratio is at least 10>* or

1,000,000,000,000,000,000,000,000.

This number is large for something made by humans. Hence, by the time we get to
software, we are quite distant from the physical world.

At this point, it ceases to be useful to think of software as a physical phenomenon.
It is instead what Hal Abelson and Gerry Sussman call “procedural epistemology” in
their introductory computer science book, Structure and Interpretation of Computer
Programs (Abelson and Sussman, 1996). Software becomes an abstract medium for
human creativity and craftsmanship and starts to more closely resemble Searle’s cognitive
phenomena than the physical phenomena out of which it originates. Software becomes a
medium for human expression, not just technical, but also cultural, literary, and artistic.
It is of course ultimately realized in the physical world by electrons sloshing around. In
words that Connor calls “startlingly sacramental,” Serres invokes the Bible when talking
about the coalescence of the soft model of software and hard matter that it runs on:

Et verbum caro factum est. (Serres, 2001, p. 78)

And the word was made flesh.

With such a huge difference in scale of the largest and smallest grain sizes, layers of
modeling become essential. Unlike the scientific effort that Searle criticizes to explain
preexisting sociological phenomena such as money in terms of neurophysiology, our
enterprise here is engineering not science. We only need to explain the phenomena we
construct, not ones given to us by nature. As humans, we construct software and all the
layers below, down to the transistors. It is much easier to explain a phenomenon that we
have constructed in terms of a lower level phenomenon that we have also constructed,

90

5.1. SELF-SCAFFOLDING

particularly because the lower level phenomenon was constructed in part to support the
upper level one.

Each layer of modeling is governed by a paradigm. A programming language, for
example, is such a paradigm. It shapes the programmer’s thinking and provides the frame-
work for procedural epistemology. The programming language is a human invention and
often reflects the creativity and idiosyncrasies of its inventors.

As a paradigm, a programming language has an interesting property. Specifically, the
language can be used, and often is used, to encode its own paradigm. Specifically, a
program is translated into a lower level language, such as machine code, by a compiler.
Assuming that the machine code is well defined, the compiler encodes the meaning
of the programming language and hence encodes its paradigm. But the compiler can
usually be written in the very language that it compiles! In fact, it is a common litmus
test for a language to be deemed worthy that it be able to encode its own compiler.
According to Wikipedia, at least the following languages have compilers written in their
own language: BASIC, ALGOL, C, D, Pascal, PL/I, Factor, Haskell, Modula-2, Oberon,
OCaml, Common Lisp, Scheme, Go, Java, Rust, Python, Scala, Nim, and Eiffel.

This kind of self-scaffolding of paradigms, I believe, is unique to software among other
technologies. It seems to approach Searle’s description of sociological phenomena, where
“the concept that names the phenomenon is itself a constituent of the phenomenon.” And
it pervades software from the lowest to the highest layer. At the lowest layer, a micropro-
cessor includes a “boot loader,” a tiny built-in program that is executed when the micro-
processor is first powered up. The term “boot loader” is a reference to bootstrapping, a
term that, according to Wikipedia,

- appears to have originated in the early 19th century United States (partic-
ularly in the phrase “pull oneself over a fence by one’s bootstraps™), to mean
an absurdly impossible action - - - [retrieved April 30, 2016]

At a much higher layer in software, I quoted earlier the Wikipedia page on Wikipedia,
itself a form of self-scaffolding. At intermediate levels, to reboot an operating system,
something all of us have done, is also a reference to bootstrapping. The operating system
uses its own services to start the operating system itself.

In the rest of this chapter, I will explain a few of the layers of modeling that we commonly
use in software technology. I hope these explanations will be somewhat less nerdy than
the hardware layers of the previous chapter in part because they are more idiosyncratic. [

91

5. SOFTWARE ENDURES

will describe these layers not as facts about the world but as inventions by humans. But I
again apologize in advance for the brief nerd storms that I have been unable to keep out of
this book. As in the previous chapter, I will progress from lower layers to the upper ones.

5.2 Instruction Set Architectures

Fred Brooks, working at IBM in the 1960s, is credited with developing the idea of an
instruction set architecture (ISA), which abstracts what the hardware in a computer does.
When a computer executes a program, it executes a sequence of instructions. An instruc-
tion may, for example, compare two numbers. Another instruction may specify which
instruction to execute next based on the outcome of the comparison. The set of instruc-
tions that a computer can execute is called, not surprisingly, its “instruction set.” Before
Brooks, every distinct model of computer had a different instruction set.

In the 1960s, IBM was developing a family of computers called the System/360 family.
One of the goals of the System/360 project was to produce a diverse product line of
computers that could all execute the same programs. That is, once you had a bit pattern
to put into the instruction memory, that same bit pattern would work on an entry-level
computer and on a more advanced, more expensive model. This means that multiple
distinct hardware designs all need to interpret programs, stored as bit patterns, in the same
way. The hardware could vary by executing programs faster or slower or by providing
more or less memory, but the basic functionality of the program should be the same on all
instances of the hardware.

To accomplish this, Brooks proposed a standardized “architecture,” a specification that
defines a fixed instruction set and the bit pattern encoding each instruction. The resulting
instruction set architecture is called the IBM System/360 ISA.

It’s worth an aside to understand how different Fred Brook’s world of computers was
compared with ours today. A typical IBM 360, the model 25, could be rented for $5,330 a
month or purchased for $253,000 in 1968 (equivalent to about $35,800 and $1.7 million in
2016). The model 25 was aimed at users of “small and medium sized computers” (IBM,
1968). In its largest configuration, its main memory contained 48,000 bytes (each byte
is 8 bits). By contrast, the main memory on the laptop I am using to write this book has
about 16 billion bytes, and the purchase price was about $2,000.

Despite the enormous differences in cost and scale, Brooks’ basic idea of an ISA persists
almost unchanged to this day. The ISA used in the laptop on which I am typing this text

92

5.2. INSTRUCTION SET ARCHITECTURES

Figure 5.1: Original IBM Personal Computer, model 5150.
[Image licensed under CC BY-SA 3.0 by Ruben de Rijcke.
From https://commons.wikimedia.org/w/index.php?curid=9561543.]

93

http://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/w/index.php?curid=9561543

5. SOFTWARE ENDURES

2

Ke)

N

% cmp eax, ebx _
> Jje label S
o o
a -
“— ES
o Q
.5 label: g
5 =
2v

©

Figure 5.2: Small fragment of x86 assembly code.

is called the “x86” instruction set. It was originally introduced in 1978 in the Intel 8086
microprocessor, about 10 years after the IBM 360 first appeared. A variant of the 8086
called the Intel 8088 was used in the first IBM PC, introduced in 1981, shown in figure
5.1

The x86 ISA grew over time, but it grew in a “backward compatible” way, meaning that
an Intel 80186, 80286, 80386, 80486, and many other microprocessors could all execute
programs that were written for the 8086. The Haswell processors shown in figure 3.2 are
also x86 processors.

The astonishing persistence of the x86 ISA is a real testament to the power of Brooks’
idea. Ironically, the hardware becomes transient, disposable after a few years, and the
software endures for decades. Even the word “endure” underscores the irony because this
word originates from the old French usage, where “dure” means “hard,” and to build a
“durable” building, one builds it out of hard material such as stone. Yet in computing,
software endures much better than hardware.

Let me illustrate how an ISA abstracts the hardware. Suppose, for example, that one
of the tasks for the machine whose hardware is depicted in figure 4.6 is to compare two
numbers. If the numbers are equal, then it should branch to a different part of the program.
If the numbers are unequal, then it should continue executing the sequence of instructions
that it is currently executing. This might be part of the search function on Wikipedia, for
example, or a search for the occurrence of a word in a text.

Figure 5.2 shows a small segment of a program for an x86 machine. In the figure, each
box represents an instruction. The machine executes the instructions one after the other,

94

5.2. INSTRUCTION SET ARCHITECTURES

from top to bottom. The grey boxes represent arbitrary, unspecified instructions. Two
specific instructions are shown. The first is

cmp eax, ebx

This instruction compares the contents of two registers named “eax” and “ebx.” These
two registers contain 32-bit numbers; prior to executing this instruction, the program has
presumably loaded these registers to contain the numbers representing the characters we
are searching for. For example, the characters “Plat” can be loaded into a 32-bit register,
assuming that each character is encoded with 8 bits.

The previous instruction is written in assembly language, a textual specification that has
to be translated into machine code. The machine code for this instruction is

0011010111010100

The text in the figure is translated into this binary representation by a program called an
“assembler.” The “cmp” word is called a “mnemonic” because it is easier to remember
than “0011010111010100.”

If I may digress briefly, I would like to comment on the culture of programmers. In the
1960s and 1970s, the memory in computers was much smaller than it is today. At that
time, it was advantageous to represent an instruction with the mnemonic “cmp” rather
than “compare” because “cmp” requires only 24 bits to store, whereas “compare” requires
56. Today, memory is plentiful, but engineers still feel compelled to use short cryptic
mnemonics rather than complete words. They will write “fun” rather than “function,”
“len” rather than “length,” and “buf” rather than “buffer.” I personally find this an amusing
(and sometimes annoying) cultural relic.

The other instruction explicitly shown in figure 5.2 is
Jje label

The mnemonic “je” stands for “jump if equal,” and the argument “label” tells the assem-
bler where in the program to jump to if the registers compared by the previous instruction
are equal.

There are aspects of this design that seem quite arbitrary, besides the cosmetic choice of
mnemonics. For example, why did the designers of the x86 instruction set choose to first

95

5. SOFTWARE ENDURES

compare and then jump in two separate instructions? Why didn’t they combine these into
a single instruction, such as

Jje eax, ebx, label

They could have done this, but it would have complicated the hardware design because
now a single instruction needs to encode four things: the “jump if equal” command, the
two registers to compare, and the destination address. The engineering problem that the
designers of the x86 architecture were solving straddled two levels of abstraction: the
hardware design at the digital machine level, as in figure 4.6, and the instruction set that
would be used to specify programs. The phenomenon of assembly language and the lower
level phenomenon of the computer hardware affect each other with bidirectional causality.

Engineers who work at these levels are called “computer architects.” There is a long
and rich history of architectures, most of which have not survived in the marketplace,
and some of which operate in very different ways. So-called “dataflow computers,” for
example, don’t even specify programs as sequences of instructions (Arvind et al., 1991).
Today, a small handful of instruction set architectures dominate (x86, ARM, SPARC,
MIPS, RISC-V, and few others).

Although a computer architect operates at a level quite separated from the “sciences of the
natural,” ample opportunity exists to use the scientific method to optimize computer archi-
tectures. Hennessy and Patterson (1990) revolutionized the field of computer architecture
by advocating in their textbook a “quantitative approach,” which amounted to systematic
use of experiments. A computer architect can form a hypothesis that a particular choice of
instruction set design will improve performance and then design experiments to measure
the performance on actual programs. This could be done using programs found “in the
wild,” but these days it is done instead with standardized benchmark suites. The programs
in such a suite are idealized models of real programs that attempt to capture their essential
features.

The concept of an instruction set architecture brings us safely across the boundary from
hardware to software. It is now possible to build applications by writing textual programs.
But doing so in assembly language is not a good idea. The programs are too difficult
to understand at such a low level of abstraction. To bring up the level of abstraction,
computer scientists invented programming languages.

96

5.3. PROGRAMMING LANGUAGES

5.3 Programming Languages

Fred Brooks, crediting Aristotle, in a famous paper titled No Silver Bullet—Essence and
Accidents of Software Engineering, made a distinction between accidental complexity
and essential complexity (Brooks, 1987). Essential complexity, Brooks argues, is the
complexity inherent in the problem that we are asking the software to solve. Accidental
complexity arises from the difficulties that “today attend [software] production but are not
inherent.”

If I were asked to write this book using a keyboard with only two keys labeled “0” and “1,”
I could, in principle, do so. The computer, after all, stores this entire book as a sequence
of zeros and ones. But it would be difficult to write a book this way. The reality is that this
book is difficult enough to write without having to deal with such accidental complexities.

Following Brooks, I would argue that the essential difficulties in writing this book center
on how to weave an accessible story around highly technical topics. The technology
I have at my disposal has probably removed nearly all of the accidental complexities
around this task. I have a QWERTY keyboard, and I can touch type quite fast. I have
excellent, free, open-source word processing software (IZ[EX). When I can’t recall what
exactly it is that Fred Brooks said in his silver bullet paper, I just go to Google and search
for “silver bullet,” and I quickly have the paper right in front of me. The only remaining
difficulties are the essential ones that follow from the possibly quite controversial cases
that I’'m trying to make, including the one here, that technology development is a funda-
mentally creative human activity driven by culture and aesthetics and built on models that
are human fabrications much more than discovered natural laws. Only the difficulty of
making this case makes writing this book difficult.

The engineered systems that help me, my laptop computer, ISTEX, Wikipedia, and Google,
are human constructions of astonishing complexity. The engineers responsible for them
relied on tools that also removed many of the accidental complexities, enabling them
to focus on the essential complexities. Jimmy Wales and Larry Sanger, who created
Wikipedia, did not write their programs in binary or even assembly language. In fact,
they used several additional layers of models.

The next layer above ISAs and assembly language is the programming language. In
late 1953, John W. Backus at IBM started a project to develop an easier language for
expressing programs, particularly those extensively using mathematical expressions. The
result of this project was Fortran, a language that endures to this day, with the latest update
to the language occurring in 2008.

97

5. SOFTWARE ENDURES

Pm EE]

; __>1IIII"‘ o

JJJUUUJUUDUULJU'JGIUJUl

ABUTSEN TS

l‘llllllllllllllllll|lII|‘il‘: I ! .‘mw‘lx'1|»|\|11111\11|111l1

212221”2:22432_ 2222222 2 22222 22222222222222 1222172222222l

.MJJJ‘JIJJ];J]JHJ:]J}J5‘,- 33 3 3333333 “333331'5333]3334'3]‘

‘i‘(lf‘jl“‘lllf(,’i" §44444 §44 | 4 §44444444444 1444‘4‘444\l
SI5555(sSHSH55555555050555555 5 55555555 5555555555555555555555555/355555 35&
's%aesé;sss:|ss:|'|f‘»* 65666 ; ':,;;Lwru#aasea;zﬁa|caa

»77 URRRRRE 117]) 7 ‘*77777777171;]7;71771‘

8888838 3’33’4/\

Figure 5.3: Punched card containing one Fortran statement.
[Image licensed under CC BY-SA 2.5 by Arnold Reinhold, via Wikimedia Commons.
From https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg.]

In Backus’ time, “Fortran” was written “FORTRAN.” In fact, most everything was written
using only capital letters because if you restrict the alphabet to only capital letters, then
each letter can be encoded with fewer bits, saving memory. Like the curt mnemonics
of assembly code, the use “all caps” became a bit of a cultural relic. My late colleague
Chittoor Ramamoorthy, a charming man who went by “Ram” and contributed a great deal
to the field of computer architecture, persisted until his death in 2016 in using only capital
letters in all his communications, seemingly oblivious to the cultural shift where the use
of all caps became yelling.

Figure 5.3 shows a single Fortran statement on a punched card. In the 1950s and 1960s,
punched cards were both a storage medium (a stack of cards was a record of the program)
and a data entry mechanism. This card reveals one of the key innovations of the Fortran
language, which is the use of symbolic variable names rather than memory addresses to
refer to numeric quantities that the program is to manipulate. Specifically, the Fortran
statement on the card is

Z(l) =Y + W(1)

98

http://creativecommons.org/licenses/by-sa/2.5
https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg

5.3. PROGRAMMING LANGUAGES

Here, v refers to a value that has presumably been previously assigned, perhaps using a
Fortran statement such as

Y = 42

7 (1) and w (1) refer to the first values in arrays named z and w.! Writing code this way
removes the accidental complexity of having to decide where in memory these variables
are to be located, choosing registers to temporarily store the values, giving instructions
for loading the values from memory into registers, and finally giving the instruction to
perform the add. The latter style is what would be required in assembly code.

A Fortran program is translated into assembly code (or directly into machine code) by a
compiler. The compiler is responsible for deciding which registers are used for what and
where in memory values are stored. Designing good compilers is quite an art, with many
opportunities for optimization and experimentation.

But designing good programming languages is more subjective. Programming languages
can develop fervent, almost religious followings. Followers of so-called “functional
programming,” for example, are notorious for their zeal, advocating languages such as
Haskell, named after logician Haskell Curry, and SML, Standard ML. SML is a descen-
dant of ML (MetalLanguage), developed by Robin Milner, a prolific computer scientist
and one of my personal heroes who did most of his work at the University of Edin-
burgh in Scotland and at Cambridge in England. These languages have an elegant math-
ematical way of specifying computation. Programs can be quite aesthetically pleasing,
succinctly stating intent without over-specifying how the intent is to be realized. Never-
theless, among the pantheon of languages, pure functional languages have a small, albeit
devoted following.

Much like natural language, programming languages shape the thinking of a programmer.
As I mentioned earlier, Abelson and Sussman talk about computing as a “procedural
epistemology’”:

! Fortran makes extensive use of arrays as a way to manage memory. For example, an array W with four
integers might be declared and then initialized with the statements

INTEGER, DIMENSION(4) :: W
W = (/ 42, 43, 44, 45 /)

After these statements are executed, the value of W (1) is the integer 42, the value of W (2) is the integer
43, and so on.

99

5. SOFTWARE ENDURES

the study of the structure of knowledge from an imperative point of view, as
opposed to the more declarative point of view taken by classical mathematical
subjects. (Abelson and Sussman, 1996)

A program is imperative in the sense that it tells a computer what to do, as opposed to a
mathematical equation, which tells what is. But there are many ways to tell a computer
what to do.

A direct way to tell a computer what to do is to tell it how to do it. Computer scien-
tists call a program “imperative” if it specifies a sequence of commands, giving a step-
by-step procedure, a recipe that the computer is to follow. An imperative program
directly represents knowledge as procedure, and like all knowledge, it is surely shaped
by language. Most of the widely used programming languages, including Fortran, are
imperative languages.

The functional languages, in contrast to imperative languages, adopt the declarative style
of mathematics. In an imperative language, for example, the pair of statements

x = 1;
x = 42;

means to first assign the value 1 to variable x and then to change the value of the variable
x to 42.2 In a declarative language, these two statements are contradictory and will be
rejected by a compiler. In a declarative language, the = operator has a different meaning.
A statement x = 1 does not assign a value to a variable at a particular point in a procedure
but rather declares that the symbol x means 1, not at a point in a procedure but always.
The order in which such statements are given is irrelevant. In a declarative language,
the two statements above are contradictory because x can’t mean 1 and also mean 42.
Their declarative style is distinctly different from the procedural, step-by-step style of
imperative programs. It is perhaps ironic that despite claiming that software constitutes a
“procedural epistemology” and “the study of the structure of knowledge from an imper-
ative point of view,” Abelson and Sussman’s book uses throughout a dialect of Lisp, a

2 Among computer scientists, the number 42 is popular to use in examples because of Douglas Adams’

Hitchhiker’s Guide to the Galaxy, a 1978 BBC radio comedy series that later became a “trilogy” of five
books. In that story, a special computer called Deep Thought is built to answer the “ultimate question of
life, the universe, and everything.” The computer takes 7.5 million years to compute and check the answer,
which turns out to be 42. The computer reports that the answer seems meaningless because the beings who
programmed it never actually knew what the question was.

100

5.3. PROGRAMMING LANGUAGES

functional language originally developed by John McCarthy in the 1950s. Although a
Lisp program tells a computer what to do (and hence is imperative in the broader sense of
the word), it is a declarative language at its core.

Purely functional languages have been less successful than imperative languages, having
only a small but devoted following. As Kuhn says,

As in political revolutions, so in paradigm choice—there is no standard
higher than the assent of the relevant community. (Kuhn, 1962, p. 94)

Kuhn talks about scientific paradigms being incommensurable. They can be irreconcil-
able accounts of reality, where one paradigm cannot be understood or judged through the
conceptual framework and terminology of the other. At their most basic level, program-
ming languages are not incommensurable because they are all (today) essentially equiv-
alent to Turing machines, which have an imperative flavor, and to Church’s lambda
calculus, which has a declarative flavor (see chapter 8). But programmers are usually
not using these languages at such an elemental level, and when bundled with the libraries,
tools, patterns, and idioms that accompany a language, they arguably do become incom-
mensurable paradigms. Kuhn continues,

To be accepted as a paradigm, a theory must seem better than its competitors,
but it need not, and in fact never does, explain all the facts with which it can
be confronted. (Kuhn, 1962, p. 18)

Programming languages do not exist to explain facts but rather to realize algorithms.
Any language will realize some algorithms better than others. This may help explain the
cacophony of languages that prevail today. If you can indulge me, dear reader, I would
like to explore that cacophony.

Wikipedia is realized by an open-source program called MediaWiki, which is written in
the PHP programming language. The first version of MediaWiki was created in 2001
by Magnus Manske, then a student at the University of Cologne. His program was later
named MediaWiki, a permutation of the name of its biggest user, the Wikimedia Foun-
dation, which runs Wikipedia. As with a lot of open-source software, many people have
contributed to MediaWiki since Manske’s original design.

Why did Manske use PHP to program MediaWiki? PHP was originally created in 1994
by Rasmus Lerdorf, a Danish-Canadian programmer who worked at Yahoo. PHP is a

101

5. SOFTWARE ENDURES

“scripting language” specifically designed for building web pages. A scripting language
is a programming language intended for specifying short scripts that automate tasks that
would otherwise be performed by a human. Notice the layers of culture rather than just
technology behind all this: scripting language, wiki, open source, web page. These things
did not exist three decades ago, and they are much less new technologies than they are
new cultures.

The acronym “PHP” originally stood for Personal Home Page, but according to the current
developers, PHP now stands for “PHP: Hypertext Preprocessor.” The new name makes
PHP a “backronym,” which is an acronym where the words are chosen to match the letters
rather than vice versa. Moreover, the backronym is self-referential or recursive because
the “P” stands for “PHP.” Recursion is one of the central tenets of computer science, one
of the basic concepts taught in every introductory computer science class. So computer
scientists like to pun with recursion.

The use of recursive acronyms was popularized by Richard Stallman with GNU, which
stands for “GNU’s not Unix!” Choosing a recursive backronym for PHP was, I suspect,
a bow to Stallman. GNU is a collection of software that Stallman intended to eventually
replace Unix, an operating system originally developed in the 1970s at Bell Labs by Ken
Thompson, Dennis Ritchie, and others.

Richard Stallman (figure 5.4) is one of the most influential individuals today in the world
of software. Stallman is responsible for a great deal of software that is used worldwide for
many purposes. He is also one of the most interesting characters in the story of software.
Stallman’s GNU project was, in part, a revolt against corporate America. He has spent
much of his effort in recent years campaigning against all sorts of encumbrances on soft-
ware, including software patents, digital rights management, software license agreements,
nondisclosure agreements, activation keys, copy restriction, and binary executables that
do not include the source code.

In 1985, Stallman launched the Free Software Foundation, which is committed to freeing
software. Note my odd use of words; I didn’t say it was committed to “free software,”
which could be easily misunderstood as software that does not cost money. The cost of
the software is irrelevant; Stallman uses “free” as in “freedom.” In fact, I'm convinced
that Stallman anthropomorphizes software, and that his commitment is to freeing the
software so the software can go wherever it likes and do whatever it likes, rather than
freeing the humans that use software. The latter model, which is better represented by
the Berkeley open-source software movement, allows humans to do whatever they like
with open-source software. Stallman’s model, however, constrains the humans to ensure

102

5.3. PROGRAMMING LANGUAGES

Figure 5.4: Richard Stallman in Vietnam. [Copyright by Richard Stallman, released
under “CC-ND,” https://stallman.org/photos/.]

that they never enslave the software. The copyright notice on GNU software, called the
GNU General Public License (GPL), specifically requires that any uses and modifications
of GPL’d software preserve the same open rights as the original. This style of copyright
is sometimes called a “copyleft” presumably because of seemingly left-leaning politics
compared with the right-wing corporate-dominated copyright.

I’m hoping that you can see that the world of software constitutes a diversity of cultures
and a literature with parody, social commentary, language, and politics all playing a role,
along with technology.

But I digress. My topic in this section is programming languages. Returning to PHP, the
language used to create MediaWiki, Lerdorf did not intend PHP to be a new programming
language. In an audio interview, Lerdorf noted,

I don’t know how to stop it, there was never any intent to write a program-
ming language --- 1 have absolutely no idea how to write a programming
language, I just kept adding the next logical step on the way. (Lerdorf, 2003)

103

5. SOFTWARE ENDURES

It is not uncommon for major software artifacts to come about this way. They start as
small, personal projects, and they grow organically. Lerdorf quipped, “I really don’t like
programming. I built this tool to program less so that I could just reuse code.” With this
style of design, the personality and aesthetics of the original authors have a huge impact
on the end product.

Besides PHP, several of the most widely used programming languages today, C, C++,
C#, and Java, share many essential features with Fortran and with each other. Even so,
crossing denominations is rare. A C++ programmer will fight any request to write a Java
program and vice versa, often with dogmatic arguments of faith and aesthetics.

In his 1987 Silver Bullet article, Brooks argued that programming languages had
advanced sufficiently to have removed nearly all the accidental complexity in program-
ming. The remaining essential complexity, he said, accounted for what has become known
as Brooks’ law,

Adding manpower to a late software project makes it later.

Brooks first articulated this law in his 1975 book, The Mythical Man Month (Brooks,
1975), which is often credited for launching the field called “software engineering.”
Brooks once quipped that his book is called “The Bible of Software Engineering” because
“everybody quotes it, some people read it, and a few people go by it.”

But I believe that Brooks vastly underestimated the complexity of systems that were to
come, and programming languages alone do not provide an appropriate level of modeling.
Many modern software systems consist of millions of lines of code, vastly more than any
human can comprehend at the level of the programming language. Instead, programs have
to be designed and understood as compositions of subprograms, much the way hardware
at the digital machine level abstracts the low-level logic gates.

If you study computer science today, you will likely learn to use only a small number
of programming languages, maybe even only one. In my opinion, a software engineer
who has mastered only one language is about as well educated as a medieval monk who
has studied exactly one book. There is a great deal to be learned from even studying the
extensive graveyard of programming languages that have faded from memory.

The following, for example, is a short program in the programming language APL, which
I used in a class that I took at Yale in 1978:

x[A x + 5710]

104

5.3. PROGRAMMING LANGUAGES

APL, which stands for A Programming Language, was developed by Kenneth Iverson in
the late 1960s. Iverson received the Turing Award in 1979 for this work. At Yale, an
entire computer room was equipped with special terminals that had keyboards that could
make the characters in the previous program, such as A and «.

Iverson wanted a language that would concisely specify mathematical operations on entire
arrays of data all at once. I can explain the prior program if you can tolerate a short but
intense nerd storm. The inner expression 5710 means, in APL, to create an array with
five elements consisting of random numbers in the range 1 to 10 with no repetitions.
For example, evaluating this expression in APL might yield the array [9,4,3,8,1]. The
expression x <— 5?10 means that this array should become the value of the variable x. The
operator represented by the symbol A takes the array that is now the value of x, sorts it,
and returns indices that can be used to retrieve the values in the array in numerical order.
The construct x[---] then uses that array of indices to retrieve the values. So here is a
sequence of evaluations that yields a result:

x[A x <+ 5710]

x[A x<19,4,3,8,1]]
x[A [9,4,3,8,1]]
x[[5,3,2,4,1]]
1,3,4,8,9]

So this program generates an array with five random numbers and then sorts the array so
that you get the numbers in increasing order. As you can see, APL programs can be quite
cryptic, but they tend to be concise.

A graveyard language that takes the opposite approach is COBOL, after “common
business-oriented language.” COBOL was designed in 1959 based on an earlier language
developed by Grace Hopper, shown in figure 5.5. Hopper was an early proponent of high-
level programming languages that were portable, meaning that they could be compiled to
execute on a variety of machines, even machines with different instruction set architec-
tures.

COBOL was intended to have a syntax more like English than like mathematics, so it
tends to replace symbol operators with words. For example, instead of the APL assign-
ment statement X < y, in COBOL you would say MOVE y TO x. For many years,
COBOL was widely used for business applications such as banking, but today few new
programs are written in COBOL.

105

5. SOFTWARE ENDURES

Figure 5.5: Rear Admiral Grace Hopper, 1906-1992. Hopper was an early proponent of
portable programming languages and pioneered a style of programming where programs
read more like English-language sentences than like mathematical expressions. [Image
courtesy of the United States Navy.]

106

5.4. OPERATING SYSTEMS

COBOL and APL represent extremes in an exploration of programming paradigms.
COBOL is verbose, using English-language words, with the idea that programs would
be more readable by business people. APL is concise, cryptic, and requiring special
keyboards. Both succumbed to the Darwinian competition of paradigms, dinosaurs that
were once successful but are now largely extinct.

Many more languages are in the graveyard, including Algol, Pascal, PL/I, SNOBOL,
Smalltalk, and Prolog. Each of these has interesting ideas and an interesting story. Algol
introduced many features present in most modern imperative programming languages,
including Java, C, C++, and C#. Pascal introduced the idea of compiling first into
a virtual machine language (called byte code) and then executing that program in a
program that simulates the virtual machine. This is a centerpiece of the widely used Java
language today. SNOBOL, developed at Bell Labs by David Farber, Ralph Griswold,
and Ivan Polonsky in the 1960s, introduced high-level manipulation of text, including
parsing and pattern matching, a centerpiece of the widely used JavaScript language today,
among others. Smalltalk was one of the earliest object-oriented languages, providing a
way of structuring programs that is widely used today. Prolog is a “logic programming”
language that elegantly expresses rule-based queries over structured data.

Each of these languages encodes a paradigm, a way of thinking about computation. These
languages did not die the way Kuhn’s scientific paradigms die. No crisis was created
by anomalous observations that exposed discrepancies between the paradigm and the
natural world. Rather, these languages either mutated into new species of languages (as
in ALGOL and Pascal) or progressed toward extinction in a Darwinian competition of
survival of the fittest or the most promiscuous (as in APL and COBOL).

5.4 Operating Systems

Today, the phrase “operating system” means, to most people, one of three things: Apple’s
OS X, Microsoft’s Windows, or Linux. Linux was originally developed in the early 1990s
by Linus Torvalds, a Finnish (and later American) software engineer. Linux has become
one of the most successful open-source software projects ever, with thousands of contrib-
utors and widespread adoption. Linux, like OS X, is based on the Unix operating system
originally developed in the 1970s at Bell Labs by Ken Thompson and Dennis Ritchie, with
contributions from many others. These three systems, OS X, Windows, and Linux, are
the survivors of promiscuous evolution and competition over decades. Today, we should

107

5. SOFTWARE ENDURES

add iOS from Apple and Android from Google, operating systems designed specifically
for smartphones and tablet computers.

I could write a great deal about operating systems, but instead I would just like to focus
on how an operating system encodes one or more paradigms. A key feature of all these
operating systems is the file system. In the hardware of a computer, various forms of
memory store sequences of bytes, where each byte is a sequence of eight bits. The laptop
computer on which I am writing this book has 16 gigabytes of volatile memory (memory
that forgets its contents when you turn off the power) and one terabyte of nonvolatile
memory.? The nonvolatile memory is sometimes called the “hard disk,” although these
days it is more likely to be implemented using a type of semiconductor memory called a
flash memory rather than the older spinning magnetic disk memory. As far as the hard-
ware is concerned, the contents of the hard disk is just a sequence of a trillion bytes. The
hardware can retrieve or update any single byte.

But a list of a trillion bytes, by itself, is not a useful way to organize information. Early
operating system designers, such as Thompson and Ritchie, built into the operating system
a way of encoding onto these disks a notion of a “file.” A file is a subset of the eight
trillion bytes that forms a logical unit, and a file system supports assigning a name to
the file and organizing files into hierarchical directories, which are also named. With the
advent of graphical user interfaces, these directories acquired the metaphor of a “folder,”
even though, for physical-world folders, folders that contain folders are rather awkward.

My key observation is that nothing in the computer hardware provides the notion of a
file and the organization of files into directories. The software embodied in the operating
system provides this notion.

The software that realizes the file system is quite clever. It does not even require that the
contents of a file be contiguous in memory; the bytes of a file may be scattered all over
the disk. The operating system software keeps track of which bytes belong to which file
and what directory the file is logically contained in.

Once you have a file system to work with, you no longer need to worry about how your
data is stored on a disk. You access the file as a single conceptual unit.

3 Sixteen gigabytes is about 16 billion bytes, and a terabyte is about one trillion bytes.

108

5.5. LIBRARIES, LANGUAGES, AND DIALECTS

5.5 Libraries, Languages, and Dialects

Millions of lines of code get translated into millions of zeros and ones that coerce
billions of transistors to regulate the sloshing of who-knows-how-many electrons. This is
starting to sound like Carl Sagan, whose signature lines involving “billions and billions”
frequented his PBS television series Cosmos: A Personal Voyage in the 1980s. Sagan
was talking about stars and galaxies and often emphasized the incomprehensible range of
possibilities, including extraterrestrial life, that such numbers imply.

Digital technology seems to have hit a threshold where the possibilities are limited more
by the human imagination than by physical constraints imposed on us by the world. What
can be accomplished by software far exceeds what we accomplish today, even without
further technological improvements. Software has become a digital medium for creativity.
I will explore this issue in more detail in chapter 6, and what we cannot do with software
in chapter 8, but for now let’s just focus on how to manage the vastness of the possibilities.

Modern programming languages do, as Brooks claimed, mitigate a great deal of accidental
complexity, but not enough to build really interesting systems like Wikipedia. Just as
digital machine designs are augmented with standard cell and IP libraries, languages are
augmented with component libraries and entire subsystems. As of this writing (August
2016), the Java language, Standard Edition version 8, has 4,240 software components
built in for use by software designers. A software engineer will use these components
in much the same way that a hardware engineer will use standard cells or an architect
premanufactured components such as windows and doors.

Such a library of components becomes like a rich vocabulary, jazzing up the expressive-
ness of the language. Computer scientists do not usually consider such a library to be part
of the language but rather something living and evolving apart from the language. But the
library could well have far greater impact on the productivity and creativity of designers
than the language. The mechanisms and conventions by which components in the library
interact become, in effect, at least a dialect and sometimes even a new language. It is
difficult to read a program if you are not familiar with the components it is using, even if
you are fluent in its language.

Consider another widely used programming language for web applications, JavaScript,
originally developed in 10 days in May 1995 by Brendan Eich. At the time, Eich
was working for Netscape, one of the first companies to try to capitalize on the World
Wide Web. Netscape was founded as Mosaic Communications Corporation in 1994 by
Jim Clark and Marc Andreessen but eventually lost the browser wars to Microsoft and

109

5. SOFTWARE ENDURES

disappeared. Netscape’s browser eventually morphed into the widely used, open-source,
community-developed Firefox browser.

JavaScript, unlike PHP, is designed to run in the browser rather than in the server. This
means that if you access a web page from your laptop or smartphone, and the web page
includes a JavaScript program, that program runs on your laptop computer or your smart-
phone not on the server computer hosting the web page. Many of the web pages you visit
routinely include a JavaScript program. Like PHP, the design of the JavaScript language
exhibits interesting idiosyncrasies that reflect personal aesthetic decisions made by the
original author.

The vast majority of the most widely used websites make extensive use of JavaScript.
However, it is difficult to design beautiful and sophisticated web pages with JavaScript
alone. Web designers leverage an ecosystem with thousands of “modules” available to
designers. Many of these are open-source modules collectively developed by the commu-
nity, much the way a Wikipedia page is collectively developed.

One widely used JavaScript module for creating sophisticated web pages is jQuery, orig-
inally created by John Resig. If you are fluent in JavaScript but do not know anything
about the jQuery module, then programs that use it will be unreadable to you. Indulge me
to illustrate this.

The JavaScript language, unlike most other programming languages, allows variable
names to begin with the dollar sign character, $. The jQuery module defines a single
global variable that it calls simply $. That is, the name of the variable is a single char-
acter, the dollar sign. This variable gets widely used in programs. To those unfamiliar
with this idiom, the program looks cryptic, as a text written in the cyrillic alphabet looks
to an English speaker. But the dialect is much richer than implied by just this idiom.
Consider the following short JavaScript program:

$ (document) . ready (function () {
S ("#target") .text ("Hello World");
}) i

If you are fluent in the JavaScript language but unfamiliar with the jQuery module and
the modules provided by today’s browsers, then this program is completely unreadable.
It makes as much sense as the following does to someone fluent in English*:

4 From Through the Looking-Glass, and What Alice Found There, a novel by Lewis Carroll, 1871.

110

5.5. LIBRARIES, LANGUAGES, AND DIALECTS

Twas brillig, and the slithy toves
Did gyre and gimble in the wabe

Like this poem, the JavaScript program’s verse is vaguely familiar but oddly incompre-
hensible to the JavaScript programmer.

I will spare you the details, but the prior JavaScript program can be used together with
an HTML file and a style sheet to create the rather trivial web page shown in figure 5.6.
HTML, for HyperText Markup Language, is a completely different language, originally
developed in 1980 by Tim Berners-Lee, creator of the World Wide Web, while he was
a contractor at CERN, the European Organization for Nuclear Research (the acronym
comes from the French name). The HTML that works with the previous JavaScript
program to define the web page in figure 5.6 is as follows:

<!DOCTYPE html>
<html>
<body>
<div id="target"></div>
</body>
</html>

Notice the idiosyncratic use of symbols <, >, and /, which were borrowed by Berners-Lee
from a documentation format being used internally at CERN at the time.

(NON ¢

[

> +
Hello World

Figure 5.6: Web page using three languages and one dialect to specify.

111

5. SOFTWARE ENDURES

HTML is universally used today to specify the contents of web pages, along with yet
another language called CSS, for Cascading Style Sheets, first proposed in 1994 by Hakon
Wium Lie, who was working with Berners-Lee at CERN. To use the previous JavaScript
program, HTML is used to define the web page layout, and CSS is used to define the
styles used to render the page. For example, if we include the following CSS code:

#target {
color: red;

then the text “Hello World” will be rendered in red. Notice that the syntax of CSS is quite
different from HTML, which is quite different from JavaScript.

The web page of figure 5.6 is constructed using three distinct languages, JavaScript,
HTML, and CSS, and one dialect, jQuery, each idiosyncratic and designed largely by
a single creative individual. This is perhaps not as culturally rich and diverse as, say,
Jerusalem, but it is most certainly not just dispassionate, objective, soul-less technology.
It has every element of human subjectivity and invention pervading it. And millions of
people today use this particular combination of technologies to design sophisticated web

pages.

Of course, we could create a web page like that in figure 5.6 using HTML alone, but there
are good reasons for using this combination of technologies. Using JavaScript enables
the web page to dynamically update the contents of the page, making it interact with
the user. Using CSS separates visual presentation design elements from logical struc-
ture and functionality, modularizing the design better. Using jQuery mitigates the acci-
dental complexity associated with the fact that web pages can take a long time (relative to
computer speeds) to load from a server and provides convenient access to elements of the

page.

Although these languages and dialects each originated with a single individual, all are
now thriving open-source communities with hundreds of contributors. They have evolved
into a form of collective wisdom, like Wikipedia, rather than individual wisdom, like the
Encyclopedia Britannica.

The culture of these communities should make an interesting subject of study for a cultural
anthropologist. Resig, for example, first introduced jQuery to the web development
community at a conference called a BarCamp in 2006 in New York City. BarCamps might
be characterized as the anarchists’ conference, in that nobody and everybody organizes

112

5.5. LIBRARIES, LANGUAGES, AND DIALECTS

the conference. Unlike most professional conferences, which will have a prepublished
agenda with all events and presentations defined by an organizing committee, BarCamp
participants self-organize using the web, whiteboards, and Post-It notes.

The license history of jQuery also reflects an ongoing passionate debate about the nature
of open-source software. It was originally released using a GPL-style license as promoted
by Stallman (specifically the Creative Commons CC BY-SA 2.5 license) but was later
released under a less restrictive Berkeley-style license called the MIT license.

But I digress again (it is hard to avoid... the background stories are really quite inter-
esting). Let’s return to the subject of how to manage the vastness of possibilities that
software offers. Software technologies emerge chaotically in a Darwinian ecosystem of
ideas. Like a real Darwinian ecosystem, not everyone will agree on what makes one
idea more “fit” than another idea, and survival depends more on the ability to propagate
than on technical fitness. Promiscuity, personality, money, and culture have enormous,
incomprehensible effects.

One approach to understanding this problem is the anthropologists’ approach, which is to
study the culture as it emerges and attempt to extract wisdom from that study. Just as an
anthropologist might use the evolution of natural language as a key part of that study, a
software anthropologist might use the evolution of programming languages, with idioms,
dialects, and clichés.

One pioneering software anthropology effort was carried out by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides in their book on design patterns (Gamma et al.,
1994). Widely known as the “gang of four,” these authors attempt to categorize a variety
of widely used patterns and idioms in software construction. They credit Christopher
Alexander, architect, for inspiring their approach. Alexander proposed a pattern language
for buildings and cities, and they translated this approach to software. In a testament to
the difficulty of this task, in their preface, the gang of four state:

A word of warning and encouragement: Don’t worry if you don’t understand
this book completely on the first reading. We didn’t understand it all on the
first writing!

I probably should have included a similar statement in the preface to my book.

The cultural nature of software may help explain why software endures better than hard-
ware. Culture changes much more slowly than technology. The fact that software encodes
its own paradigms can also contribute to its durability. For example, although APL is an

113

5. SOFTWARE ENDURES

extinct language, it is easy to find a web page that, using a similar HTML, JavaScript, and
CSS combination, presents you with a customized APL keyboard and evaluates any APL
programs that you type in.

The cacophony of languages that prevail today is reminiscent of immature scientific fields.
Kuhn describes the scientific study of electricity in the first half of the eighteenth century
before it acquired its first universally accepted paradigm:

During that period there were almost as many views about the nature of elec-
tricity as there were important electrical experimenters, men like Hauksbee,
Gray, Desaguliers, Du Fay, Nollett, Watson, Franklin, and others. (Kuhn,
1962, p. 14)

But even at that time, Kuhn says, these competing paradigms shared a common meta-
paradigm:

All their numerous concepts of electricity had something in common—
they were partially derived from one or another version of the mechanico-
corpuscular philosophy that guided all scientific research of the day. (Kuhn,
1962, p. 14)

The languages used in web technology today, PHP, JavaScript, jQuery, CSS, and HTML,
all have a common “mechanico-corpuscular” core, specifically the Turing-Church notion
of computation, considered in chapter 8.

5.6 The Cloud

So far we have been talking about individual computers and the software that runs on
them. But many of the most interesting uses of computers today are far too big for a single
computer to handle. These applications run on computers housed in “server farms,” large
facilities that can consume up to tens of megawatts of electricity. It is hard to get exact
numbers, but various estimates indicate that, as of this writing (2016), Microsoft, Google,
and Amazon have on the order of a million servers each in their data centers. Many
companies operate perhaps an order of magnitude fewer servers, including Facebook,
Yahoo, HP, IBM, eBay, Intel, Rackspace, and Akamai. Each server may contain tens of

114

5.6. THE CLOUD

“cores,” individual computers that share certain resources among them, such as memory
and network interfaces.

Taken together, this means that there are single software-based services, such as Face-
book and Google search, that are running simultaneously on as many as millions of indi-
vidual computers. These applications make extensive use of PHP, JavaScript, and more
general-purpose programming languages like Java, discussed in the previous sections.
But they overlay on these languages yet higher level paradigms to handle the distribution
of tasks and data across many machines. Languages with curious names such as Pig Latin
and frameworks such as ZooKeeper, Sqoop, and Oozie encode the design styles of these
paradigms.

For example, Apache Hadoop is an open-source framework that has at its core a
distributed file system for spreading data across servers and a realization of a pattern called
MapReduce for delegating to servers chunks of a data processing operation. MapReduce
was invented in 2004 (and patented) by Jeffrey Dean and Sanjay Ghemawat of Google,
although as usual for inventions, the actual novelty is in dispute. MapReduce is strikingly
similar to patterns that had existed previously in older software for distributed computing
such as MPI (the Message Passing Interface) and database systems.

Hadoop forms an ecosystem of patterns and tools for the design of multiserver applica-
tions. Like many of its competitors, Hadoop assumes that hardware failures are common
because with millions of servers failure will occur. Hardware gets virtualized so that
applications can move from machine to machine with minimal disruption. An applica-
tion may even move from one machine to another machine of an entirely different type,
emphasizing the disconnect between the software and the physics of the hardware.

Server applications are often called on to handle truly vast amounts of data, much more
than any single computer could handle at once. Consider Google search, for example,
which returns in less than a second the results of searching billions of web pages and
handles on the order of 40,000 searches per second (Pappas, 2016). How does Google do
that? Storing the contents of the web on a computer and searching it each time a query
comes in clearly will not work. There is just too much data.

The key to a web search is collecting and indexing the data ahead of time. A major part
of the work of Google’s servers is not actually responding to search requests but rather
reading, indexing, and sorting web pages ahead of time and creating a massive distributed
data structure. A “web crawler” finds a website, collects the words on it, and follows
the links to other websites, all the while keeping track of link relationships between web

115

5. SOFTWARE ENDURES

pages. The collected data, including statistical features such as word proximity, word
ordering, frequency of links, and link associations, are used to build a “memory” of the
web that allows for quick recall.

In his book Turing’s Cathedral, George Dyson draws a thought-provoking analogy:

The behavior of a search engine, when not actively conducting a search,
resembles the activity of a dreaming brain. Associations made while “awake”
are retraced and reinforced, while memories gathered while “awake” are
replicated and moved around.

In 1950, Turing asked us to “consider the question, ‘Can machines think?” ”
Machines will dream first. (Dyson, 2012, p. 311)

Indeed, the human brain apparently uses sleep and dreaming to organize information.
Does this mean that Google’s million-server machines are a nascent intelligence in the
process of building some form of cognition by organizing information about the world? 1
defer this difficult question until chapter 9, where I confront the idea of a digital psyche.

There is quite a bit of sophistication (and secrecy) about how a search works exactly.
But one thing is sure: when you perform a Google search, it is not a single computer
that replies. Instead, your search is routed through a string of servers depending on the
keywords and language patterns in the search so that the search query goes to where the
organized data resides. No single server can store and access more than a tiny fraction
of the “knowledge” that the servers build while dreaming, so no single computer can
reasonably respond to an arbitrary search. The server that first sees your query will be
random, based on which servers are available, but after that the query will be forwarded
to servers based on keywords and patterns in your search.

Let’s consider how much data is involved. First, the amount of data is constantly
increasing. The content in the web grows, of course, but more interestingly (and
disturbingly, like Orwell’s Big Brother), a search engine will watch your every move and
use correlations with your previous searches, your location, and even a learned model of
your preferences to improve the search results (and to improve the likelihood that adver-
tisements presented to you will be relevant to you). When you read and shop online, you
are being read back. The data gathered gets fed into the dream machine to be organized.

It is hard to get solid numbers, but some 2016 estimates suggest that Google may be
storing on the order of exabytes of data. One exabyte is 10'8 or

116

5.6. THE CLOUD

1,000,000,000,000,000,000.

That’s a lot of data, and potentially all of it can be used to build models of the world,
using, for example, the machine learning techniques considered in chapter 11.

The web and users of the web provide a wealth of data for these servers to learn from, but
that is not the only source. Software providers are systematically trying to shift all of our
computing activity from our personal computers to servers in “the cloud.” This changes
the business model of software from product to service but, more important, gives the
software vendors more direct access to your data, to data about your use of their software,
and to data about you.

Even legacy data is being uploaded to these servers. Printed material such as books and
journals are being steadily digitized to be added to the online arsenal of information. In
2002, Google started a project to scan every book ever published. Dyson’s description of
this project is quite extraordinary:

At the time of my visit, my hosts [at Google] had just begun a project to
digitize all the books in the world. Objections were immediately raised, not
by the books’ authors, who were mostly long dead, but by book lovers who
feared that the books might somehow lose their souls. Others objected that
copyright would be infringed. Books are strings of code. But they have
mysterious properties like strings of DNA. Somehow the author captures
a fragment of the universe, unravels it into a one-dimensional sequence,
squeezes it through a keyhole, and hopes that a three-dimensional vision
emerges in the reader’s mind. The translation is never exact. In their combi-
nation of mortal, physical embodiment with immortal, disembodied knowl-
edge, books have a life of their own. Are we scanning the books and leaving
behind the souls? Or are we scanning the souls and leaving behind the books?

“We are not scanning all those books to be read by people,” an engineer
revealed to me after lunch. “We are scanning them to be read by an [artificial
intelligence].” (Dyson, 2012, p. 312)

Why stop at books? In 2006, Google bought YouTube for $1.6 billion. Because YouTube
is a video-sharing website, it provides a truly vast arsenal of data about the world. In
2014, YouTube said that 300 hours of new videos were uploaded to the site each minute,
on average. Although the technology for extracting useful information from video and
images lags behind that for extracting information from text, we can be sure that the

117

5. SOFTWARE ENDURES

technology will improve. The machines will start to dream in color. As data from sensors
comes online, for example, from connected cars, thermostats, and the whole Internet of
Things world, what more can the machines learn? I examine this question in the next
chapter.

118

Evolution and Revolution

Contents
6.1 NormalEngineering, 120
6.2 CrisisandFailure00ttt enn 124
6.3 Crisisand Opportunityt iee e 134
6.4 ModelsinCrisis ¢ v v v v v vt it i ittt 136

- in which I argue that technology revolutions differ from scientific revo-
lutions in that paradigms appear and disappear much more rapidly; new
paradigms do not necessarily replace old ones; and the crises that trigger
new paradigms do not arise so much from the discovery of anomalies but
rather from increasing complexity and technology-driven opportunity.

6. EVOLUTION AND REVOLUTION

6.1 Normal Engineering

In his Structure of Scientific Revolutions, Thomas Kuhn calls the research that is firmly
grounded in an established paradigm “normal science.” The LIGO gravitational wave
detector discussed in chapter 1, with its firm grounding in Einstein’s general theory of
relativity, despite its monumental scale, qualifies under Kuhn’s scheme as normal science.

Kuhn asserts that adherence to a paradigm is essential to normal science:

Without commitment to a paradigm there could be no normal science. (Kuhn,
1962, p. 100)

He calls normal science “mopping up operations” and “puzzle solving” and asserts that
this is what engages most scientists throughout their careers. The paradigms within which
they operate provide the framework for these operations.

We can similarly define “normal engineering” to be the process of design and optimization
within an established methodology and an established set of rules. Given a requirement
for, say, a web page with some interactive features, a software engineer is hired to design
the HTML and JavaScript code for the web page. This sort of engineering is easily and
effectively outsourced, and a whole industry has emerged in India to carry out such normal
engineering.

Although normal engineering is routine, it nevertheless demands skill and benefits from
talent. When designing a web page, for example, aesthetics are often as important as
functionality. Malcolm McCullough, in his 1996 book Abstracting Craft, focuses on this
aspect of normal engineering, observing that digital media, including the technology for
creating web pages and other digital artifacts, offer a whole new form of craftsmanship.
Unlike the physical crafts of, say, pottery and woodworking, this form of craft works with
abstract media, the zeros and ones of computing. But like the physical crafts, abstract
craft admits mastery and aesthetics.

Although normal science certainly admits mastery, it is a real stretch to say it admits
aesthetics. A scientist may object, observing correctly that personal taste is involved in
the selection of experiments to perform, the manner in which they are performed, and the
way the results are presented to the scientific community. I have to agree that there is
aesthetics in all of this, but the end product of normal science is not an artifact subject
to aesthetic judgment. It is, for example, the LIGO validation of Einstein’s prediction of
gravitational waves. The goal of such validation is not to please the human senses or to

120

6.1. NORMAL ENGINEERING

stir the soul. It is to reaffirm the Platonic truth of a prevailing paradigm in physics. Kuhn
asserts that the object of normal science ““is to solve a puzzle for whose very existence the
validity of the paradigm must be assumed. Failure to achieve a solution discredits only
the scientist and not the theory” (Kuhn, 1962, p. 80). How indeed would LIGO be viewed
if it failed to detect any gravitational waves? Would it have undermined Einstein’s theory
of relativity? Probably not.

A failure to create an effective or successful interactive web page would discredit the
software engineers assigned to the task. It would not undermine the paradigm of the
web or of the HTML and JavaScript languages. Success in such a project requires some
technology, but even more it requires craftsmanship.

Craftsmanship is human skill creating artifacts that did not previously exist. But the crafts-
manship in normal engineering is distinctly different from innovation. A beautiful web
page that is a pleasure to interact with is not necessarily innovative and almost certainly
does not constitute an invention, just as normal science does not seek novelties:

Normal science does not aim at novelties of fact or theory and, when
successful, finds none. (Kuhn, 1962, p. 52)

Craftsmanship and aesthetics can have as much or more impact on the success of an engi-
neering task as innovation. One of the factors in the success of the iPhone is undoubtedly
the aesthetic physical design, credited to Jonathan Ive. Amazingly, Apple managed to
patent this design, stamping it as an invention. The patent contains one claim, the entire
text of which is, “The ornamental design for a portable display device, as shown and
described” (Akana et al., 2012). In my opinion, this is an abomination that goes against
any reasonable notion of what constitutes an invention. The U.S. Patent and Trademark
Office should be ashamed of itself.

Of course, not all of engineering admits aesthetics easily. The design of a sewage handling
system for a building usually has only one aesthetic goal: make it invisible. Even so,
occasionally even plumbing is used as an aesthetic medium. Witness the Pompidou Center
in Paris, which exposes its guts in a bold and aesthetically driven reversal of conventional
practice in architecture (see figure 6.1). But with digital media, aesthetic elements are
much more common than in other branches of engineering.

As with any craft, mastery of digital media can have an enormous effect on the outcome
of a project. But mastery of a craft is quite orthogonal to innovation. Innovation can occur
within the framework of an established paradigm, of course. But a truly game-changing

121

6. EVOLUTION AND REVOLUTION

Vs

Figure 6.1: The Pompidou Center in Paris exposes the building’s mechanical functions
for aesthetic reasons. The building was designed by Richard Rogers, Renzo Piano, Gian-
franco Franchini, and their teams, and opened in 1977.

[Image licensed under CC BY-SA 3.0 by “Reinraum.”

From https://en.wikipedia.org/w/index.php?curid=37297406.]

122

http://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/w/index.php?curid=37297406

6.1. NORMAL ENGINEERING

Figure 6.2: In scientific revolutions, according to Kuhn, new paradigms typically replace
old paradigms. In technology revolutions, new paradigms may be built on top of old
paradigms, not replacing them so much as hiding them behind a layer of abstraction.
(Photos of a sign with the likeness of Charles Darwin on Santa Cruz Island in the Gala-

pagos.)

innovation, such as the stored-program computer credited to von Neumann or the World
Wide Web credited to Berners-Lee, is more like Kuhn’s paradigm shifts than like practice
within a paradigm. These innovations change the practice of normal engineering for many
successor engineers. The question I will address next is what brings about these paradigm
shifts. It turns out that the situation in engineering is quite different from that in science.

123

6. EVOLUTION AND REVOLUTION

6.2 Crisis and Failure

Kuhn claims that scientific revolutions occur only after an accretion of anomalous obser-
vations made under the old paradigm creates a crisis and only when a new paradigm
emerges to replace the old. These are not the forces that drive paradigm shifts in tech-
nology.

Paradigm shifts in technology occur for at least three reasons. First, the complexity of
systems being engineered overwhelms our human ability to understand or control these
systems. For example, programming languages emerged because writing correct machine
or assembly code became impossibly difficult. Second, it becomes possible to do some-
thing that nobody imagined was possible before. For example, Google and other search
engines enable nearly instantaneous search over everything humans have ever published.
Third, complex social, political, and business forces can drive paradigm shifts in tech-
nology. Military needs, for example, essentially created aviation, nuclear weapons, and
many other technologies, and military budgets provided most of the funding for the early
development of computing.

In section 3.2, Complexity Simplified, 1 pointed out that one source of complexity is
a large number of parts. Even simple parts with simple functions, such as transistors
acting as switches, when there are enough of them, enable enormously complex func-
tionality. Digital technology, rooted in these transistors, has been an enormous source of
complexity-driven paradigm shifts for several decades.

In 1965, Gordon Moore, cofounder of Intel,' famously predicted that the number of
components (transistors, resistors, diodes, and capacitors) in an integrated circuit would
double every year for at least the next ten years. In 1975, he revised the forecast rate to
double approximately every two years. This prediction, widely known as “Moore’s law,”
has been a guiding principle for the semiconductor industry ever since.

In practice, until around 2015, Moore’s prediction held steady. The Intel 8080 was
a single-chip microcomputer introduced in 1974 with approximately 4,400 transistors.
According to Moore’s law, therefore, a single-chip microcomputer in 2014 should contain

4,400 x 2(2014=19749)/2 ~, 4,610,000, 000 transistors,

I' Moore was one of the “traitorous eight” who left the Shockley Semiconductor Laboratory to found
Fairchild Semiconductor and start Silicon Valley.

124

6.2. CRISIS AND FAILURE

which is remarkably close to the 5.56 billion transistors on the Intel Xeon Haswell-ES,
introduced in 2014. Although the demise of Moore’s law has been predicted many times,
most industry observers seem to agree that as of 2015, it has finally significantly slowed.

This rapid acceleration of the capabilities of digital technology has created a steady stream
of crises, where inevitably the models and mechanisms used to design and program
systems repeatedly break down under the crush of additional capability. As far back
as 1972, Edsger Dijkstra, wrote,

To put it quite bluntly: as long as there were no machines, programming
was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem. (Dijkstra, 1972)

And that was just 1972! If it was a gigantic problem then, then there is no word for what
it is now.

Moore’s law refers only to individual computers on individual silicon chips. Today, we
find an extraordinary rise in the number of computing devices that are interconnected
through networks. Around 1980, Robert Metcalfe, cofounder of 3Com and coinventor
of Ethernet, the most widely used wired networking technology today, is said to have
postulated what is now known as Metcalfe’s law. This law states that the value of a
network is proportional to the square of the number of compatible communicating devices
on the network. So, for example, if a single isolated device is worth $1, then a network
with 10 connected devices is worth

$1 x 10? = $100.

A network with 100 devices would be similarly worth $10,000, and with 1000 devices,
$1,000,000. I'11 let you calculate Metcalfe’s assessment of the worth of the Internet today,
which has roughly six billion connected devices.

And the number of connected devices is growing fast. Today, industry leaders breathlessly
predict some 50 billion connected devices by 2020, due to the rise of the so-called Internet
of Things (IoT). The IoT connects devices that are not first and foremost computers, such
as thermostats, cars, door locks, climate control systems, and so on. As they give such
predictions, you can almost see the visions of dollars dancing in their eyes.

Because value presumably follows from capability, I assume that Metcalfe would
conclude that the capability of a network, not just the value, is also proportional to the

125

6. EVOLUTION AND REVOLUTION

square of the number of connected devices. Because complexity typically also follows
from capability, we should not expect any slowing of crises over the next few years, even
if Moore’s law grinds to a halt. The crush of increasing complexity does not appear to be
slowing.

In any technology, increasing complexity can create crises in two ways. First, designing
reliable systems becomes harder. The tools and models that worked well at lower
complexity strain until they break as the complexity increases. Second, perhaps as a
consequence of the first, the likelihood that a design project will fail increases.

When I worked at Bell Labs in the early 1980s, a large project called AIS/Net 1000
intended to provide bridges between the disparate computing systems that existed at
the time. At that time, interconnecting computers through networks was quite a new
phenomenon, and as evidenced by Metcalfe’s law, the value of such interconnections was
recognized, at least by Metcalfe.

But these interconnections exposed many incompatibilities between the computer
systems, particularly computer systems from different vendors. These systems had been
designed to work in isolation. The binary bit patterns used to represent numbers and text,
for example, were different. The order in which bits were arranged in memory differed.
The protocols and speeds used to communicate differed. These differences meant that
one computer often could not directly communicate with another, and even if it could,
it would not interpret the bit patterns produced by the other correctly. In effect, each
computer operated within its own paradigm, and the paradigms were incommensurable.

As computers became networked, these incompatibilities triggered a crisis. AIS/Net 1000
aimed to solve this problem by performing translations within the network, permitting
the disparate paradigms to persist. When one computer sends a message to another,
the message would be automatically translated during transport. Nobody would have to
change how they did things, and AT&T would sell the glue that enabled interoperability.
This was to be the Babel fish of networks.”

The project failed. AT&T wrote off more than $1 billion of development effort. It turns
out that few customers were actually willing to pay for this service. Instead, the paradigms

2 Douglas Adams described the Babel fish in The Hitchhiker’s Guide to the Galaxy. According to Adams,
“The Babel fish is small, yellow, leech-like, and probably the oddest thing in the universe. It feeds on brain
wave energy, absorbing all unconscious frequencies and then excreting telepathically a matrix formed from
the conscious frequencies and nerve signals picked up from the speech centres of the brain, the practical
upshot of which is that if you stick one in your ear, you can instantly understand anything said to you in
any form of language: the speech you hear decodes the brain wave matrix.”

126

6.2. CRISIS AND FAILURE

7. application | network services used directly by applications

6. presentation | interpretation of bit patterns as text, images, numbers, etc.
5. session multiple back-and-forth data exchanges treated as a unit
4. transport reliable transmission of data segments

3. network routing of packets of bits in a multi-node network

2. data link delivery of a frame of bits between two nodes

1. physical streams of bits over wires or radio

Figure 6.3: The OSI model for communication between computers.

saw a Darwinian consolidation. Competing species were unable to coexist within the
same ecosystem of networked computers.

Instead of a Babel fish, the Internet emerged. A key enabler for the Internet was the
acceptance of the so-called Open Systems Interconnection (OSI) model. OSI is a layering
of modeling paradigms, sketched in figure 6.3. Like the layers in figure 3.3, each level of
the OSI model provides a conceptual framework for communication between computers.
The lowest level, called the physical layer, is concerned with transporting sequences of
bits from one place to another without concern for what the bits mean. The layers above
this assign more meaning to the bits. For example, layer 6, the presentation layer, may
treat a collection of, say, one million bits as an encoding of an image in a particular format,
such as the standardized JPEG format widely used in digital cameras and on the web.

Kuhn talks about paradigms being incommensurable. In the OSI model, the terms
“frame,” “packet,” “segment,” and “session” all refer to a finite collection of bits, but
they all have different meanings at different levels. Understanding these different mean-
ings is one of the most confusing parts about working with low-level networking software,
in my experience. It is much easier to work at exactly one of these levels and not try to
cross layers.

Calling the layers of the OSI model “paradigms” is perhaps a bit odd because they differ
significantly from Kuhn’s scientific paradigms. Like Kuhn’s paradigms, they do provide
a mental model for humans to understand how a system operates. For example, it is a
different mental model to visualize one computer sending an image, a photograph, to
another, versus visualizing one computer sending a stream of one million bits. But unlike
Kuhn’s paradigms, for these layers to work, their definition must be made absolutely
precise. A misinterpretation of a single bit among one million bits may render an image
unreadable. Kuhn’s paradigms are much more robust; they can tolerate a certain amount

127

6. EVOLUTION AND REVOLUTION

of creative misunderstanding, which can sometimes form the engine for innovation or
even paradigm shifts.

It is not easy to make the OSI model layers precise. For computers on the Internet to
reliably communicate, they all need to agree on precise meanings at every layer, down to
the interpretations of each individual bit. The process of building the standards that codify
this agreement can be a messy, political, and bureaucratic morass of conflicting national
and business interests.

As a case in point, it may be helpful to understand how the OSI model came about. The
OSI model is a joint effort of two standardization bodies, the International Organization
for Standardization (ISO) and the Telecommunication Standardization Sector of the Inter-
national Telecommunication Union (ITU-T, formerly CCITT), which had each separately
developed similar models for communicating computers in the late 1970s. But similar
models are not enough to get computers to communicate. The models have to be iden-
tical. Hence, these two bodies got together to publish a joint document, a process that no
doubt involved considerable bickering over minutia.

To get a sense of all the competing interests that get involved, it may be helpful to under-
stand how these standardization bodies are organized. The ISO is composed of repre-
sentatives of various national standardization agencies from some 162 countries. The
ITU-T, a United Nations agency, coordinates standards for telecommunications. In addi-
tion to representatives from many governments, these bodies include representatives from
competing businesses, some of which will have already sunk considerable investments
into the technologies being standardized. As a consequence, the battles that can emerge
over standards development can be prolonged and painful, and the ensuing compromises
can sometimes undermine the effectiveness of the resulting standards.

JPEG, one of the most commonly used encodings for photographs and a level-6 (presen-
tation layer) standard in the OSI model, is an acronym for the Joint Photographic Experts
Group, which created the standard. This group is a committee overlapping ISO/IEC JTC1
and ITU-T, the same organizations involved in the OSI model, except for the addition
of the International Electrotechnical Commission (IEC). The IEC is a nongovernmental
international standards organization that develops standards for electrical, electronic, and
related technologies. Surely by now, from the barrage of acronyms, you see how bureau-
cratic all of this is.

As with many such standards, one of the complexities that arose with JPEG concerned
intellectual property. A major challenge in establishing such international standards is

128

6.2. CRISIS AND FAILURE

to ensure that anyone can legally use the standard without infringing on the rights of
someone else. There can be quite a bit of posturing during the development of a stan-
dard, where businesses will attempt to ensure that the use of the standard requires license
payments to them for patents that they hold or where patents that they hold will give them
a competitive advantage when implementing the standard. Organizations can even be
quite sneaky about this, concealing their business interests from the standards body until
it is too late to change the standard. As a result, standards often do not reflect the best
technical solutions to a problem.

In the case of JPEG, after publication of the standard, several companies asserted that
the standard infringed on patents that they held. In a collection of notable cases starting
around 2007, a patent holding company called Global Patent Holdings, LLC, claimed that
the act of downloading a JPEG image from a website or sending it through email infringed
a patent that it held, U.S. Patent 5,253,341 by Rozmanith and Berinson (1993). A messy
set of suits, countersuits, and threats ensued. According to a Wikipedia article on JPEG,

Global Patent Holdings had also used the 341 patent to sue or threaten
outspoken critics of broad software patents. (https://en.wikipedia.
org/wiki/JPEG, retrieved April 26, 2016)

After extensive battles, the U.S. Patent and Trademark Office issued a Reexamination
Certificate in 2009 canceling all claims of the patent, asserting that prior art invalidated
the claims. By this time, many organizations had wasted enormous amounts of money on
completely nonproductive fights over intellectual property.

A patent holding company is a corporation that does not manufacture or sell products
but just acquires and holds patents for the purpose of extracting royalty payments from
companies that do sell products. Such companies are often called “patent trolls,” after the
troll in the Norwegian fairy tale “Three Billy Goats Gruff” who eats anyone who tries to
cross the bridge under which it lives.

The emergence of patent trolls has significantly changed the business climate for tech-
nology companies in the United States. An organization that produces a product and also
owns a patent portfolio may be hesitant to sue another organization that also owns a patent
portfolio because that other organization may countersue for patent infringement. But an
organization that does not produce any products is much less vulnerable to countersuits.
These organizations exist only for the purpose of siphoning money from organizations
that produce products. In my opinion, they are parasites.

129

https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/JPEG

6. EVOLUTION AND REVOLUTION

But I digress. The main point is that it is not only creativity that determines the nature of
the layers of paradigms in a technology, but that complex business and political interests
can also intervene. These layers, therefore, are not in any sense objective truths. They are
the result of flawed and human processes.

AIS/Net 1000 failed to solve the crises created when incompatible computers started to
become networked. That crisis has since been largely resolved through the emergence
of the Internet, which depends on standardization of all levels of the OSI model. The
so-called Internet Protocol (IP, not to be confused with intellectual property) is at level 3
in the OSI model, the network layer. All traffic in the Internet uses IP. A layer above, at
the transport layer, is the widely used Transmission Control Protocol (TCP), which over-
lays on IP the concept of reliable transmission. Specifically, a TCP/IP packet sent to a
computer must be acknowledged by that computer. The sending computer will repeatedly
send the packet until it receives an acknowledgment. As a consequence, barring catas-
trophic failure in the network or in the sending or receiving computer, every sent packet is
eventually received. TCP also ensures that packets sent in order are received in the same
order. TCP is essential to email, among many other services.

Email, in turn, relies on another protocol called SMTP, for Simple Mail Transfer Protocol,
a level-5 protocol (session layer). At this level, a sequence of TCP/IP packets is collected
into a unit, an email message. The design of this protocol is greatly simplified by being
able to assume the properties of the lower layers, specifically that packets are delivered
reliably and in order. If you send a JPEG image by email, then the level-6 (presentation
layer) protocol for JPEG image encoding defines the interpretation of the bits contained
in the packets as an image.

The OSI model provides separation of concerns, where routing of packets, reliable
delivery and ordering, email addressing and content, and encoding of the email payload
are all separated. Each of the protocols involved is much easier to design and understand
because it uses the properties of the layers below, and it avoids providing capabilities that
will be provided by a layer above.

AIS/Net 1000 offered a solution to a crisis but it turned out not to be the solution that
prevailed. I believe a key reason is the lack of separation of concerns. AIS/Net 1000 was
to be the single solution to interconnectedness, whereas the OSI model made it possible
for many competing solutions at each layer to fight it out, creating a Darwinian ecosystem
with distinct niches within which solutions could compete.

130

6.2. CRISIS AND FAILURE

There are other spectacular technology failures with similar reasons. Ed Cone blogs
about the failure of the Federal Aviation Administration’s (FAA’s) Advanced Automa-
tion System (AAS) project, conceived in 1981 and terminated in 1994 (Cone, 2002). In
this project, the FAA contracted IBM Federal Systems, a division of IBM later acquired
by Lockheed Martin, to replace the nation’s air traffic control system with a completely
new modern design. According to Cone, “the FAA ultimately declared that $1.5 billion
worth of hardware and software of the $2.6 billion spent was useless.”

The historical backdrop of the project is telling. In 1981, the air traffic controllers went on
strike, and President Ronald Reagan summarily fired all 11,345 of them. This accentuated
a crisis already under way created by an aging inflexible air traffic control system. Part of
the solution was to be a system that was more automated, requiring fewer controllers to
manage more planes.

Robert Britcher, who worked on the project at IBM Federal Systems, wrote about it in his
book, The Limits of Software: People, Projects, and Perspectives, where he states that it
“may have been the greatest debacle in the history of organized work” (Britcher, 1999, p.
163).

Why did it fail? Cone quotes Pete Marish, a senior analyst at the General Accounting
Office:

It was basically a Big Bang approach, gigantic programs that would revolu-
tionize overnight how [the] FAA did its work. (Cone, 2002)

Cone further quotes Bill Krampf, who worked on the project at IBM Federal Systems:

We entered [the] software phase without the requirements phase completed.
(Cone, 2002)

Krampf’s observation, however, is probably a misdiagnosis of the problem. I seriously
doubt that completing the requirements phase before starting the work on software would
have solved the problem. The idea of completing requirements before engaging in detailed
design goes against the grain of one of today’s most popular software engineering strate-
gies, called “agile development.” In an agile process, requirements are developed along
with the software through a series of incremental “sprints,” short development efforts
with modest partial goals toward the overall project objective. An agile process directly
involves the customer and expects requirements to evolve as the project evolves. This way
of managing complexity is more realistic than doing specification before design.

131

6. EVOLUTION AND REVOLUTION

Marish’s diagnosis is likely more accurate. Wholesale technology replacements gener-
ally require too many concurrent paradigm shifts. Indeed, Cone attributes the failure to
enormous optimism about emerging immature technology paradigms, including object-
oriented design, distributed computing, and the Ada programming language. Cone writes,

AAS was supposed to be a showcase for Unix-based distributed computing
and for development in Ada, a programming language created by the Air
Force that became the state-sponsored religion in object-oriented technology,
itself a relatively young methodology for writing code in self-contained,
reusable chunks. (Cone, 2002)

I find the words “state-sponsored religion” fascinating; they reflect the dogmatic fervor
that I frequently encounter in computer scientists who espouse devotion to one or another
programming language.

Another dramatic failure of a large engineering project was the U.S. Army’s Future
Combat Systems (FCS) program. Although there were many reasons that this program
failed, one was similar to the reason for the failure of the FAA’'s AAS program: the
program was too ambitious about replacing too many systems all at once. According
to a 2012 report by the RAND Corporation,

Compared to more traditional acquisition strategies, the [systems-of-systems]
approach significantly increased both the complexity of the organizations
needed to execute the FCS program and the technical challenges associ-
ated with system engineering, software engineering, and system integration.
(Pernin et al., 2012)

The FCS program was launched in 2003 with an estimated cost of $92 billion (including
the projected cost of a fleet of war-fighting vehicles). By 2009, when Defense Secretary
Robert Gates announced that he wanted to scrap the core of the program, the suite of
combat vehicles, the estimated cost had ballooned to some $200 billion.

AIS/Net 1000, the FAA’s AAS program, and Army’s FCS program were all attempting to
solve enormously complex problems. When complexity becomes unmanageable, a crisis
in the prevailing paradigms becomes apparent. AIS/Net 1000 had as its goal to ameliorate
the crisis without inducing a paradigm shift. But that’s not how it played out. Instead,
the Internet emerged. The other two projects failed in part because they attempted to
address crises with a wholesale replacement of many existing paradigms all at once. But

132

6.2. CRISIS AND FAILURE

technology paradigms grow more organically, more bottom up than top down. They are
not imposed on engineers so much as discovered, nurtured, and grown by engineers.

Wholesale simultaneous replacement of several paradigms at once fails because each indi-
vidual replacement has poor prospects of success. The fact is that most technology inno-
vations fail. We tend to remember only the ones that succeed. It is often impossible
to predict which of several competing technologies will eventually prevail, even when it
seems clear which technology is more fit.

The layering of paradigms offers a fundamentally creative way to deal with a crisis of
complexity. One solution is not to fix a broken paradigm, replacing it with a new one, but
rather to build an entirely new paradigm on the scaffolding of the old. We build platforms
on top of platforms. Because of separation of concerns, a layer in a paradigm can change,
and the effects will only be felt one layer up. In the Internet, for example, at layer 3 of the
OSI model, the world is in the midst of migrating from IP version 4 to IP version 6 (no
version 5 was ever deployed).

The new version IPv6 changes quite a few fundamental things, including the addresses
used to identify nodes in the Internet. IPv4, it turns out, provides only four billion distinct
addresses. Given that there are already six billion devices on the Internet, this obviously
creates problems. Considerable cleverness is required to reuse addresses without creating
ambiguities. IPv6 increases the number of addresses to

2128 — 340,282,366,920,938,463,463,374,607,431,768,211,456.

It simply would not be possible to make such a fundamental change without the separation
of concerns offered by the OSI model. This change has no effect, for example, on the
JPEG encoding of images transmitted over the Internet.

Similarly, the layers of digital technology in figure 3.3 provide separation of concerns
that permits independent simultaneous evolution at all levels. For example, the shift to
using FinFETs for transistors had no effect on the design of instruction set architectures,
except perhaps to offer opportunities through added capability. I examine this question of
opportunity next.

133

6. EVOLUTION AND REVOLUTION

6.3 Crisis and Opportunity

According to Kuhn, observations made in the course of normal science may reveal anoma-
lies, inconsistencies with the prevailing paradigm that governs the normal science. These
anomalies can create a crisis that leads to a paradigm shift. In engineering, it is not
usually scientific observations that create a crisis. We have already seen that increasing
complexity can trigger a crisis. A second trigger is opportunity.

Consider the introduction of the iPhone in 2007. At the time, two of the dominant
producers of cell phones were Nokia, a Finnish company, and Research in Motion (RIM),
a Canadian company, maker of the Blackberry. These two companies have drastically
reduced visibility in the cell phone market today. I've already pointed out that the iPhone
introduced no new technology. So why was it such a revolution, summarily overthrowing
the old regime?

The “crisis” in the paradigm overthrown by the iPhone was not a crisis of complexity. It
was a crisis of opportunity. At the time, cell phones were starting to be used for things
other than making phone calls. The Blackberry had captured business markets with its
built-in keyboard and email capability. Nokia phones were routinely used, primarily by
young people, to send text messages, despite the incredible awkwardness of typing text
on a 12-key numeric keypad. At the time, there were even contests for speed texting on
such keypads because it required quite a bit of skill.

In 2007, wireless networks had modest ability to carry data, although the emphasis was
still on carrying voice signals. That capability was exploited by the Blackberry and by the
texting function on other phones, but phones were still primarily for making voice calls.
Today, the ability to make voice calls seems like an incidental feature of a smartphone.
When I want a voice call with my 20-year-old daughter, I need to exchange several text
messages with her to arrange it. She acquiesces only in deference to my age. Her other
communications are likely more through Snapchat and other services I've never heard of.

The iPhone came about through a realization of what was possible with the technology
of the time. But the real revolution was not replacing the phones of the time with better
phones. It was the introduction of a whole new platform, a new layer in the stack of layers
of paradigms. Specifically, the real revolution was the introduction of the app develop-
ment platform. With the introduction of the iPhone, Apple published the specifications
that enabled millions of creative programmers around the world to develop applications
for the phone and in 2008 launched the App Store to broker the sales of apps to customers.

134

6.3. CRISIS AND OPPORTUNITY

The nature of a revolution is that its consequences usually cannot be anticipated, but after
the revolution its consequences seem inevitable. It is easy to forget today that in 2007,
most of us had never heard of apps and app stores, although, as usual with technology
innovations, variants of the concept had existed at least since the 1990s. But Apple really
made the concept take off. Apple’s model has been emulated by every cell phone vendor
that still has any significance, down to the details of copying the patented look of the
phone, a move that has resulted in an endless string of patent infringement lawsuits and
countersuits.

I am quite sure that if we could time travel back to 2007 and assemble the smartest, most
creative experts worldwide in a room, they would not be able to anticipate even 10% of the
functions that we routinely carry around in our pockets today: instant traffic reports world-
wide (go ahead: check the traffic in Budapest right now), airline reservations, banking
transactions (even check deposits), tide charts, worldwide weather forecasts, up-to-the-
minute mass transit timetables, remote monitoring of our homes, a taxi service, restaurant
reviews, a library with millions of books and journals, and many creative games. In
addition to all those functions that never before existed, the device replaces several other
devices that we previously would have to carry separately, including the phone, the music
player, a flashlight, the keys to our house, the video entertainment device (remember the
portable DVD player?), a compass, a calculator, an address book, our calendar, a camera,
aradio, a notepad, and an alarm clock. Oh yes, and it also sends text messages and email.

The smartphone was not a consequence of a crisis of complexity, it was a consequence of
opportunity enabled by millions of transistors on a chip, good digital radios, touch-screen
interfaces, and the Internet, all preexisting technologies. The key to the revolution, the
decisive battle that won the war, was the app development platform and the app store.

In recent years, we have seen an astonishing number of similarly disruptive revolutions.
Amazon put thousands of bookstores out of business and is in the process of threatening
the rest of retail. Uber and Lyft have undermined the taxi business. Lulu and other print-
on-demand services are threatening the publishing industry. E-books are threatening Lulu
and the rest of the printing industry. Libraries are increasingly irrelevant. Travel agencies
have almost entirely vanished.

Each of these revolutions entails a paradigm shift. But paradigm shifts do not come easily
to people, lending some stability and inertia. Even disruptive changes take some time to
play out. According to Statista, an online statistics company, there were still about 28,000
bookstores in the United States in 2012. Although this number is down significantly from
more than 38,000 in 2004, it is still a significant number.

135

6. EVOLUTION AND REVOLUTION

Some paradigm shifts replace prior paradigms. Even for taxi services, for example, we
are now more likely to summon them using a smartphone app or a web page than via a
phone call. But all of these paradigm shifts also build on prior paradigms, leaving them
unchanged. Smartphone technology, for example, relies heavily on Internet technology,
the latter of which has hardly changed in response to this revolution. To be sure, there are
small changes, such as better support at OSI levels 6 and 7 for small screens, but these
changes are tiny. The prior paradigm provides a platform for the new paradigm, a situation
rarely seen in the scientific paradigm shifts that Kuhn talks about. The transitivity of
models makes this possible.

Many examples of failed paradigm shifts also exist. In the 1980s, for example, several
university research projects and startup companies were going to disrupt the computer
industry with dataflow computers, which presented an entirely different way to define an
instruction set architecture (Arvind et al., 1991). These all failed. Perhaps a more curious
example is the repeated failure of artificial intelligence (Al) as a field. Al has survived
several boom and bust cycles, where unbridled enthusiasm is followed by disillusion-
ment and collapse of investment. Starting in the late 1980s, Al experienced what some
researchers in the field called an “Al winter,” an allusion to a nuclear winter, and had
only fully recovered by about 2010. Perhaps dataflow computers will be similarly resur-
rected. Such failures fade quickly from our memory (except, of course, for the people
most directly involved in the failures).

But failures are a normal and healthy part of intellectual inquiry. The rapid advances
of digital technology provide a healthy, thriving ecosystem for mutation, adaptation, and
extinction of paradigms. There need not be anything fundamentally wrong with a new
paradigm that fails. Unlike scientific paradigms, technology paradigms are not held up to
a standard of truth or concurrence with observations of the physical world. Their survival
instead depends on many intangibles, including, perhaps most important, the readiness of
the public and even the engineers to assimilate the paradigm.

6.4 Models in Crisis

Paradigm shifts in engineering are triggered primarily by crises of complexity and oppor-
tunity. These have been relentlessly driven for the last 50 years by the staggering advances
in digital technology. They continue to be driven by the increasing interconnectedness of
digital devices and penetration of computers into everything we use.

136

6.4. MODELS IN CRISIS

So where are the most pressing crises today? For this question, I can only speculate
because I cannot see the future any better than anyone else. But I do see at least two
substantial crises looming.

Let me start with a crisis of opportunity. With increasing interconnectedness comes
rapidly increasing volumes of data about the state of the world, society, and individ-
uals in society. For example, credit card companies already carefully track most of our
purchases, missing only the ones where we pay cash. These companies construct models
of our behavior and use those models for various purposes, including to disallow transac-
tions that appear to be anomalous and hence may be fraudulent. For example, if you don’t
travel much, and a store in China tries to charge a purchase to your credit card, then the
transaction is likely to be denied by the credit card company’s computers. If you travel
a lot, as I do, however, then this same transaction is more likely to be allowed. If you
normally buy expensive scotch at boutique stores, then a purchase of Rotgut Moonshine
at a store called Payroll Loans & Liquor is also likely to be denied.

These decisions are not made by humans; they are made by computers, the ones that
dream (see section 5.6). The computers are running machine-learning algorithms that
build models of your behavior by observing your transactions and then classify each
subsequent transaction as anomalous or normal based on the probability that the model
would generate such behavior.

The credit card example exhibits a contradiction that is common in big data applications.
Although we probably appreciate that the credit card company attempts to prevent fraud-
ulent use of our card, many of us find it creepy that the company has built a probabilistic
model of our behavior. Similarly, we may like that a map app on our smartphone tells us
about nearby restaurants, but we are likely not thrilled to learn that, as a consequence of
using the app, Google’s computers know where we are.

Now imagine that the computers in your car begin to communicate with the outside world.
Some insurance programs already use such communicated information to vary your insur-
ance bill based on usage and style of driving. What if the insurance company sells the
information they get from your car to your credit card company? Metcalfe’s law is based
in part on the observation that aggregated data is more valuable than isolated data. The
credit card company may now verify that your car is indeed parked at Payroll Loans &
Liquor and either allow the transaction or report your car stolen.

The data being gathered about us by various organizations is growing at a staggering rate.
In the United States, privacy laws intended to protect us from misuse of that data are

137

6. EVOLUTION AND REVOLUTION

ineffective because these laws have simply resulted in a barrage of small print that every
organization is now required to throw at you, knowing that you will not read it. In fact,
the U.S. government has exhibited a distinctly double standard, simultaneously trying
to strengthen privacy laws and prevent encrypted data communication. Encryption, the
government says, interferes with its ability to detect and prevent potential terrorist attacks.
Indeed, it no doubt does. Again, we are faced with contradictory requirements.

Many organizations today are collecting but not effectively using vast amounts of data.
Consulting and market research company Gartner calls “dark data” the “information
assets that organizations collect, process and store in the course of their regular busi-
ness activity, but generally fail to use for other purposes.” The subtext is that those same
businesses are missing an opportunity. They should be mining the data. The data has
value.

The research and consulting firm Forrester defines “perishable insights™ as “urgent busi-
ness situations (risks and opportunities) that firms can only detect and act on at a moment’s
notice.” Fraud detection for credit cards is just one example of such perishable insights.
Once the transaction is allowed, the damage is done. We also saw another example of a
perishable insight in chapter 1 in the Wikipedia vandalism detection algorithm, although
that one has less privacy cost. More dramatically, dark data in health care and medicine
could be much better used to get (literally) perishable insights.

I believe a crisis of opportunity exists today in converting data feeds into insights in time
to make effective use of them while either ensuring privacy or at least preserving public
trust that the loss of privacy will not be abused. Clearly, this problem is not just technical.

Contradictory requirements demand innovation. Consider that thermostats, door locks,
television sets, watches, running shoes, football helmets, books, and, in fact, nearly every-
thing around us is going online. And many devices are acquiring the ability to listen
for spoken words and react to those words. And when you read an electronic book, it
reads you back. Connecting those devices to the network is likely to deliver real value to
us, including, for example, reducing our carbon footprint and vulnerability to terrorists.
These potential benefits cannot be ignored. Neither can the risks. The situation is crying
for a paradigm shift.

The second crisis I see looming is a crisis of complexity. This crisis is not just about
increasing numbers of components but rather about the conjoining of engineered systems
that have traditionally used different kinds of models to manage their own complexity.

138

6.4. MODELS IN CRISIS

Consider a modern commercial airplane such as the Airbus A350 or the Boeing 787.
These systems are software-intensive with hundreds of microprocessors managing func-
tions that include translating pilot commands into rudder movements, controlling the
landing gear, managing cabin pressurization and airflow, managing electric power gener-
ation and distribution, and operating the passenger entertainment system. Such an aircraft
is a much more complex system than, say, a data center handling Facebook pages. The
latter only has to deal with bits and the heat generated by processing those bits. A data
center is an information-processing system that can operate almost entirely within the
models and paradigms of computer science. But an airplane design conjoins models of
aeronautical, mechanical, electrical, and civil engineering, as well as those of computer
science. In such a system, the structures of civil engineering interact with the flight
dynamics of aeronautical engineering under the control of a software system (computer
science) running a feedback control system (electrical engineering). The silos of special-
ization that are standard in engineering today become an obstacle because the models and
paradigms developed in each of these disciplines are incommensurable.

Despite the enormous complexity and challenges of crossing so many silos, Boeing and
Airbus both manage to make astonishingly safe and reliable airplanes. How? Today, their
design processes and methods are extremely conservative, and regulatory oversight is
heavy. Many rules must be followed to get an aircraft certified to carry civilian passengers.

However, these processes reveal some fundamental flaws in the engineering models and
methodologies that are available today to aircraft engineers. A symptom of such flaws is a
story I first heard from an engineer who had worked on the Boeing 777. This was Boeing’s
first fly-by-wire airliner, meaning that pilot controls are mediated by a computer. The
777 first entered into service in 1995. According to this engineer, as of the early 1990s,
Boeing expected this model of aircraft to be in production for perhaps 50 years, to 2045.
The engineer told me that in the early 1990s, Boeing purchased a 50-year supply of the
microprocessors for the flight control system so they could use the same microprocessors
for the entire production run of the aircraft.

Recall in chapter 4 my observation that hardware is ephemeral. In fact, any particular
silicon chip is unlikely to remain in production for more than a few years. It becomes
obsolete quickly under the pressure of Moore’s law. And when a fab gets updated to
leverage a new technology, such as the FinFET, it becomes impossible to produce an
identical chip.

But why does Boeing need the chip to be identical? The whole point of the layering
of paradigms of figure 3.3 is so that software designs are isolated from changes in the

139

6. EVOLUTION AND REVOLUTION

hardware. It should be enough to use any chip that can correctly execute the software for
the control system.

But the flaw is in the notion of correctness. Starting at the instruction set architecture layer
in figure 3.3, and for all layers above that, what it means to correctly execute software has
nothing to do with how long it takes to do anything. Timing of actions is not part of the
programming paradigms used today.

But in a flight control system, the software is directly controlling physical actuators, and
in the physical world, timing is important. In fact, in just about every model that an
aeronautical, mechanical, or electrical engineer will use, timing of actions is central to the
model. The paradigms used by these engineers are incommensurable with the paradigms
used by computer scientists.

As a consequence, the layering of figure 3.3 fails to provide adequate abstractions, and
hence fails to provide separation of concerns. Boeing is forced to operate without any
layering, and hence has to ensure that every airplane carries exactly the same design all
the way down to the semiconductor physics layer.

I have subsequently heard similar stories from engineers at Airbus, which has been
making fly-by-wire aircraft for longer than Boeing. The engineers at Airbus tell me that
they store the microprocessors in liquid nitrogen in an attempt to extend their shelf life by
slowing down the natural diffusion processes of the dopants in the silicon.

The complexity of aircraft designs keeps increasing. A key objective in aircraft design is
to decrease weight because this reduces fuel consumption, extends range, and improves
the carbon footprint. One way to decrease weight is to use more advanced materials in the
airframe and more flexible structures. But flexible structures require more tightly coor-
dinated control systems. Timing discrepancies in control systems can create disastrous
stresses on airframe structures.

Another way to decrease weight is to reduce the amount of wiring and hydraulic piping.
This can be accomplished with more advanced networking, but essentially all of the layers
in the OSI model of figure 6.3 above the physical layer also ignore timing, just like the
software layers in figure 3.3. As a consequence, aircraft manufacturers are unable to
benefit from most of the advances in networking of the last 40 years.

Even with a fixed microprocessor, the fact that timing is irrelevant to correctness from
the ISA up means that in software design, aircraft manufacturers also cannot use most
of the innovations of computer science from the last 40 years. The FAA prohibits use of

140

6.4. MODELS IN CRISIS

object-oriented languages, for example, in safety-critical software. Even interrupts, the
standard way that all modern microprocessors get data in and send data out to the outside
world, are prohibited. To be sure, interrupts create many subtle software problems. As far
back as 1972, Edsger Dijkstra lamented,

[Iln one or two respects modern machinery is basically more difficult to
handle than the old machinery. Firstly, we have got the interrupts, occurring
at unpredictable and irreproducible moments; compared with the old sequen-
tial machine that pretended to be a fully deterministic automaton, this has
been a dramatic change, and many a systems programmer’s grey hair bears
witness to the fact that we should not talk lightly about the logical problems
created by that feature. (Dijkstra, 1972)

Despite this lament, to this day, interrupts remain the primary method for I/O and are
central to every modern operating system design. Aircraft manufacturers, therefore, are
also excluded from the last 40 years of advances in operating systems.

In view of the failure of most computer science innovations of the last 40 years to address
the needs of aircraft designers, I am astonished at their remarkable safety track record. 1
have enormous respect for the engineers who design these planes. They are stuck with the
prototype-and-test style of design that was used by Edison, unable to leverage the transi-
tivity of models, and their prototypes are much more complex than Edison’s prototypes.

Figure 6.4 shows a prototype of an Airbus A350, their newest model. Airbus calls this
prototype an “iron wing.” The prototype includes all parts of an A350 except the airframe,
cabin, and engines. This is why it doesn’t look like an airplane. It is the guts without
the skeleton or skin. The wiring is all exactly the same length as on the real aircraft.
The hydraulic tubes are bent as on the real aircraft to get around the (missing) airframe
structure. When running tests using this prototype, the same generators that are driven
by the engines on the real aircraft are driven by artificial engines so that the prototype
runs on its own power. This prototype is obviously much more complicated than Edison’s
lightbulbs, but it is exactly the same sort of concrete prototype.

Aircraft manufacturers are not alone in facing this problem. Modern cars are mostly
“drive-by-wire” today, where the driver commands (pushing on the accelerator and brakes
and turning the steering wheel) are mediated by a computer before going to the wheels
or engine. Automotive designers face the same problems but with far fewer regulatory
constraints. Their problems are only going to get worse as automation increases (lane
keeping, automated accident prevention, and fully automated driving).

141

6. EVOLUTION AND REVOLUTION

Figure 6.4: An Airbus “iron wing” prototype of an A350.

142

6.4. MODELS IN CRISIS

It doesn’t stop there. Any modern factory is computer controlled and is similarly a safety-
critical system where the timing of actions is essential to safety. Trains are computer
controlled. Ventilation, lighting, and fire mitigation systems in buildings are computer
controlled. Modern electric power grids, water distribution systems, and communication
systems are computer controlled.

In 2006, Helen Gill of the U.S. National Science Foundation coined the term “cyberphys-
ical systems” (CPS) for such systems that combine computing, networking, and physical
dynamics. There is clearly today a crisis of complexity for such systems. She launched
a major NSF initiative to fund research to address precisely the problems that I have
indicated. This program continues, and progress is being made, albeit still primarily in
research labs and not yet in industrial production. Gill recognized that conjoining the
“cyber” world with the physical world created an enormous crisis of complexity, one that
the existing paradigms were poorly equipped to deal with.

What is the origin of the term “cyber” in CPS? The related term “cyberspace” is attributed
to William Gibson, who used the term in the novel Neuromancer, but the roots of the term
CPS are older and deeper. It would be more accurate to view the terms “cyberspace”
and “cyberphysical systems” as stemming from the same root, “cybernetics,” which was
coined by Norbert Wiener (Wiener, 1948), an American mathematician who had a huge
impact on the development of control systems theory. During World War II, Wiener
pioneered technology for the automatic aiming and firing of anti-aircraft guns. Although
the mechanisms he used did not involve digital computers, the principles are similar to
those used today in computer-based feedback control systems. His control logic was
effectively a computation, albeit one carried out with analog circuits and mechanical
parts, and therefore cybernetics is the conjunction of physical processes, computation, and
communication. Wiener derived the term from the Greek word for helmsman, governor,
pilot, or rudder. The metaphor is apt for control systems.

The term CPS is sometimes confused with “cybersecurity,” which concerns the confi-
dentiality, integrity, and availability of data and has no intrinsic connection with physical
processes. The term “cybersecurity,” therefore, is about the security of cyberspace and is
thus only indirectly connected to cybernetics. CPS certainly involves many challenging
security and privacy concerns, but these are by no means the only concerns.

My own research at Berkeley includes some examples of NSF-funded research projects
under the CPS program. One project that concluded in 2015, called the PRET project
(for Performance with Repeatable Timing), designed an instruction set architecture that
explicitly includes timing within its programming paradigm. In effect, this project

143

6. EVOLUTION AND REVOLUTION

reopened decisions that Fred Brooks made all the way back in the 1960s when he designed
the System/360 ISA without any explicit control over timing. The project concluded with
a demonstration that it is possible to achieve precise control over timing with no loss of
performance and modest cost in hardware. If this architectural approach is adopted in
industry, it will enable separation of concerns in the layering of figure 3.3 for cyberphys-
ical systems.

A second example from my research group is a project we called PTIDES, which also
concluded in 2015. This project addressed software that is distributed across networks,
using the OSI model of figure 6.3, but modifying the paradigms to explicitly control
timing. But I will spare you the details.

Despite progress in the research labs, the crisis of complexity remains for cyberphysical
systems, and the crisis of opportunity remains for data science. In the remaining chapters,
I examine just how far we can push the layering of models. All the techniques we know
of today have limitations, and understanding these limitations is essential to a complete
understanding of technology revolutions. These limitations hint at opportunities for inno-
vation.

144

Part Il

Yin

Information

Contents
7.1 Pessimism Becomes Optimism 147
7.2 Information-Processing Machines 149
7.3 Measuring Information, 151
7.4 Continuous Information. 158

- in which I examine the concept of information, what it is and how to
measure it; and in which I introduce Claude Shannon’s way of measuring
information and show that information cannot always be represented digi-
tally.

7.1. PESSIMISM BECOMES OPTIMISM

7.1 Pessimism Becomes Optimism

In chapter 2, I emphasized the importance of keeping distinctly separate in our minds the
model and the thing being modeled. Unfortunately, this is really hard to do. Because so
much of our thought process is structured around models, we have an enormous backdrop
of unknown knowns. But a failure to make this separation inevitably leads us to invalid
conclusions.

Engineers choose their models and then seek physical realizations that are faithful to
those models. For this task, we need models that we can understand. Although we have
developed, over centuries, a huge arsenal of models and ways of building models, I will
show that the number of possible models in this arsenal is tiny compared with the number
of models possible in theory. There is no end to the possible engineering innovations.

A scientist, in contrast to an engineer, tries to find or invent a model (which can take
the form of a “law of nature”) to match a given physical object or process. A time-
less goal in science has been to find a small number of such models that can somehow
“explain” everything in the universe. In some sense, whereas an engineer strives to grow
the number of relevant models (those for which we can build a faithful physical realiza-
tion), the scientist tries to shrink the number of relevant models (those needed to explain
the natural world).

Unfortunately for science, this timeless goal is unachievable. We already know that nature
is capable of creating processes that are at least as sophisticated as software on computers
because humans and our computers, after all, exist in the natural world. In chapter 8, I will
review Alan Turing’s classic result that it is impossible, in general, to tell what a program
will do merely by looking at the program. This finding alone crushes the optimism that
any small set of rules can explain everything in the universe because it shows that we have
no way to explain the behaviors of some programs that exist in the universe. All we have
are the programs themselves.

The situation for science is exacerbated by the fact that mathematical models, which are
not exactly the same as computational models and form the bedrock of scientific expla-
nations of the natural world, are incomplete in a similar manner to software, as I will
explain in chapter 9. Kurt Godel’s classic incompleteness theorems show that any system
of mathematical models that is potentially rich enough to explain the natural world will
be either inconsistent or incomplete. “Inconsistent” means that it has statements that can
be shown to be both true and false. “Incomplete” means that it has statements that cannot
be shown to be true and cannot be shown to be false.

147

7. INFORMATION

The goal of an engineer is not to explain the natural world but rather to create artifacts
and processes that have never before existed in that natural world. Engineers need only
to explain the systems they design, not the systems given to them by nature (at least not
as their primary task). They build physical systems to match their models rather than the
other way around. If the modeling toolkit is rich and expressive enough, and if the space
of physical systems is vastly larger than the modeling toolkit, then there is plenty of room
for innovation.

Engineering, of course, requires science. As we try to synthesize new physical realizations
from our models, we will learn more about nature as we try to understand how the physical
realizations deviate from the predictions of the model. Engineering, therefore, can provide
a set of guideposts for science by exposing phenomena that nature has not happened to
expose.

The transistor is a good example of this reversal, where engineering drives science. I know
of no natural occurrence of a transistor that has ever been found. But the engineering
effort to create an electrically controllable switch has led to a much deeper scientific
understanding of how electricity behaves in materials. That scientific understanding has
in turn enabled better engineering models, bootstrapping a process of progress that cannot
occur by just passively observing systems that nature happens to give us. The limitations
exposed by Turing and Godel do not impede this progress. Instead, they simply assert
that this process will never be complete. There will always be room for more progress.

So far in this book, I have argued that digital technology and computation provide a rich
medium for such creative work. But like the scientist, the engineer is subject to funda-
mental limitations of both computation and mathematical models. For engineers, these
limitations do not undermine any timeless mission. Engineers have the luxury that they
can try to avoid systems they cannot explain. Software engineers, for example, usually
try to write programs that will exhibit behaviors they can explain, avoiding programs that
Turing showed are inexplicable. But to avoid them, they need to understand the limita-
tions of their modeling toolkit. Thus, in contrast to the previous chapters in this book, in
the next few chapters I will explain what software and mathematical models cannot do.

I focus on digital technology and computation, which are fundamentally about processing
information. But what is information? Only with a clear notion of information can we
understand what can and cannot be done with digital technology. Hence, information is
the subject of the rest of this chapter.

148

7.2. INFORMATION-PROCESSING MACHINES

7.2 Information-Processing Machines

A computer program is a model. Ultimately, it models electrons sloshing around in silicon
and metal. But as I’ve pointed out, there are so many levels of abstraction between soft-
ware as a model and semiconductor physics that viewing software as a model of electrons
sloshing is not useful. In fact, software is more usefully viewed like mathematics. It is a
formal model, existing in its own self-scaffolded world. Like mathematics, it is a powerful
model. We can do a lot with software.

But we can’t do everything. In fact, I will show you in chapter 8 that despite the incredible
power of software, we can do almost nothing with it, in the sense that no matter how much
we do with it, there are vastly many more things we cannot do with it.

Many futurists and technology enthusiasts exaggerate the capabilities of software. To pick
on one, in his book Tools for Thought, Howard Rheingold states,

The digital computer is based on a theoretical discovery known as “the
universal machine,” which is not actually a tangible device but a mathemat-
ical description of a machine capable of simulating the actions of any other
machine. Once you have created a general-purpose machine that can imitate
any other machine, the future development of the tool depends only on what
tasks you can think to do with it. (Rheingold, 2000, p. 15)

Rheingold draws the same conclusion that I do, that technological progress is limited by
humans rather than by technology but for the wrong reason. Rheingold actually misrep-
resents the history of computing. There is no universal machine, mathematical or other-
wise. What he is actually referring to is known as the “universal Turing machine,” which
is capable of simulating any Turing machine, not any machine. There are machines that
are not Turing machines, like my dishwasher, for example.

But wait, I’'m sure that Rheingold would object now that my dishwasher is not an
information-processing machine, and his book is about information-processing machines.
Dirty dishes are not a form of information (or maybe they are; see section 8.4 in the next
chapter). So what is an information-processing machine?

The first question we have to answer, the one I focus on in the rest of this chapter, is, what
is information? Merriam-Webster has several definitions, but to me the most relevant to
software is:

149

7. INFORMATION

2. b: the attribute inherent in and communicated by one of two or more
alternative sequences or arrangements of something (as nucleotides in DNA
or binary digits in a computer program) that produce specific effects.

The key in this definition is “one of two or more alternative sequences or arrangements.”
Information is the resolution of alternatives. When there are two alternatives, for example,
a transistor can be on or off or a coin can yield heads or tails, “information” is the deter-
mination of one of the alternatives.

With a little thought, I hope you can see that this is consistent with an intuitive notion of
information. If, for example, I don’t know whether my colleague Fred is married to Sue,
then there are two “alternative arrangements.” If you tell me that Fred is married to Sue,
then I have received information from you in the sense that what you have conveyed to
me resolves these alternatives. Notice that it is still information, even if you lied to me.
You have conveyed a resolution to the alternatives, and whether that resolution is true is a
separate issue.

Merriam-Webster also gives the following definition:

2. d: a quantitative measure of the content of information; specifically: a
numerical quantity that measures the uncertainty in the outcome of an exper-
iment to be performed.

Measuring information is a relatively recent development, usually credited to Claude
Shannon. In 1948, while working at the storied Bell Labs, Shannon published a paper
called “A Mathematical Theory of Communication” in the Bell System Technical Journal.
This paper launched the field of information theory (Shannon, 1948). In this paper,
Shannon used probability theory (about which I will say more in chapter 11) to come
up with a measure of the amount of information contained in a sequence of bits and the
amount of information that can be conveyed over an imperfect communication channel.
Solomon Golomb, who was hugely influential in subsequent development of coding and
information theory, and to whom I owe the “drilling through the map” metaphor, remarked
that Shannon’s influence cannot be overstated: “It’s like saying how much influence the
inventor of the alphabet has had on literature” (Horgan, 1992).

Suppose, by the first definition from Merriam-Webster, that there are exactly two “alter-
native arrangements” for something. Fred is either married or not. A coin toss can yield
heads or tails. Then once we have resolved these alternatives, we have received one bit of

150

7.3. MEASURING INFORMATION

information, exactly representable by one binary digit, O or 1. Can information always be
represented by bits?

Note that the physical world rarely gives us exactly two alternative arrangements for
anything. A coin toss could result in the coin falling into a pond, sinking to the bottom,
and embedding in the mud in a vertical position, with neither heads nor tails being up.
Even in Fred’s case, Fred may be married to Sue, in that there are papers filed with the
local courthouse, but living with Joe and wishing that his state allowed him to be married
to Joe. Marriage is a model of a social structure, and only the model can have a binary
choice between exactly two arrangements. The physical world is messier. We need to
be careful to keep the map (the legal institution of marriage) distinct from the territory
(Fred’s actual situation).

Nevertheless, Shannon measured information in bits. As it turns out, this measure only
works well when the alternative arrangements are discrete and finite, or when attempting
to communicate over an imperfect channel. Suppose that instead of telling me whether
Fred is married (one bit of information), you tell me the temperature in the room right
now. How many bits of information have you conveyed? This question is impossible to
answer without making many more assumptions. How much do I already know about the
temperature in the room? Is the number of possible temperatures finite? Perhaps I only
care about the temperature within a degree or so. Then the number of possible messages
you will convey to me is certainly finite. But have you really conveyed the temperature?
Does the temperature itself in the room entail information? Could it have an infinite
number of possible values?

These are all difficult questions. Even when the number of alternative arrangements is
finite, the amount of information conveyed by resolving the alternatives is not always
obvious. Shannon noticed that the amount of information conveyed depends not only on
the number of alternatives but also on the likelihood of the alternatives. I will next explain
how Shannon measured information in units of bits when the number of alternatives is
finite.

7.3 Measuring Information

Suppose that we have an unfair coin that almost always comes up heads. Then observing
a head does not convey much information. Most outcomes are heads, so you will not

151

7. INFORMATION

be surprised to see heads. Suppose that we toss the coin 20 times and get the following
outcomes:

HH HT HH HH HH TH HH HH HH HH

where “H” represents heads and “T” represents tails. We can code this sequence of
outcomes using binary digits 0 and 1 as follows:

HH HT HH HH HH TH HH HH HH HH
11 10 11 11 11 o1 11 11 11 11

This encodes the outcomes using 20 bits. It is a quite literal encoding, using a 1 to
represent H and a O to represent T. However, because tails is much less likely than heads,
there are relatively few tails, so Shannon noticed that this sequence can be encoded with
fewer than 20 bits by using a less literal encoding. For example, suppose that we group
the coin tosses in pairs, as above, and encode pairs of results according to the following
table:

HH 0
TH 10
HT 110
TT 111

In other words, when we get two heads in a row, we will represent that fact with a single
bit, 0, rather than two bits, 11. If we get TT, then we will represent that with three
ones in a row, 111. These codes are carefully chosen so that any sequence of bits can
be unambiguously decoded into a sequence of coin tosses. For example, 010 represents
HHTH, four outcomes.

The previous sequence of coin tosses can now be represented as follows:

HH HT HH HH HH TH HH HH HH HH
0 110 O 0 0 10 O 0 0 0

The more likely “HH” pairs are encoded efficiently with just one bit, whereas the less
likely sequences require more bits. This encoding requires only 13 bits rather than the
direct encoding, which requires 20. Shannon noticed that if heads are much more likely

152

7.3. MEASURING INFORMATION

than tails, then most of the time this alternative encoding will require fewer bits than the
direct encoding. So the amount of information in 20 unfair coin tosses is usually less than
20 bits, Shannon observed.

Shannon also noticed that ordinary English-language text could also be encoded more
efficiently. A great deal of redundant information is found in a sequence of letters and
spaces. If I text you a message saying, “i lv u,” I’'m pretty sure you will understand it.

Note that during World War II, Shannon worked on coding schemes for secret communi-
cations, including codes used by Roosevelt and Churchill for trans-Atlantic conferences.
His cryptography work no doubt lay the groundwork for information theory because it
made it clear to Shannon that a message could be encoded in many ways. Some ways
would result in a more efficient encoding (fewer bits), and some would be difficult to read
if you didn’t know the code. If you don’t know the code given in the earlier table, then
the sequence 0110000100000 is hard to interpret as HHHTHHHHHHTHHHHHHHHH.
For most of us, it is hard even if we do know the code, unlike “i Iv u,” which requires no
explicit listing of the code.

Our encoding may not always work well, however. For example, suppose we get a
sequence of 20 tails in a row. The prior encoding will require 30 bits instead of the
20 that the direct encoding requires because each pair TT will be encoded by three bits,
111. This is unlikely, but it is still possible. Using probability, which I will talk about in
chapter 11, we can estimate how unlikely this is. If the coin tosses are all independent
(they do not influence one another), and on average 1 in 10 tosses comes up tails, then
the probability of 20 tails in a row is 10720, In chapter 11, I will discuss what this really
means, but for this example it simply means that if you repeat the experiment of tossing
20 coins 10?° times (100 quintillion times), on average, you can expect one occurrence of
20 tails in a row. This outcome is very rare indeed. In fact, we can also use probability to
show that most outcomes will require fewer than 20 bits. But I will spare you that nerd
storm.

Based on earlier work by Hartley (1928), Shannon used this observation to come up with
a quantitative measure of the amount of information conveyed by observing a single coin
toss. According to Shannon, if our unfair coin comes up heads, then when we observe this
fact, we get —log,(0.9) ~ 0.15 bits of information. Here, 0.9 is the probability of heads,
indicating that 9 out of 10 tosses yield heads, on average. Because heads are much more
likely than tails, we can take this as a measure of our surprise or what we have learned, or,
in short, information. When we observe heads, we get 0.15 bits of information, much less
than one bit. We are not surprised. The information in observing an outcome of tails is

153

7. INFORMATION

—log,(0.1) ~ 3.32 bits, where 0.1 is the probability of tails. We are much more surprised
when we see tails. So seeing tails conveys more information, 3.32 bits, than seeing heads,
0.15 bits.

If instead the coin were fair, then the probability of T would be 0.5, meaning that, on
average, half of all coin tosses yield T. The Shannon information in observing T is there-
fore —log,(0.5) = 1 bit of information. For a fair coin, every toss gives us one bit of
information. It is more surprising than seeing H for the unfair coin and less surprising
than seeing T for the unfair coin.

Why the logarithm? This seems kind of arbitrary, a rabbit pulled out of a hat. But a
logarithm has a nice property, which is that for any two numbers a and b, log,(ab) =
log,(a) +1og,(b). Logarithms turn multiplication into addition. Consider a pair of unfair
coin tosses that turn out to be TH, tails followed by heads. How much information is
in that result? Well, we get 3.32 bits from the T and 0.15 bits from the H, so the pair
presumably conveys the sum or 3.47 bits of information. When you receive a sequence of
unrelated messages, the information conveyed is the sum of the information in each of the
messages (we assume each coin toss has no effect on the outcome of the next coin toss).

Suppose that we toss two coins simultaneously and observe TH. What is the information
content in that? To apply Shannon’s theory, we need to determine the probability of TH.
If the coin tosses are independent (one does not affect the other), then the probability of
TH is the product of the probabilities for T and H, or 0.1 x 0.9 = 0.09. This probability
is slightly less than 0.1, indicating that slightly fewer than 1 in 10 times tossing two coins
we will see TH. So the Shannon information conveyed by observing TH is —1og, (0.09) ~
3.47. Because a logarithm turns a product into a sum, this is the same as the sum of the
information we get from each coin toss, —log, (0.1 X 0.9) = —log,(0.1) —1og,(0.9). This
is why Shannon used a logarithm. It makes the information content in two identical coins
tossed simultaneously the same as the information content in two sequential tosses of the
same coin.

The logarithm base 2 was used by Shannon so that the information measure would be
in units of bits. If you use the natural logarithm instead, then the information measure
has units of “nats.” If you use base 10, then it has units of decimal digits. In all cases,
however, it measures information.

154

7.3. MEASURING INFORMATION

You might ask why there is the annoying minus sign everywhere. There are two reasons.
One is that probabilities are always less than one,' and the logarithm of a number less
than one is negative. We would prefer a positive number to quantify information, and the
minus sign gives us that. The second and more important reason is that the quantity of
information should increase as the event gets more rare. Without the minus sign, it would
decrease, and the relationship between information and rarity would be backward.

If on average 1 in 10 coin tosses yields tails, then Shannon said that the average informa-
tion in a single coin toss is

—0.910g,(0.9) —0.110g,(0.1) ~ 0.47 bits. (64)

Equation (64) is just the average of these two information quantities, weighted by their
probability, and hence it is the average information in one coin toss. This means that
each coin toss conveys about 0.47 bits of information rather than one bit of information,
on average. In theory, therefore, we may be able to come up with an encoding that will
represent 20 coin tosses with only 20 x 0.47 = 9.38 bits, on average. Shannon showed, in
fact, that we cannot do any better, so 9.38 bits per 20 coin tosses is the limit. No encoding
scheme will do better than this, on average, so the average amount of information in 20
unfair coin tosses is 9.38 bits.

Equation (64) represents what Shannon called the “entropy” in a coin toss. Shannon chose
the term “entropy” for this because the mathematical structure of his formula resembles
the formula that had previously been used for a concept called “entropy” in thermody-
namics. In a profile of Shannon, Horgan writes:

The great mathematician and computer theoretician John von Neumann
persuaded Shannon to use the word entropy. The fact that no one knows
what entropy really is, von Neumann argued, would give Shannon an edge in
debates over information theory. (Horgan, 1992)

Thermodynamics studies the macroscopic properties of materials (especially gasses) in
terms of the microscopic properties (especially molecules in motion). The notion of
entropy originated in 1870 with the work of physicist Ludwig Boltzmann in Austria,
James Clerk Maxwell in Scotland, and Josiah Willard Gibbs in the United States. Entropy
is the central concept in the second law of thermodynamics. That law asserts that the

I Probabilities are less than one because we can say “one out of ten coin tosses comes up tails” (probability
1/10=0.1), but we would not say “eleven out of ten coin tosses comes up tails” (probability 11/10=1.1).

155

7. INFORMATION

entropy in the universe (or in any isolated system within the universe) tends to increase.
To Boltzmann, Maxwell, and Gibbs, entropy was a measure of randomness or disorder in
a physical system. Physical systems tend inexorably toward greater randomness, where
eventually all outcomes are equally likely.

Specifically, Boltzmann and his contemporaries modeled the degree of randomness
(entropy) in a macroscopic system (e.g., a volume of gas) as

S = klog(M), (32)

where M is the number of possible states of the microscopic system (a collection of gas
molecules) that are consistent with the observed macroscopic properties of the system
(like the temperature and pressure of the gas). The constant & is a scaling constant called
the Boltzmann constant. If each of the M states is equally likely, then the probability of
each state is 1 /M, and this becomes —klog(1/M), which is similar to Shannon’s entropy.

At least two significant differences can be found between Boltzmann’s entropy and
Shannon’s. One is the constant multiplier k, which simply changes the units with which
we are expressing entropy. Shannon used bits as his units,” whereas Boltzmann used
joules per degree kelvin (energy per temperature). Because temperature is actually
energy, Boltzmann’s entropy is dimensionless. Dimensionless quantities do not generally
measure something in the physical world, but they can be useful when making compar-
isons. Boltzmann’s entropy allows us to compare the entropy in two scenarios, and the
second law of thermodynamics is all about comparing entropies. Entropy at one point
in time is higher than entropy at an earlier time. The law assigns little meaning to the
actual numbers, only to their relative magnitudes. An exception is that when the entropy
is zero, there is a distinct physical meaning. For the entropy to be zero, we need M = 1,
which means that there is only one possible state. For an ideal gas, this occurs exactly at
a temperature called absolute zero, approximately —460° F or —273° C, where all motion
stops.

A second difference between Boltzmann’s entropy and Shannon’s concerns the notion of
the “number of possible states.” In Shannon’s model, this notion is well defined because
the very notion of the number of possible states is part of the model. When considering
a coin toss, Shannon did not consider the unlikely possibility that the coin would land
on its edge in the mud, yielding neither heads nor tails. Instead, the “coin toss” is just a
physical metaphor for a model where there are exactly two possible outcomes. The notion

2 In fact, the standard term for Shannon’s units is shannons, in his honor, but many people continue to use
bits.

156

7.3. MEASURING INFORMATION

of probabilities for these outcomes, a notion I consider in more depth in chapter 11, is also
part of the model and hence is well defined.

In Boltzmann’s case, however, what is the “number of possible states” of a physical gas?
This is well defined at absolute zero but more difficult to pin down at achievable temper-
atures. Boltzmann assumed each molecule in the gas had a physical position and velocity
and the state of the molecule was captured by these numbers. How many possible values
are there for the position and velocity of a molecule? In Boltzmann’s time, there was no
physics that would bound the number of possibilities for these numbers to a finite set.
The more recent development of quantum mechanics changes the situation. At least for
a closed system with well-defined boundary conditions, quantum mechanics does yield
a finite number of states. But for all but the tiniest systems, the number of states is
enormous. Moreover, precisely defining the boundary conditions is treacherous and risks
confusing the map with the territory. Despite these considerable subtleties, many people
have associated Boltzmann’s entropy with Shannon’s quite closely and concluded that the
world is digital. I will examine this question in the next chapter.

But sticking to Shannon’s self-contained and well-defined notion of entropy, which exists
entirely in the world of models, entropy is a good measure of the uncertainty, randomness,
or disorder in a system. If the coin is fair (heads and tails are equally likely), then the
entropy is 1 bit, so no encoding scheme can do better than the direct encoding, on average.
This is the highest level of uncertainty, randomness, or disorder that a coin-toss system
can have. At the other extreme, if the coin is extremely unfair, and you only ever get
heads, then the entropy is zero. No information at all is conveyed by observing a coin
toss. Certainty is high, there is no randomness, and the coin-toss system is perfectly
ordered. The result of a coin toss can be encoded with no bits at all because we already
know the outcome.

Shannon’s quantification of information content and his choice to express this quantifi-
cation in bits had an enormous impact on communication theory, computer science, and
even philosophy. But it is easy to forget that the theory I've described here applies much
more readily to scenarios where the alternative arrangements are finite and distinct. What
happens if the alternative arrangements offer an infinite number of possibilities? For
example, what if the position of each molecule in Boltzmann’s gas can be any point in a
volume of space? This set of alternative arrangements is not finite. A direct adaptation of
Shannon’s entropy to scenarios with a continuous range of possible outcomes has to be
interpreted more carefully. I do that in the next section.

157

7. INFORMATION

I apologize in advance that the next section is a bit more technical. The short story, should
you wish to skip to the next chapter, is that information cannot always be represented as
binary data. Hence, there is a notion of information that is out of reach for computers.

7.4 Continuous Information

Equation (64) gives the entropy of a random experiment (an unfair coin toss) that has
exactly two possible outcomes, one with probability 0.1 and one with probability 0.9.
Shannon showed that this entropy can be interpreted as the minimum number of bits
required to encode an outcome of the experiment, on average. Equation (64) states that
roughly half a bit (0.47 bits) is required to encode each outcome of the unfair coin toss.
Equivalently, on average, each bit in a sequence of bits can encode the results of roughly
two coin tosses. This requires clever encoding of a sequence of outcomes of the exper-
iment, but with such encoding, it quantifies the amount of information gleaned from
observing each coin toss, about half a bit, on average.

A fair coin, in contrast, has an entropy with value 1, so on average one bit is needed to
encode each outcome. In this case, no clever coding is needed because we can just encode
heads with 1 and tails with 0. Every coin toss yields one bit of information.

Formula (64) is a sum of two quantities, each of the form —plog,(p), where p is the
probability of one of the two outcomes, and the negative of the logarithm quantifies the
amount of information in that outcome. The more rare the outcome, the more information
it carries. It is easy to generalize this idea to a random experiment with more than two
possible outcomes, such as the toss of a pair of dice. The sum in (64) will simply have
one term of the form —plog,(p) for each possible outcome with probability p.

But what if we have a random experiment that can have an infinite number of possible
outcomes? Suppose, for example, that some variable is equally likely to have any real-
numbered value between —a and a for some positive real number a. What is the entropy
of this random experiment, and how many bits are required to encode an outcome?

The formula for entropy is easy to adapt, where the summation of terms of the form
—plog,(p) in equation (64) is replaced with an integration over a continuous range of
possible values. Specifically, the entropy of a continuous random experiment is given by
the formula

HX) == [f(x)1ogs(/(0)d (16)

158

7.4. CONTINUOUS INFORMATION

H (X) represents the entropy of a random experiment that we name X. Bear with me.

The form of equation (16) is similar to equation (64). An integral, after all, is just a sum
over a continuum of an infinite number of values (I will return to the idea of a continuum
in chapter 9). The integration is a sum over the set Q of all possible values x that the
experiment might yield. Each term being summed by the integral has a form similar
to that of the terms in equation (64), —plog,(p), except that probabilities p have been
replaced with probability densities f(x). The term f(x) is the probability density at x,
where x is one of the possible outcomes of the experiment. A probability density, just
like a probability, reveals the relative likelihood that the experiment will yield certain
outcomes. I will talk about probability densities more carefully in chapter 11, but loosely,
if for two possible outcomes x and y we have that f(x) > f(y), then the experiment is
more likely to yield an outcome in the vicinity of x than in the vicinity of y. The phrase
“in the vicinity” reflects that this is a probability density not a probability.

The continuous entropy of equation (16), like the discrete entropy of equation (64), repre-
sents the average amount of information obtained by observing outcomes of the experi-
ment. Like discrete entropy, outcomes that are more rare (values of x where f(x) is lower)
carry more information than values that are more likely. It is no longer correct, however,
to interpret this entropy as specifying the average number of bits required to encode an
outcome of the experiment. In fact, every outcome will require an infinite number of bits
to encode. An outcome of a continuous random value is not representable exactly with
binary numbers, unlike a discrete random value.

Consider a simple example, a random experiment that can yield any real number between
—a and a. Assume that every value in that range is equally likely. For this experiment, the
probability density f is plotted in figure 7.1 for the particular case where a = 4. The plot
shows that outside the range between —a and a, f(x) = 0, indicating that those values
have zero probability, whereas inside that range, f(x) = 1/8, indicating that all values
inside the range are equally likely.

f()

1/2a=1/8

a=—4 1 2 a=4

Figure 7.1: Probability density function for a uniform continuous random experiment.

159

7. INFORMATION

The probability density function indicates the relative likelihoods of outcomes of the
experiment. An area under the plot, like the shaded area in the figure, indicates the prob-
ability that the experiment will yield an outcome inside a range. The area of the shaded
rectangle in the figure is 1 x 1/8 = 1/8, which indicates that the probability of an outcome
between 1 and 2 is one eighth. This indicates that one in eight outcomes will lie in this
range.

The total area under the plot for any probability density f is required to add up to one
because that total area indicates the probability of any outcome, and the experiment must
yield some outcome. In the figure, the total area under the plot for f is a rectangle with
width 8 and height 1/8, so as required, the area under fis 8 x 1/8 = 1.

For the probability density function of figure 7.1, the entropy H(X) in equation (16) is
easy to calculate. An integral is just finding the area under a curve, and the “curve” in this
case is not curvy. It is a rectangle. Without boring you with the details, with the uniform
probability density of figure 7.1, the entropy becomes

H(X) = —log,(1/2a) =log,(2a) =3. (8)

If we were to erroneously interpret this as the number of bits required to encode an
outcome of X, then we would conclude that three bits are sufficient. But this should worry
us. How could three bits distinguish between an infinite number of possible outcomes?

A discrete entropy as in equation (64) is always zero or positive. It cannot be negative. A
probability p is always between zero and one, and the logarithm of a number between zero
and one is always negative, so —plog,(p) is always nonnegative. A sum of nonnegative
numbers is always nonnegative.

For the continuous random experiment, the situation is a bit different. The entropy H (X)
can be positive or negative. Suppose, for example, that X has a probability density func-
tion similar to figure 7.1, but instead of @ = 4, it has a = 1/4. Then when x is in the range
—1/4 to 1/4, the density must be f(x) = 2. It has to be 2 because the total area under f
must be 1. But now you can verify from equation (8) that H(X) = —log,(2) = —1. The
entropy is negative! This further underscores that continuous entropy does not represent
the number of bits required to encode an outcome. How could we encode the outcome of
an experiment using a negative number of bits?

When a continuous entropy is negative, this should not be interpreted as meaning that
negative information is conveyed by an observation of the experiment. In fact, infinite
information (in bits) is conveyed. It should instead be interpreted to mean that an exper-

160

7.4. CONTINUOUS INFORMATION

iment with negative entropy conveys less information than one with positive entropy.
Indeed, when a = 4, there are more possible values for x than when a = 1/4, so a (perfect)
observation in the first scenario conveys more information than a (perfect) observation in
the second. But neither bundle of information can be encoded using bits.

There is an interesting special case when an experiment has only one possible outcome,
for example, a coin toss that always yields heads because both sides of the coin are heads.
In the discrete case, the entropy is zero. The sum in equation (64) will have only one
term, —plog,(p), where p = 1. But the logarithm of 1 is 0, so an experiment with only
one possible outcome has entropy equal to zero. It requires zero bits to encode because
we already know the answer. This makes sense.

What if we have a continuous experiment where there happens to be only exactly one
possible outcome? In other words, the experiment is not actually random, like our coin
with two heads. Suppose, for example, we have a continuous experiment that happens to
always yield x = 0. To model this, we can use the probability density function of figure
7.1 and let a become arbitrarily close to zero. As a gets small, the height 1/2a of f(x) in
the range —a to a gets large to ensure that the area under f remains 1. As a approaches
zero, f(x) approaches infinity for —a < x < a. As a consequence, as a approaches zero,
H(X) = —log,(1/2a) approaches minus infinity.

So for a continuous random experiment, an entropy of minus infinity indicates that no
information is conveyed by a measurement. This is different from a discrete random
experiment, where an entropy of zero indicates that no information is conveyed. The
difference between zero and minus infinity is huge so confusing the two forms of entropy
will yield drastically erroneous conclusions. If we insist on trying to compare these two
forms of entropy, then we need to acknowledge that there is an infinite offset between
them. It takes infinitely more bits to encode the continuous outcome than the discrete
one.

What does it mean when the continuous entropy is zero? Not much. It just means that
there is more information than if the entropy had been negative and less information than if
the entropy had been positive. You can verify that if a = 1/2 in figure 7.1, then H(X) = 0.

Why does each outcome of the continuous experiment require an infinite number of bits
to encode? 1 will fully address this subtle question in the next chapter. The short answer
is that there are vastly more possible outcomes than there are finite bit sequences. There
are just not enough finite bit sequences to assign a unique bit sequence to each possible

161

7. INFORMATION

outcome. This will become clear in the next chapter, but for now I ask you to take my
word for it so that I can explain a truly remarkable insight, due to Shannon.

In the same 1948 paper, Shannon observed the rather obvious fact that any noisy obser-
vation of an experiment yields less information than a perfect observation. “Noise” is a
term that engineers use for extraneous factors that creep into measurements so that the
measurements are imperfect. Noise is unavoidable in any measurement of the physical
world.

But Shannon’s truly remarkable observation was that a noisy observation of a continuous-
valued experiment yields much less information, and that the information it yields can be
represented with a finite number of bits. Although outcomes of the experiment contain
information that requires an infinite number of bits to represent, any noisy observation
only reveals a finite number of bits. Thus, all measurements of the physical world can be
encoded with binary digits, assuming all measurements are noisy.

But this does not imply that the physical world can be encoded with binary digits. That
would be confusing the map for the territory. It may be true that a physical system can be
encoded with bits, although I personally doubt it (see section 8.4 on digital physics in the
next chapter), but it is not finite entropy that makes it true. Continuous entropy is finite
even though its continuous variable cannot be encoded with a finite number of bits.

Shannon’s result that a noisy measurement reveals a finite number of bits of information
is known as the “channel capacity theorem.” Shannon was considering communication
problems, where a quantity known at one point in space is to be conveyed via an imperfect
communication channel to another point in space. One of his central results is that any
channel that adds noise can only convey a finite amount of information, measured in bits,
for each observation of the output of the channel. The output of the channel is a noisy
observation of the input to the channel.

So how much information is conveyed by a noisy measurement? Consider the experiment
X with probability density function as shown in figure 7.1 and entropy H(X) as given
in equation (16). Let Y represent a noisy measurement of X. Let x represent a partic-
ular outcome of experiment X and y represent a particular measurement of that outcome.
Because the measurement is noisy, it is likely that y is close to x but not exactly equal to
x. The measurement y tells us something about an outcome x but not everything. So how
much does it tell us?

3 Any text on digital communication will cover this topic of channel capacity, including one that I coau-
thored (Barry et al., 2004, p. 123).

162

7.4. CONTINUOUS INFORMATION

If we have a model for the measurement noise, then given some specific measurement y,
we can come up with a probability density function that represents the relative likelihoods
of values x that could have yielded the measurement y. This new probability density is
called a “conditional probability density” because it is a valid probability density for x
only once we have a measurement y.

Suppose we know that our measurement apparatus adds noise no bigger than 1/2. This
means that given a measurement y, it must be true that x is within the range y — 1/2 to
y+ 1/2. Suppose further that we have the measurement y = 1.5 right in the middle of the
grey region in figure 7.1. We can conclude that the actual value of x is equally likely to be
anywhere in the grey region, in the range from 1 to 2. It cannot be anywhere else because
the measurement apparatus does not add noise larger than 1/2.

Armed with this knowledge, once we observe y = 1.5, the actual value of x is still random
(it is not known), but now it is equally likely to be anywhere in the grey region. We
have gained information because without the measurement, it was equally likely to be
anywhere from —4 to 4. Now we know that it is equally likely to be in the range from 1
to 2. We have significantly narrowed the range.

How much information have we gained? Intuitively, the grey region is one eighth of the
total possible region for x. Hence, our measurement tells us that the actual value for x
is in one of eight possible equally sized regions. We can distinguish eight regions using
three bits because three bits have eight distinguishable patterns: 000, 001, 010, 011, 100,
101, 110, and 111. So it seems we have gained three bits of information. Shannon shows
us that we actually gain slightly more than three bits of information, on average, because
measurements that are close to the edge of the region, near —4 or 4, will yield more
information than measurements in the middle of the region under this noise model. For
example, if our measurement happens to be y = 4.5, then the only possible value for x
is 4, so with this (extremely unlikely) measurement, we have gained a huge amount of
information. We have achieved certainty.

How did Shannon determine the information conveyed by a noisy measurement? Once
a measurement is taken, we have a new conditional probability density function for X.
Figure 7.2 shows the conditional probability density given a measurement y = 1.5 and
noise limited to +1/2. We can use that new density in equation (16) to calculate the
entropy. Let’s call this entropy H(X|Y), which we read as “the entropy remaining in
X given a measurement Y.” Shannon’s channel capacity theorem then tells us that the

163

7. INFORMATION

information yielded by a measurement is, on average,

C=H(X)~H(X|P). @

H(X) is the information we would gain with a perfect observation, and H(X|Y) is
the information that is not revealed by the experiment. In other words, H(X|Y) is
the remaining randomness after the measurement. The truly astonishing thing about
this theorem is that for a wide range of models of measurement noise, the difference
H(X)— H(X|Y) represents information that can be encoded with a finite number of bits,
even if the original outcome x of experiment X cannot be encoded with a finite number
of bits. The information revealed by the experiment, in bits, is finite, although the infor-
mation in the actual system, in bits, is infinite. In forming the difference H(X) —H(X|Y),
both quantities have an infinite offset compared with discrete entropy, but the offsets
cancel, and the difference becomes a discrete entropy. This insight is truly remarkable.

For our particular example, where a = 4, we have determined that H(X) = 3. Calculating
H(X|Y) precisely is a bit tedious, so I will spare you the details, but our intuition holds
up, and H(X|Y) turns out to be slightly less than 0. Hence, C in equation (4) turns out to
be slightly larger than 3, indicating that our measurement reveals slightly more than 3 bits
of information on average.

It is now worth considering some special cases. Suppose the measurement is perfect.
In this case, H(X|Y) is minus infinity because once a measurement is taken, there is no
remaining randomness in X. Hence, C is infinite regardless of the value of H(X) (as
long as H(X) is not also minus infinity). As a consequence, a perfect observation of a
continuous random experiment yields an infinite number of bits of information.

1| flxly=1.5)

~
=
=
Na¥
ol ol i |

2 a=4

Figure 7.2: Conditional probability density function (dashed line) given a measurement
y=1.5.

164

7.4. CONTINUOUS INFORMATION

Suppose that our experimental apparatus is hopeless, and a measurement yields no infor-
mation about X. In this case, H(X|Y) = H(X) because the randomness after observation
is the same as before. Hence, C = 0. A hopelessly bad measurement yields zero bits of
information about X.

It is also easy to see that H(X) — H(X|Y) cannot be negative because the randomness
(the uncertainty) H (X |Y') after measurement cannot be more than the randomness (uncer-
tainty) H (X) before measurement. Hence, making a measurement never reveals a negative
number of bits of information.

In short, an outcome of a continuous random experiment has information, but that infor-
mation cannot be encoded in a finite number of bits. A noisy observation of the outcome
of continuous random experiment, however, can be encoded with a finite number of bits.
That number is given by the Shannon channel capacity theorem, equation (4). So the
question arises whether the physical world presents scenarios where variables can have
values in a continuous range. There is real risk here of confusing the map and the territory,
so I defer this question to a more careful analysis in the next chapter.

As I argued in chapter 2, in an engineering use of models, we seek physical realizations
that match a model. Models that represent information digitally are extremely useful,
and thanks to the digital technology outlined in chapters 4 and 5, we know how to make
physical systems that are faithful to this digital representation of information. In the
scientific use of models, in contrast, we seek models that match the physical world. In
this use, the assumption that all information is digital and can be represented in bits is
questionable (see section 8.4 in the next chapter). This assumption is demonstrably untrue
if continuous quantities exist in nature.

In chapter 11, I will examine the meaning of probability, which underlies Shannon’s
notion of information. Fundamentally, probability is a measure of uncertainty, the lack of
information. The entropy in a system quantifies exactly how much information we lack
about the system. Put another way, entropy quantifies how much information can poten-
tially be gained by observing the system. But there are two distinct and incomparable
measures, discrete and continuous entropy. Only discrete entropy measures information
in bits.

In the next chapter, we will look at machines whose sole purpose is to process digital infor-
mation. I will argue that even if we restrict our attention to the digital world, leaving out
my dishwasher, software is still limited. It cannot perform most information-processing
functions.

165

The Limits of Software

Contents
8.1 Universal Machines?c00000vue.. 167
8.2 Undecidability i, 171
83 Cardinality v v ¢t i i i i e i e e e e e e e e e e 180
8.4 Digital Physics?0 ittt e e e e e 188

- in which I explain what software cannot do and show that the number of
information-processing functions is vastly larger than the number of possible
computer programs, and in which I explain the Church-Turing thesis, which
shows that there are useful information-processing functions that are not
realizable by software. But it does not follow that if a function is not realiz-
able by software, then it is not realizable by any machine. Here, I am forced
to confront the paradigm of “digital physics,” which argues that the physical
world itself is somehow software or equivalent to software.

8.1. UNIVERSAL MACHINES?

8.1 Universal Machines?

Computers are information-processing machines. The previous chapter studied what
information is and how to measure it. I showed that information is not necessarily repre-
sentable digitally, at least in theory. In practice, the inevitability of measurement noise
and the possibility that the physical world is digital may lead to the conclusion that infor-
mation in the physical world can always be represented digitally. If we go a step further
and assume that all transformations of information in the physical world are performed in
essentially the same way as in computers, then it is impossible in principle to do more than
what can be done by software. This conclusion, if it were true, would be quite remarkable
because it turns out that software can do little compared with what we can imagine is
possible. In this chapter, I will explain the limits of software and why I believe that we
can (and do) do things that software cannot.

The set of all computer programs, each of which is a model, is actually a tiny set. The size
of that set is the same as the smallest of all the infinite sets that Georg Cantor identified in
the late 1800s. Cantor, a Russian-German mathematician, showed that some infinite sets
are vastly larger than other infinite sets.

It is difficult to reason about size when talking about infinity. In fact, Cantor spent 12 years
attempting to prove that all infinite sets have the same size (Smullyan, 1992, p. 219). He
failed! In the process, he developed a remarkable insight that I will use to show how
much smaller the set of all computer programs is compared with the set of functions that
we might be interested in implementing on computers. Consequently, although we can do
an extraordinary amount with software, it’s nothing compared with what is possible if we
do not limit ourselves to this smallest of infinite sets.

There is, however, a potential caveat that I am forced to confront. Since the development
of information theory and the theory of computing, a branch of thought has emerged
that some people call “digital physics.” Digital physics postulates that nature does not
and cannot have a continuous range of possibilities. Some of the stronger forms of digital
physics postulate that going beyond what software can do in principle is physically impos-
sible. In practice, however, going beyond what software can do is clearly possible today
and in the foreseeable future. Software cannot realize my dishwasher, for example. Never-
theless, I will conclude the chapter with a discussion of digital physics.

For now, let’s put aside the question of whether the physical world is digital and just
consider information-processing functions where the inputs are binary numbers and the
outputs are binary numbers. In fact, let’s consider an even smaller set of functions, those

167

8. THE LIMITS OF SOFTWARE

whose input is a finite binary number and whose output is just a single zero or one rather
than a sequence of zeros and ones. Such functions are called “decision functions” because
for each particular input, say 010101, the function will say either YES (1) or NO (0). The
function makes a decision.

In the 1930s, the young English computer scientist Alan Turing defined the set of “effec-
tively computable” functions to be those decision functions that can be computed algorith-
mically (in a step-by-step fashion) using a machine that is now called a Turing machine.!
In principle, a Turing machine is realizable by a modern computer that has a sufficient
amount of memory. Independently of Turing, in 1936, Alonzo Church, an American
mathematician, came up with a different model than the Turing machine that yields
exactly the same set of effectively computable functions. The fact that two different
models result in the same set of effectively computable functions suggests that there is
something special about this particular set of functions.

There are many possible Turing machines, each of which may compute a different deci-
sion function. In Turing’s formulation, each such machine can be encoded by a finite
sequence of bits, much the way machine code encodes a computer program as a finite
sequence of bits (see chapter 5). For example, the sequence 000111 might represent a
Turing machine that computes a particular decision function. Turing showed that there
is a “universal Turing machine,” a Turing machine that can implement any other Turing
machine. For example, if 000111 encodes a Turing machine, and we would like to know
what decision that machine makes for the input 010101, then we can concatenate the
bits specifying the machine code and the input to get 000111010101. Providing that
combined bit pattern as the input to a universal Turing machine yields the answer that the
machine 000111 would have given. So the bit pattern 000111 encodes the program, and
the universal Turing machine is the computer that executes the program. So a “universal”
Turing machine is simply a programmable Turing machine where the program can encode
any other Turing machine.

The effectively computable functions constitute the set of decision functions that can
be realized by a universal Turing machine. What is now called the Church-Turing
thesis states that any function that a human can compute using a systematic, step-by-

I' Later, like Claude Shannon, Alan Turing worked on cryptography during World War II. Turing played

a central role in intercepting German communications that were encrypted using a machine called the
Enigma. Turing led a troubled life, including being prosecuted for homosexual acts in 1952, which were
illegal in the United Kingdom at the time. In 1954, he took his own life at age 41. In his few short years,
however, he transformed the landscape of computing. The highest honor in computer science, the Turing
Award, is named after him.

168

8.1. UNIVERSAL MACHINES?

step process, given enough pencil and paper and enough time, is one of the effectively
computable functions.

Given enough memory and time, any modern computer can also compute any effectively
computable function. So any modern computer is a universal Turing machine, except that
it may run out of memory. But memory has become so cheap and plentiful that this caveat
carries little weight.

The question remains whether a modern computer can do more than compute effectively
computable functions. Many people, including Rheingold quoted in chapter 7, mistake
the Turing-Church thesis to state that it cannot. In fact, Rheingold goes further to state
that no machine can do more than compute effectively computable functions. Turing and
Church considered only machines that operate on digital data, and only machines that
compute algorithmically, via a step-by-step process. We routinely build machines that
satisfy neither of these properties, such as my dishwasher.

A universal Turing machine implements algorithms, step-by-step processes, where each
step changes the state of the machine discretely. The word “algorithm” comes from the
name of the Persian mathematician, astronomer, and geographer, Muhammad ibn Musa
al-Khwarizmi (780—850), who was instrumental in the spread of the arabic system of
numerals that we all use today. An algorithm is a step-by-step calculation procedure, a
recipe. The notion of an algorithm is central to computer science, but it is important to
recognize that an algorithm is a model of what a machine does. In a modern computer,
what is really happening is electrons sloshing around.

The notion of a step, a discrete operation that takes a calculation toward its conclusion,
is an abstraction. Most processes in the physical world do not proceed in a sequence of
discrete steps.” Even a human walking, from which we get the concept of “steps,” is not
actually discrete because each step evolves as continuous motions that begin with leaning
forward and lifting a leg. But the digital machine abstraction considered in chapter 4
abstracts the underlying continuous physical processes in semiconductors as a discrete
sequence of steps. An algorithm is an abstraction that ignores the messy continuous-
world details of the computer. In this abstraction, a step does not take time, and there is
no notion of being halfway through a step. A step occurs atomically, meaning indivisibly
and instantaneously.

2 If you accept a strong form of digital physics (see section 8.4), then every process in the physical world
does, in fact, proceed in a sequence of discrete steps. But for most purposes, at the macroscale at which
we interact with the physical world, this does not provide a useful model of physical processes.

169

8. THE LIMITS OF SOFTWARE

A second important feature of an algorithm is that it reaches a conclusion. That is, it
halts, giving a final answer. The purpose for an algorithm is to determine that answer. An
algorithm that realizes a decision function must halt, giving the answer 0 or 1. If it does
not halt, then it does not realize the decision function.

To compute an effectively computable function, the program executing on a universal
Turing machine must halt to deliver the final answer. Modern computers routinely run
programs that are not designed to halt, such as the operating system (see section 5.4).
These programs do occasionally halt, but we describe such halting as a “crash,” making
it quite clear that this was not intended. A program that does not halt does not realize an
effectively computable function. Nevertheless, even an operating system is a composition
of Turing computations, chunks of computation that are each algorithmic, digital, and
halting.

An operating system implements interactive behavior, which is quite different from
implementing a decision function. Peter Wegner, a computer science professor at Brown
University, has written extensively arguing that interactive programs can do more than
algorithms (Wegner, 1997). An interactive program does not have access to all of its
input when it starts executing. Input may be provided by the program’s environment
while the program is running, and the program can provide outputs to the environment
before it halts (if it halts at all). Hence, the program becomes able to probe the envi-
ronment, providing stimulus to the environment, watching its reaction (which will be
provided as input), and adapting its own behavior accordingly. Turing’s model included
no such interaction. In his model, the input is unaffected by the output, so no dialogue
with the environment is considered in the model. But still, every interactive program is a
composition of algorithmic, digital, and halting chunks.

Nevertheless, if an interactive program is interacting with the physical world (i.e., the
program is part of a cyberphysical system; see chapter 6), then the timing of the actions
of the program will affect the overall behavior of the system. Such a program is clearly
not a Turing computation because Turing’s model includes no notion of time. The timing
of the program’s actions must be considered part of its “output” because the timing affects
the behavior of the system. But Turing’s model includes no notion of time, so the behavior
is not expressible within his model. For such interactive programs, Wegner was clearly
correct that they are not algorithmic.

An interactive program may be interacting with another interactive program. These two
programs may even be executing on the same machine if the machine is capable of multi-

170

8.2. UNDECIDABILITY

tasking,? as most modern computers are. Such a pair of programs is said to be concurrent.
Again, the timing of actions may affect the overall behavior, so Turing’s model requires
some extension to include such systems.

Robin Milner, who appeared in chapter 5 as the author of the ML programming language,
in his Turing Award lecture in 1975, observed that concurrent programs cannot be
modeled simply as functions from inputs to outputs, as (halting) Turing machines can
be. Their chunks can be modeled as such functions but not their overall behavior.

So Wegner and Milner argue that modern computers can do things that a universal Turing
machine cannot do, at least when a program is viewed holistically. Their arguments
continue to be debated, but even if you accept them, modern computers, even if you
endow them with unbounded memory, are still not universal machines. They still cannot
do many things. In fact, I will show that there are vastly more things that a computer
cannot do than things a computer can do. The reason is quite simple: the number of
possible computer programs is much smaller than the number of things we might want to
do. This is true even if we limit ourselves to implementing decision functions and much
more obviously true if we consider functions where timing matters. Even in the limited
case of decision functions, there are vastly more decision functions that neither a computer
nor a Turing machine can compute than decision functions they can compute. Decision
functions that cannot be realized by software on a computer are said to be “undecidable.”

8.2 Undecidability

Recall that a decision function takes as input a finite binary integer, such as 010101,
and produces a binary result, 0 or 1. I can prove to you that no computer can realize
all decision functions even if the computer has unbounded memory. Because a modern
computer, given enough memory, can do anything that a Turing machine can do, Turing’s
universal machines are also unable to realize all decision functions.

In fact, almost all decision functions are undecidable, or, equivalently, almost all decision
functions are not effectively computable. But it is a logic error to conclude from this that

3 Multitasking means that the computer executes several programs at once rather than completing one
program before executing the next one. Without multitasking, a computer could only ever execute at
most one nonhalting program. The word “multitasking” has even spread into the vernacular to refer to
humans simultaneously handling more than one task.

171

8. THE LIMITS OF SOFTWARE

no machine can realize these functions or other functions beyond decision functions. To
draw that conclusion requires accepting a strong form of digital physics.

I can give you a rather simple proof. First, let’s assume that we have a modern computer
with an unbounded amount of memory. This hypothetical computer can implement any
function that a universal Turing machine can implement.

You might already be objecting. Unbounded memory? Any computer will eventually run
out of memory, so actually it will not be able to do everything that a universal Turing
machine can do. But even if the computer does have unbounded memory, it is still not
a universal machine. Specifically, this hypothetical computer cannot realize all decision
functions. To show this, I will use a variant of a clever argument that Cantor used that is
called “diagonalization.”

To show that not all decision functions can be implemented by our unbounded-memory
computer, I just have to find one decision function that is not implemented by any program
for that computer. In section 8.3, we will see that there are many more than one decision
function that cannot be implemented by any program, but we only need one to show that
our unbounded-memory computer is not a universal machine.

First, note that I can create a list of all the possible inputs to our decision functions:

00
01
10
11
000
001
010

Each input is a finite sequence of bits. This list will get very long. Infinite in fact. But
hopefully you can see that every possible input, every possible finite bit sequence, will be
somewhere on this list.

Every program for any modern computer is represented as a sequence of zeros and ones.
As a consequence, every program will also be somewhere on this list. Not all elements of
the list are valid programs, but every valid program must be on the list.

172

8.2. UNDECIDABILITY

Some of these valid programs produce as output just one number, O or 1, for each possible
input. Let’s call those programs “decision programs.” Every decision program is on the
list. Clearly, every decision program realizes a decision function, but not every decision
function has such a program.

Let’s call the first decision program on the list Py, the second P, and so on. We see now
that we can assign a name of the form P, for every decision program, where 7 is an integer.
Each of these programs yields a decision for each of the inputs in the previous list. For
example, it might be that program P; yields the following outputs:

Pi(0)=0
Pi(1)=0
P1(00) =0
Pi01) =1

I can now find a decision function that is not implemented by any decision program. This
is a contrarian function, so I will call it C. The decision function C yields the following
decisions for each input:

C(0) =—Pi(0)
C(1) = =P (1)
€(00) = —P;3(00)
C(01) = —P4(01)

where the symbol — is logical negation. It converts a 0 to a 1 and vice versa, like the NOT
gate in chapter 4. So if P;(0) = 0, then =P, (0) = 1.

This function is contrarian because for each possible input, it yields the opposite of what
one of the decision programs yields. Notice now that C is different from every decision
program. It is different from P; because its output differs from P for input 0, it is different
from P, because its output differs from P, for input 1, and so on. So the decision function
C is not implemented by any computer program. Hence, not all decision functions can be
implemented by our infinite memory computer. Our proof is concluded.

Notice that C resembles the functions that a computer can realize, in that its input is a
sequence of bits and its output is one bit. It seems that a computer should be able to
realize C, but I have just shown that it can’t.

173

8. THE LIMITS OF SOFTWARE

The “effectively computable” functions are exactly those decision functions that are real-
ized by one of the decision programs P, in the list. It is quite a remarkable fact that for
any modern computer, regardless of its particular machine code structure, the set of effec-
tively computable functions is essentially the same. Any computer that can realize all the
effectively computable functions is said to be Turing complete. Any modern computer,
if we extend it to have unbounded memory, is Turing complete. The decision function C
is not an effectively computable function, or, equivalently, C is undecidable. There is no
computer program that can make the decisions that C makes.

You might be protesting that C is not a useful decision function. It’s just a cute corner
case, an academic exercise. I have two rebuttals. First, I will show in the next section that
there are vastly more functions like C than there are effectively computable functions.
Second, many useful decision functions are known to be undecidable. Turing gave one:
Turing’s useful function takes as input a binary encoding for a Turing machine concate-
nated with an input string and returns O if the Turing machine halts and 1 if it does not. A
Turing machine that does not halt just keeps executing forever without ever giving a final
answer. Turing’s useful function solves the so-called halting problem, telling us whether
a program will halt for a particular input. This is clearly something that could be useful
to know. Turing showed that this function is undecidable.

It is surprisingly easy to show that the halting problem is undecidable. If you will again
indulge me a brief nerd storm, the proof is another diagonalization argument, as shown
earlier. First, assume we have a computer program called H that solves the halting
problem. If H were to exist, then it would be given two inputs: a binary encoding B
of a program and a binary encoding / of an input to that program. All that H has to do is
return O if B halts for input / and return 1 otherwise. It must return these values after a
finite number of steps. We can’t wait forever for H or its answer would be useless.

Because B and I can be concatenated into a single input bit sequence, H is a decision
program. Let’s write the concatenated input B/, and let’s write H(BI) to mean “execute
program H on input BI.” For H to actually solve the halting problem, it must itself halt
for any input. Given any input B/ (or at least any input B/ where B is a valid program), it
must return O or 1.

Because B and I are both sequences of bits, if H exists, then we should certainly be able
to evaluate H(BB), and it should return O if B halts with input B, and 1 otherwise. Now
recall that every program is encoded as a bit sequence, and every bit sequence is in the
list of bit sequences 0, 1, 00, 01, 10, 11, 000, ---. The list must contain every program
that, given input BB for any valid program B, halts and returns O or 1. Let’s call the first

174

8.2. UNDECIDABILITY

such program on the list F, the second one F;, and so on. We can now show that H must
be different from every one of these F, programs, and hence H cannot be a program that
halts and returns O or 1 for every input BB. It cannot solve the halting problem.

For each F, on the list, we construct a new program 7, a rather annoying program like
the contrarian program C shown earlier. It uses F, as a subprogram, but it does not itself
implement an effectively computable function. It fails to halt for some inputs. Specifi-
cally, given a valid program B, the first thing 7, does is evaluate F;,(BB). By assumption,
F,(BB) always halts and returns O or 1. If F,,(BB) returns 1, then T,,(P) returns 0. Other-
wise, and here is where 7,, gets annoying, 7,, loops forever and never returns anything. It
fails to halt. In pseudocode,4 T,, looks like this:

if (Fy(BB) == 1) {
return O
} else {

loop forever

We can now show that none of the F,, in the list solves the halting problem or, equivalently,
that the function that F,, implements is different from the function that H implements for
every n = 1,2,---. To do this, suppose we evaluate the annoying function 7, on its own
binary encoding. That is, we evaluate T,,(7,,). Does this halt? If it does, then H(7,T,)
should return 0; otherwise it should return 1. What does F,(7,T,) return? Well, we
don’t know because F;, is just some arbitrary program realizing an effectively computable
function. But we do know that F,,(7,7,) halts and returns something.

Suppose that F,(7,T,) returns 1. Then T, halts and returns 0, so H(7,,T,) = 0. So in this
case, F, is not the same as H. They return different values. Suppose instead that F;,(7,T,)
returns 0. Then 7, annoyingly does not halt, so H(T,T,,) = 1. So again F, is not the same
as H.

Because H is different from F;, for all n, H is not on the list of programs that return 0 or 1
for any input BB. Hence, H cannot be a program that solves the halting problem. Whew.
Survived another nerd storm.

A direct consequence of the undecidability of the halting problem is that in any program-
ming language, there will be valid programs where we can’t tell what the program will

4 Programmers use “pseudocode” to refer to a sketch of a program that is not written in any particular
programming language. Its purpose is to communicate intent to other humans.

175

8. THE LIMITS OF SOFTWARE

do just by looking at the program. We cannot tell whether the program will ever halt and
give an answer.

The philosophical consequences are profound. Programs and their executions on
computers exist in the physical world. So Turing has shown us that there are physical
processes that we cannot fully “explain.” A full explanation of some physical process
should, it seems, tells us why it exhibits some behavior. But Turing showed us there are
processes for which we cannot even tell whether they will exhibit some behavior, much
less why.

A fundamental theme of this book is that we must insist on keeping separate in our minds
the map and the territory. Any “explanation” of the physical world or of what a computer
does is a map. It is a model. A computer program is a model of its own execution. Turing
showed us that this model can never fully explain the thing it models. A program does not
fully explain its own execution because you cannot tell what it will do just by looking at
the program. The world is what it is, and every model, every explanation, every map, and
every program we construct is a human invention distinct from the thing that it models.
The set of all maps is incomplete, in that there are properties of the physical world that
cannot be mapped.

Nothing that I have said should be construed to undermine the value of models or maps. It
leaves open the question of whether programs, as models, can describe all processes, even
if we now know that they cannot explain all processes. The question remains whether our
hypothetical unbounded-memory computer is a universal machine. If you define “compu-
tation” to mean exactly those decision functions that are effectively computable, then
our unbounded-memory computer can realize all “computations.” But this argument is
circular. We have defined “universal” to mean “it does everything that it does.” This is
why the Church-Turing thesis is called a thesis and not a theorem. It simply states that
the effectively computable functions are the ones we can compute with an (idealized)
computer. Nothing about this thesis says that there is no machine that can realize C. All
we have shown is that a computer, as defined by the digital technology of chapters 4 and
5, cannot realize more than a small subset of decision functions.

It turns out to be a surprisingly controversial topic whether there could be a machine to
realize functions like C. A whole community has emerged that looks at what some people
call “hypercomputation” or “super-Turing computation” that specifies (mostly hypothet-
ical) machines that compute functions that are not effectively computable. For example,
Blum et al. (1989) describe a hypothetical machine that is similar to an ordinary computer
except that it operates on real numbers rather than digital data. But its execution is still

176

8.2. UNDECIDABILITY

algorithmic, so many of the same questions and answers carry over from Turing machines,
such as the question of whether a program ever halts.

Martin Davis, an American mathematician whose PhD thesis advisor was Alonzo Church,
vocally debunks the very idea of hypercomputation, except possibly as a pure theory exer-
cise (Davis, 2006). Even his arguments, however, are set squarely in the framework of
algorithmic operations on finite bit sequences. He ignores timing, for example, presum-
ably assuming that timing is irrelevant, and he assumes that input and output are discrete.
He observes, for example, of any machine that produces a non-Turing-computable infinite
sequence of natural numbers (which can be encoded as finite bit sequences), “no matter
how long this goes on, we will see only a finite number of these outputs” (Davis, 2000).
This assumes the outputs are rendered to the observer as a list (which is discrete) of natural
numbers (also discrete). Is this the only way to present a result of a computation? It is the
way computers present results, but what about other machines? My dishwasher does not
present its results as a list of numbers.

Ultimately, I believe that any conclusion that no machine can realize functions like C is an
act of faith, a position I will defend more strongly in the next chapter. Like many acts of
faith, this one requires ignoring evidence against it. Clearly, computers are not universal
machines because they can’t do what my dishwasher does. Surely my dishwasher is a
machine, albeit not an information-processing machine. In fact, it is a cyberphysical
system because it includes a computer working in concert with mechanical and hydraulic
systems. A dishwasher that presents clean dishes as a list of numbers won’t sell well. But
actually, even the resistors and inductors considered in chapter 2, as modeled by Ohm’s
and Faraday’s laws, are not realizable by computers because they do not operate on binary
data and do not operate algorithmically.

Nevertheless, many authors, not just Rheingold and Davis, subscribe to this faith of
universal computation. In fact, it’s a powerful religion these days, with many believers.
Turing and many others since have conjectured that even the human brain, and hence
human cognition, is realizable by a universal Turing machine. As I will show in the next
chapter, I cannot prove this conjecture false, but I believe it is extraordinarily unlikely.
This faith of universal computation can only be true if a strong form of digital physics is
true, and even then it will not lead to useful models.

Turing himself actually described a hypothetical machine that can realize C. He called it
an “oracle machine” and assumed it would not be implementable. I can explain a simple
version of it. Assume infinite memory. Technically, this assumption is stronger than the
assumption of unbounded memory that we made for the universal Turing machine because

177

8. THE LIMITS OF SOFTWARE

“unbounded” means that we have all the memory we need, whereas “infinite” means that
we can actually store an infinite list of bits. Even so, this new machine will prove not to
be a Turing machine.

Suppose that the infinite memory initially contains a table of all the outputs that C
produces for each input. This memory is like an oracle, all knowing. That is, the
first entry in the table has one bit with value —P;(0), which gives us C(0); the second
entry has value =P»(1), which gives us C(1); and so on. Now, given any input, such as
010101, the machine simply goes down the table until it finds the entry matching this
input and produces the corresponding output C(010101). For any input, this procedure
can be accomplished in a finite number of steps, so this machine will always produce an
output eventually. It realizes the decision function C. In fact, just by providing a different
initial table, this hypothetical machine can realize all decision functions, so it’s much
more “universal” than a universal Turing machine.

I have already pointed out, but it bears repeating, that Turing never intended the word
“universal” in “universal Turing machine” to mean that these machines could do every-
thing. Turing’s machine is universal in the sense that its program, which defines the
function it computes, is part of the input to the machine. A nonuniversal Turing machine,
by contrast, is not programmable. It computes exactly one function, and that function is
built into it. So Turing’s “universal” means simply that the machine can be programmed
to compute any effectively computable function. It is a mistake to reinterpret “universal”
to mean that it can do everything.

In what sense is this oracle machine not a Turing machine? The key issue is the memory
containing the table. Turing did not include in his description of a universal Turing
machine the ability to initialize an infinite memory. Modern computers also do not have
this capability. But does this mean that no machine can do this?

To conclude that there cannot be such a machine, I would have to assume that it is phys-
ically impossible to construct something that “remembers” any infinite sequence of bits.
Is it? Only by accepting digital physics can I conclude that this is impossible.

Suppose I want to remember the number . A binary encoding requires an infinite number
of bits. Suppose that I can cut a steel rod so that its length is exactly T meters. In 1799,
a platinum bar was placed in the National Archives in Paris and became, for many years,
the standard definition of one meter of length. So it is not so far fetched to use the length
of a rod for memorizing a value. Haven’t I just made a memory that stores an infinite
number of bits of information?

178

8.2. UNDECIDABILITY

Of course, I will run into a number of practical physical problems with this memory.
The length of the rod will vary with temperature (and with passing gravitational waves,
apparently), and I would need a clear and precise specification of what “one meter” is to
interpret the length of the bar as “m meters.” Measuring the length precisely will be diffi-
cult or even impossible due to quantum mechanical uncertainty laws. And if there is any
noise at all in the measurement process, then Shannon’s channel capacity theorem from
the previous chapter, equation (4), shows that the information conveyed by a measurement
contains only a finite number of bits.

But just because I can’t measure the length doesn’t mean that the rod doesn’t have a
length. Moreover, even if the length of the rod changes over time, as it does so, if it
progresses fluidly from one length to another, then the length at each instant will have
some dependence on the lengths at prior instants. Isn’t such dependence a form of
memory? If the length changes fluidly from one value to another, then at least some
of the intermediate lengths would require an infinite number of bits to be represented
precisely under any units of length, be they meters, inches, furlongs, or any arbitrary unit.

The form of the information is not in bits. Where are the bits? But then again, where
are the bits in a computer? A key premise in the concept of information is that the form
in which it is stored is not important. This is why information can be conveyed and
copied. The idea of conveying and copying information depends on the assumption that
the recipient has the same information as the originator, although the physical form of
the information is obviously distinct in the recipient. Modern computer memories store
bits electrically or magnetically, using the techniques of chapter 4 to abstract the messy
physics into digital models. When information is conveyed from one computer to another,
the form of storage can change, for example, from electrical charges to magnetic polar-
ization. When designing computer memories, engineers have no need to assume that the
underlying physics is discrete. So what is wrong with the means by which my rod stores
the number ©? Nothing. If I insist that the form be as a list of bits, then I’ve already
assumed the conclusion, that such a memory is not possible.

An astute reader can use many remaining problems to challenge my position. Suppose,
for example, that you require that in order for something to be deemed to be “informa-
tion,” it must be possible to convey or copy it. Then we run into a fundamental problem.
Shannon’s channel capacity theorem, equation (4), tells us that if there is any noise in the
channel over which the information is conveyed or copied, then only a finite number of
bits of information gets through. With this observation, you could define “information”
to only include things that can be represented with a finite number of bits. This requires
rejecting the use of continuous entropy (section 7.4) as a measure of information.

179

8. THE LIMITS OF SOFTWARE

I am a teacher. I know quite a lot about a few things. I think what I know is “information.”
But I also know that I routinely fail to convey this information to my students. Some of
it gets through, but not all of it. I am privileged to work with extremely smart students,
and many of them creatively misunderstand what I am trying to convey and come up with
insights that I never had. And sometimes they fail to convey those insights to me. But
this does not make what I know and what they know any less “information.” It is still
information even if it is not conveyed.

So I believe there is plenty of room for doubt that a universal Turing machine is a universal
information-processing machine. This is probably a minority opinion today, and I will try
to defend it better in the next section. The root of my doubt lies in the mathematical
notion of cardinality of infinite sets. The fact is that the set of all computer programs
is a small infinite set. In fact, the size of this set is equal to the size of the smallest
infinite sets that mathematicians know about. Much bigger infinite sets exist. To assume
that all the machines we can make are limited to this smallest of infinite sets, I have to
assume digital physics. To assume that all machines that nature can make (or has made)
are also so limited, I have to reject the existence of anything continuous in nature. This
requires accepting one of the stronger forms of digital physics. I will now try to explain
just how unlikely this limitation is by examining the notion of cardinality. I will then
directly confront the idea of digital physics in section 8.4. In chapter 11, I will explain
why it is that when some hypothesis is unlikely to be true, we must demand much stronger
evidence before accepting the hypothesis than if the hypothesis is a priori likely to be true.

8.3 Cardinality

A mathematician uses the term “cardinality” for the size of a set.’ A set with two items, for
example, has cardinality two. This rather trivial concept becomes interesting only when
we consider sets that have an infinite number of items, such as the set of all computer
programs.

In the previous section, I showed that there is at least one decision function that is not
implementable by any computer program. Using Cantor’s results, we can show more
strongly that an infinite number of decision functions are not realizable by any computer

5 I recommend the wonderfully readable book on this subject by Raymond Smullyan called Satan, Cantor
& Infinity (Smullyan, 1992). I first learned from this book that Cantor was trying to show that all infinite
sets have the same size when he discovered that they did not.

180

8.3. CARDINALITY

program. Even more strongly, we can show that vastly more decision functions cannot be
realized than decision functions that can be realized by a computer program.

This result depends on Cantor’s observation that not all infinite sets have the same size. To
put this in intuitive terms, consider the set of all nonnegative integers, N = {0,1,2,3,---}.
The symbol N is shorthand for this entire infinite set of integers. There are clearly a lot
of them, an infinite number, in fact, as indicated by the ellipsis “---,” which can be read
“and so on.” This set is called the set of “natural numbers” presumably because someone
thought that negative and fractional numbers were somehow unnatural.

Consider now the set of all “real numbers,” commonly given the symbol R.® This set
includes all the elements of N but also many more numbers. It includes negative numbers,
fractions, and irrational numbers (numbers such as 7 that cannot be represented using
fractions). Clearly R is a bigger set than N. But how much bigger?

First, we need to be clear on what we mean by the size of an infinite set. In Cantor’s notion
of the sizes of infinite sets, two infinite sets A and B are said to have the same size if we
can define a one-to-one correspondence between the elements of the sets. A one-to-one
correspondence means that for every element of A, we can assign a unique element of B
to be its partner. For example, consider the set N and another set Ml = {—1,-2,-3,---}.
We can establish a one-to-one correspondence as follows:

N: 0 1 2 3
T 11

M: —1 -2 -3 —4

Each and every element of one set has a unique partner in the other set. So Cantor’s
observation is that we can declare these two sets to have the same size.

6 Although the concept of real numbers is quite old, appearing in the ancient Greek work of Archimedes
and Eudoxus, who was a student of Plato’s, the modern formalization of the concept is relatively recent,
dating to the nineteenth-century work of Weierstrass and Dedekind. It is actually quite a subtle concept.
According to Penrose (1989), “to the ancient Greeks, and to Eudoxos in particular, ‘real’ numbers were
things to be extracted from the geometry of physical space. Now we prefer to think of the real numbers as
logically more primitive than geometry.”

181

8. THE LIMITS OF SOFTWARE

Interestingly, we can also establish a one-to-one correspondence between the set N and a
subset of itself containing only even integers, E = {0,2,4,6,--- }:

N:

O < O
N <— =
EE Rl \)
QN W

E:

Every element of both sets is represented, so these two sets also have the same size,
although the second set omits half the elements of the first. This oddity is a property of
infinite sets. They have the same size as many of their own subsets.

Cantor denoted the size of the set N by the symbol X, where X is the first letter of the
Hebrew alphabet, aleph. The subscript O indicates that this is the size of the smallest
known infinite sets. Mathematicians pronounce X “aleph null.”

Interestingly, many sets have size ¥, including the natural numbers N, the integers, and
even the rational numbers. The set of binary sequences listed in the previous section, let’s
call it B ={0,1,00,01,10,11,000,--- }, also has size X,. Hopefully, you can see how to
establish a one-to-one correspondence between this set and N.

A set with size Ny is called a “countably infinite set” because there is a one-to-one corre-
spondence with the set of counting numbers {1,2,3,4,---}. Hence, we can “count” the
elements of the set, although we will eventually tire of doing so because of its infinite
size.

For any set with size X, every infinite subset of that set also has size (. Consequently,
the size of the set of all computer programs is also Xg. This is because every computer
program is in the set B, and an infinite number of such programs is possible.

Now things get really interesting. Cantor, to whom I owe the diagonalization arguments in
the previous section, showed that there are infinite sets with vastly bigger size than Xg. In
particular, Cantor showed that the set R of real numbers has no one-to-one correspondence
with N. He used a diagonal argument similar to what I used in the previous section.
Mathematicians say that the set R is “uncountable.” Moreover, there are even bigger
infinite sets, such as the set of all functions that map real numbers into real numbers.

There are many uncountable sets besides R. In fact, the set of decision functions from
the previous section is also uncountable. It has the same size as R. To show this, we
can establish a one-to-one correspondence between the set of real numbers and the set of

182

8.3. CARDINALITY

decision functions. We could do that here, but I’'ll spare you that nerd storm and ask you
to take my word for it.

As with N, a proper subset of R may have the same size as R. For example, the size of
the set of real numbers between zero and one is the same.

An uncountable set is strictly larger than a set with size Xg. In light of this result, it is
not surprising that not all decision functions can be realized by computer programs, even
though decision functions only involve binary digits. The set of decision functions is
uncountable, and the set of computer programs is countable and therefore much smaller.
If more decision functions than the decidable ones are realizable, then computers are not
universal information-processing machines.

Now notice that any machine that deals with real numbers will also not be realizable by
computer programs. Hence, to consider computers to be universal information-processing
machines, we have to exclude real numbers from our notion of “information.” This rather
drastic step goes against almost all tradition in mathematics, science, and engineering.
We should not accept this step lightly.

Recall from the previous chapter that information can be measured in bits if the number of
alternative arrangements being distinguished is finite. That is, information in bits selects
from a finite set. Finite sets are even smaller than countable sets. If a random (unknown)
quantity has an uncountable number of possible outcomes, for example, the variable can
take on any real value between zero and one, then Shannon’s results actually show that
the outcome cannot be represented with a finite number of bits. This is now obvious.
Because there are only countably many finite bit sequences, it cannot be possible to use
bit sequences to distinguish values from an uncountable set. There just aren’t enough bit
sequences.

The total number of possible computer programs is Xg. The total number of decision
functions is bigger, but how much bigger? If it’s only slightly bigger, then maybe we
haven’t lost much by limiting ourselves to what digital computers can do. But it isn’t only
slightly bigger. It is actually vastly bigger.

First, notice that if we add one element to a countably infinite set, the set does not get any
larger. For example, suppose we add the element —1 to N to get the set {—1,0,1,2,3,---}.

183

8. THE LIMITS OF SOFTWARE

The resulting set has the same size as N, as we can see by this correspondence:

S < =
—< N
N < W

0
!
—1
The correspondence includes all elements of both sets.

By the same reasoning, if we add any finite number of elements to a countably infi-
nite set, the size of the set does not change. What if we add a countably infinite
number of elements? Suppose, for example, that we add to N all the elements of
M ={—1,-2,-3,---}. The combined set is the set of all integers, often written Z. The
combined set Z again has the same size as N! This correspondence again includes all
elements of both sets:

N: 0 1 2 3 4 5
11ttt
Z: 0 -1 1 =2 2 -3

Intuitively, it would seem that we have doubled the size of the set, but actually we haven’t
changed the size at all. Thus, an uncountable set is more than twice as large as Y. But
it’s even much bigger than that.

The set of rational numbers, it turns out, is also countably infinite. A rational number r is
any number that can be written as the ratio of two integers n and d (i.e., as n/d). To make
it easier to find the correspondence, let’s restrict ourselves to only positive n and d. We

184

8.3. CARDINALITY

can then form a table that includes every possible rational number as follows:

1 1 1
1 2 3
2 2 2
I 2 3
3 3 3
1 2 3

The ellipsis - -- means simply to continue the pattern horizontally and vertically forever.
This table has more entries than there are rational numbers because there are some redun-
dancies. For example, the diagonal elements, 1/1, 2/2, 3/3, and so on, all represent the
same rational number 1. But every positive rational number is somewhere in the table.

185

8. THE LIMITS OF SOFTWARE

We can establish a one-to-one correspondence between the entries in this table and N by
traversing the table as shown by the arrows below:

1 1 1
1 2| 7|3
L % s
2 2 2
1 2 3

< / 4
3 3 3
1 2 3

L/ v

If you now follow the arrows in the table, you can see how to “count” the rational numbers,
hitting every single rational number in a well-defined order. Following the path of the
arrows and eliminating any redundancies as you go, you can establish a correspondence
between the set of all positive rational numbers and the set N. Just start at the upper left
and associate 1/1 with the natural number 0. Follow the first arrow and associate 2/1
with the natural number 1. Follow the second arrow and associate 1/2 with the natural
number 2. Continuing like this, we can associate every positive rational number with a
unique natural number. We can then show that the set of all rational numbers, positive
and negative, is also countable, using the same trick we used to show that Z is countable.

A square array like the table above, if it is finite, is equal in size to the square of the
number of rows and columns. Ignoring the ellipsis - - - in the table above, there are three
rows and three columns, for a total of nine entries, the square of three. Letting the table
grow, which is what is implied by the ellipsis, the size of the table will become n?, where n
is the number of rows and columns. As the table grows to infinity, the number of rows and
columns will become X, suggesting that the size of the table should be Ng. However,
because the entries in the table are countable, N% = Xy. Thus, intuitively, the size of R
and the size of the set of decision functions is larger than the square of Xy. Put another
way, an uncountable set is not only bigger than two infinite sets with size Xy combined,
but it is bigger than the combination of a countably infinite number of countably infinite

186

8.3. CARDINALITY

sets! In fact, it’s bigger than any finite power of X,. Hence, the set of decision functions
really is vastly bigger than X, and there are even bigger sets that are vastly bigger than
the set of decision functions.

An obvious question arises: is there any set whose size lies between X and the set of deci-
sion functions? Mathematicians usually assume that no such set exists. This hypothesis
is called the “continuum hypothesis.” It is unproven and in fact cannot be proven. It must
be assumed. In 1939, the Austrian-American mathematician Kurt Godel proved that the
continuum hypothesis cannot be disproved using the accepted axioms of set theory.” In
1963, the American mathematician Paul Cohen proved that the continuum hypothesis also
cannot be proved from these same axioms. The continuum hypothesis is therefore inde-
pendent of the axioms of set theory. But regardless of whether we assume the continuum
hypothesis, it remains true that any uncountable set has vastly more elements than any
countable set.

The proof I gave above that computers cannot solve all decision functions offered just
one counterexample, a single decision function C that could not be implemented by any
program. The same argument proves that no countable set of programs can realize all
decision functions. So this shows that the size of the set of decision functions is strictly
larger than the set of programs. The set of decision functions is uncountable and therefore
vastly larger than the set of decision functions that can be computed by any computer.

Turing’s result, that decision functions exist that are not effectively computable, is one
of several results emerging around the same time that crushed the optimism of the
previous century.® In the face of such results, particularly when viewed through the lens
of cardinality, I have to conclude that it is extremely improbable that every interesting
information-processing machine is somehow a piece of software. To believe something
so improbable in the face of such weak evidence requires a great deal of faith. In chapter
11, I will show how to systematically use evidence to update our beliefs (using Bayesian
reasoning) and why an improbable hypothesis demands stronger evidence.

Fortunately, engineers are not limited to working with software. As described in chapter 6,
cyberphysical systems form a partnership between software and other nonsoftware phys-
ical systems. These combined machines offer a vast and largely unexplored landscape
for creative designers and inventors. Even more interesting, the partnership between

7 Specifically, using the axioms of Zermelo-Fraenkel set theory, from which much of mathematics can be
derived.
8 For a wonderful account of this optimism and its downfall, see Kline (1980).

187

8. THE LIMITS OF SOFTWARE

computers and humans has vastly more potential than either alone, as I will argue in
the next chapter.

8.4 Digital Physics?

Digital physics postulates that nature does not and cannot have a continuous range of
possibilities, the total number of possible states that any system can have (including
the entire universe) is finite, and physical systems are essentially equivalent to software.
Digital physics is a paradigm shift, in the sense of Kuhn, and I hope I am not just one
of those opponents who must eventually die so the paradigm can become universally
accepted.

If it is true, then the postulate has severe consequences. It means that many of our
most cherished ideas of the physical world are wrong, including that space is a three-
dimensional continuum and time progresses fluidly from one instant to the next. It means
that Newton’s laws and Einstein’s relativity are are both wrong because both depend on
time and space continuums. Of course, as stated by Box and Draper (1987), all models
are wrong, but some are useful. By this principle, digital physics must also be wrong. It
is a model, a map, not a territory.

For most purposes, digital physics is unlikely to be as useful as models that admit conti-
nuity in the physical world. Even if it is finite, the number of states of all but the most
tiny systems will be enormous compared with what digital technology can manage today
and in the foreseeable future. Nevertheless, the idea of digital physics provokes deep
questions about modeling from scientific, engineering, and philosophical perspectives.

From the engineering perspective, digital physics postulates that everything that is
possible to make, in principle, can be made with software. It means that dishwashers
are, in fact, information-processing machines. It means that the human mind and all of its
cognitive functions are, in principle, realizable in software (I will return to this question
in section 9.3 in the next chapter). It means that no machine can accomplish what soft-
ware cannot do, such as computing undecidable functions or working with real numbers.
Hence, it is pointless to try to build such machines.

From the scientific perspective, digital physics postulates that nature is extremely
constrained, operating within a tiny subset of mechanisms that might have been possible.
This tiny subset includes almost none of the physical theories that humans have developed
over centuries.

188

8.4. DIGITAL PHYSICS?

From a philosophical perspective, if the number of states of the universe is finite, then it
must be true that (1) the universe must eventually find itself in a state that it has been in
before; (2) the universe can only change state a finite number of times in infinite time,
so it must effectively stop changing; or (3) time must end. I find all of these possibilities
profoundly disturbing.

Perhaps even more disturbing is that it may be impossible to disprove digital physics.
Specifically, if we assume that all measurements of the physical world are noisy, then
the Shannon channel capacity theorem, equation (4), states that every measurement will
convey only a finite number of bits of information. Therefore, any measurement that
attempts to show that the number of states of some system is infinite will fail. Hence, by
Popper’s philosophy of science, digital physics is not scientific because it is not falsifiable.
Digital physics becomes a faith.

Digital physics strikes me as far fetched, but most of modern physics is. Most of physics in
the universe operates in regimes where our human senses and the intuitions built through
them are useless. Our senses and our experience on earth do not give us much intuition
to use in understanding black holes and quarks. So by now we should be used to counter-
intuitive theories. But there is one aspect of digital physics that makes it highly improb-
able and, hence, extremely surprising. It constrains the universe to operating within a
countable and, worse, a finite system. Given that almost all of our deepest and best
understanding of the world has come from powerful models of continuums and infini-
ties, for example, Newton’s and Leibniz’s calculus, to conclude that nature has no need
for anything infinite gives pause. It seems like a throwback to preenlightenment days. At a
minimum, we should insist on incontrovertible evidence before accepting this. Although
the evidence today looks weak to me, quite a consensus has formed among physicists
supporting this hypothesis, so the evidence must not look weak to them. In chapter 11,
I will explain exactly what I mean by “evidence,” but for now let’s just examine what
digital physics means and why it is so improbable.

Digital physics has several variants, some of which are bizarre. The variants can be put in
order from weakest to strongest as follows:

1. Inits weakest form (fewest assumptions), digital physics asserts that the number of
possible states of any system in nature with finite energy and volume is finite. If
this is the case, then the state of any such system can be completely encoded with a
finite number of bits.

189

8. THE LIMITS OF SOFTWARE

2. A slightly stronger form asserts that the physical world is essentially informational.
Every process is an information transformation, and every object in the world is
essentially a bundle of information. Digital physics further asserts that information
can be measured in bits.

3. Inastronger form, digital physics assumes that every physical process is essentially
a computation, representable in principle as software. This requires that processes
in nature be algorithmic, proceeding as step-by-step operations.

4. Ina still stronger form, digital physics assumes that the physical world is essentially
a computer.

5. In the strongest form that I have seen, digital physics asserts that the physical world
is a simulation carried out by a computer.

In my opinion, these philosophies are confusing the map with the territory. Are they
talking about models of reality or about reality?’

A supporter of at least the weaker forms of digital physics was the Mexico-born Israeli-
American theoretical physicist Jacob Bekenstein, who was a professor at the Ben-Gurion
University and then the Hebrew University in Israel until his unexpected death in 2015.
Bekenstein and his colleagues developed what is now called the “Bekenstein bound,” an
upper limit on the entropy that can be contained within a given finite volume of space that
has a finite amount of energy (see Freiberger (2014) for a short readable summary). If we
assume that the form of entropy that Bekenstein considered is discrete entropy, explained
in the previous chapter, then the Bekenstein bound shows that the amount of information,
measured in bits, that can be stored in a given volume of space is limited. Equivalently,
the bound shows that anything occupying a given volume of space can be completely
described, down to the quantum level, with a finite number of bits. I will call this the
“digital interpretation of Bekenstein’s bound.” Under this interpretation, the first form of
digital physics listed previously follows immediately. An alternative nondigital interpre-
tation of the Bekenstein bound using continuous entropy appears to be consistent with
Bekenstein’s original formulation (Bekenstein, 1973), but this is not the interpretation
adopted by most physicists today.

So under the digital interpretation, how many bits can we store in a given space? James
Redford, who also claims that modern physics proves the existence of God, in a 2012

9 The existence of a reality independent of humans is not a universally accepted truth. Philosophers call this
assumption “realism,” and for the purposes of this argument, it is a position I will adopt.

190

8.4. DIGITAL PHYSICS?

paper uses the Bekenstein bound to calculate the number of bits required to encode a
human being (Redford, 2012, p. 126). He concludes that an adult human male can be
encoded in 2 x 10% bits. My laptop’s hard disk can store one terabyte, or 10'2 bytes, or
roughly 103 bits. So I would need 1032 such laptops to store this many bits. This is 1032

100,000,000,000,000,000,000,000,000,000,000.

If Moore’s law continues unabated and we assume it applies to memory storage devices,
then in only about 130 years, we may have a computer with this much memory. Such is
the power of Moore’s law, which predicts a doubling of the number of transistors on a
chip every two years.

Although the digital interpretation of Bekenstein’s bound seems to be widely accepted
among physicists today, I remain stoically skeptical, an admittedly lonely position. I do
not doubt Bekenstein’s result that entropy in a volume of space is limited and finite. What
I doubt is that Bekenstein’s entropy is discrete entropy, and hence represents information
that can be encoded in bits. Bekenstein’s arguments seem to work just as well using
continuous entropy, explained in section 7.4 of the previous chapter. It is a mistake to
give a digital interpretation to continuous entropy. The continuous entropy in a system
does not tell us how many bits it takes to encode that system, although it does quantify
information content. If we are using continuous entropy, the system cannot be encoded
with a finite number of bits. The system nevertheless has information, and its information
content can be compared with the information content in other continuous systems.

Ludwig Boltzmann and his contemporaries defined the thermodynamic entropy in a
macroscopic system, such as a volume of gas, by the formula klog(M), equation (32) on
page 156. In the usual explanations, M is the number of states that the microscopic system,
consisting of the individual molecules in the gas, can be in such that the macroscopic
state (volume, pressure, mass, and temperature) are as observed. The scaling constant
k is called the Boltzmann constant, and it simply changes the units that we are using to
measure entropy. This explanation assumes that the M states are all equally likely and
that the number of such states is finite. To interpret this as equivalent to bits in discrete
entropy, we have to assume that molecules can only have a finite number M of possible
states. This assumption is a form of digital physics. Hence, to interpret thermodynamic
entropy as a measure of information in bits, we have to first assume that digital physics
is true. To then use the Bekenstein bound to prove digital physics is a logic error. There
may be other reasons that the number of states is finite, but the reason cannot be that the
entropy is finite.

191

8. THE LIMITS OF SOFTWARE

The error here is subtle but important. Boltzmann couldn’t have known how many
possible states the microsystem could have that were consistent with an observed
macrostate. Boltzmann wanted to model the state of a molecule by its position and
velocity (or momentum). In Boltzmann’s time, these would have been continuous
random quantities, so the entropy should be more properly interpreted as continuous
entropy. Today, the number of possible states is understood to be determined by quantum
mechanics, which had not been developed in Boltzmann’s day. In an alternative expla-
nation, M is a stand-in for relative degrees of freedom. It was common in classical ther-
modynamics, before quantum mechanics, to replace M with a number proportional to the
number of molecules in the volume of gas being considered. In this case, the entropy has
an arbitrary offset, but as long as the same offset is used for any two entropies, it remains
valid to compare entropies. But the absolute value of the entropy loses any physical
meaning.

After Boltzmann, formulas for entropy have been improved by physicists to take into
account more knowledge of the underlying physics, including quantum effects, and
thereby acquire more direct physical meaning. An example is the so-called Sackur-
Tetrode equation for the entropy in an ideal gas, derived in the early 1900s, which has
both classical and quantum mechanical aspects. I will spare you the details, but Wikipedia
provides a starting point if you are interested. This equation, however, must be a contin-
uous entropy measure, not discrete entropy, because it does not constrain the entropy to
be positive, and it sets the entropy at minus infinity when the temperature gets to absolute
zero. A physicist would likely tell you that the equation becomes invalid at low tempera-
tures, where the approximations used to derive the equation are no longer accurate. This
may be true, but if this is a continuous entropy, then it is a mistake to read it as a number
of bits of information at any temperature. This landscape underscores the difficulty in
keeping straight whether a discussion of entropy is talking about discrete or continuous
entropy. The two are not comparable.

If in fact a physical system has an infinite number of possible states consistent with the
observations, and if the probability density function for these states is known, then in fact
we can define a continuous entropy for the system, and the number does have physical
meaning, as shown in section 7.4 of the previous chapter. This entropy quantifies informa-
tion content, just like discrete entropy, but the information cannot be encoded in bits. An
infinite number of bits would be required, just as an infinite number of bits is required to
encode a real number, even though the number is finite. If, further, the probability density
function is uniform, as depicted in figure 7.1, then the form of expression for continuous
entropy will be exactly klog, (M), where M now is simply the height of the probability

192

8.4. DIGITAL PHYSICS?

density function. So Boltzmann’s formulation works fine even if the number of states is
not finite, as long as all the states are equally likely.

Entropy is the central concept in the second law of thermodynamics, which states that
entropy increases in any system (or at least does not decrease). So the second law of ther-
modynamics is all about comparing entropies, and not at all about their absolute values,
so it is completely unaffected by whether we interpret entropy as a measure of informa-
tion in bits. It is even unaffected by the arbitrary offset that results if we do not know the
probability density function for the states. The second law of thermodynamics works just
as well with continuous entropy as with discrete entropy. To give a digital interpretation
to entropy, to measure it in units of bits, we need to assume that the number of possible
states of a molecule is finite. We have to assume digital physics.

Too many physicists seem to assume that the word “entropy” automatically means discrete
entropy. Seth Lloyd, a professor of mechanical engineering and physics at MIT, in his
2006 book Programming the Universe, does this repeatedly. He says about the second
law,

It states that each physical system contains a certain number of bits
of information—both invisible information (or entropy) and visible
information—and that the physical dynamics that process and transform
that information never decrease that total number of bits. (Lloyd, 2006)

But the second law works absolutely unmodified if the underlying random processes are
continuous, in which case the information is not representable in bits. Other principles in
physics may result in bits, and Lloyd argues strongly that quantum mechanics does this.
However, a physical system can have a finite entropy and still not be representable in bits
if that finite entropy is a continuous entropy.

Lloyd defines entropy digitally, saying, “entropy is a measure of the number of bits of
unavailable information registered by the atoms and molecules that make up the world.”
And “the quantity called entropy is proportional to the number of bits required to describe
the way atoms are jiggling.” But continuous entropy is still entropy, and it is not a measure
in bits. Lloyd then makes an extraordinary claim that “as the statistical mechanicians
of the late nineteenth century showed, the world is made up of bits.” Those statistical
mechanicians, Boltzmann and his contemporaries, had never heard of bits, and their theo-
ries work fine with continuous entropy.

193

8. THE LIMITS OF SOFTWARE

Lloyd has other reasons for assuming that the physical world is digital. In Program-
ming the Universe, he argues that the universe is in fact a type of computer known as a
“quantum computer.” Although the relationship between quantum computers and Turing
computation is far from trivial, Lloyd’s position is strongly in favor of digital physics at
least to the level that everything in the world is digital. However, it is highly misleading
to claim that a finite entropy implies that the world is digital.

Quantum computers are based on quantum mechanics, which emerged well after the work
of the statistical mechanicians of the late nineteenth century. Quantum mechanics replaces
the notions of position and momentum, which those mechanicians would have used, with
a “wave function,” which relates position and momentum probabilistically. The wave
function involves continuous variables and has an offset in space, effectively a position.
Is the number of possible offsets of the wave function finite?

Digital physics rests on a principle that for any physical system with well-defined
boundary conditions, only a finite number of wave functions that constitute the system
are possible. But how to model these boundary conditions is quite subtle. If we are
talking about a chamber of gas, as Boltzmann was, then aren’t the walls of the chamber
properly modeled as wave functions interacting with those of the gas molecules? If so,
then the enclosure must be considered part of the system rather than a boundary condition,
but so must the environment around the enclosure, and the environment around that. If
we assume that ultimately the universe is finite in extent and age, then we eventually get
well-defined boundary conditions. But it boggles my mind to rely on the finite scale of the
universe to describe behaviors at the subatomic scale where quantum mechanics applies.
Even the tiniest approximations or the use of statistical arguments in any calculations that
span such a range of values would invalidate the conclusions, and entropy calculations
are rife with approximations. But the physicists know more about this than I do, so I will
have to take their word for it. Ultimately, the conclusion that the number of states is actu-
ally finite seems to depend on models that I do not understand, have not been validated
experimentally, and cannot be falsified.

Shannon did show that if an observation of a continuous variable is imperfect (it is noisy),
then the information conveyed by the observation can be measured in bits and is finite.
This is the channel capacity theorem, equation (4) in the previous chapter. However, the
quantity of information observed is not equal to the entropy in that continuous variable,
which is finite but not measured in bits. The entropy of a continuous variable is a contin-
uous entropy. The fact that a noisy observation of a continuous random variable conveys
only a finite number of bits is a consequence of the relative entropy before and after obser-

194

8.4. DIGITAL PHYSICS?

vation. This was Shannon’s most profound observation. He showed that the information
capacity of any noisy communication channel is finite and measurable in bits.

Nevertheless, perhaps digital physics can be salvaged by assuming that observations are
always noisy and the information conveyed is all the information that is relevant. Shannon
did not show that the information contained in the variable is finite, only that the infor-
mation conveyed is finite. In fact, the information contained would require an infinite
number of bits to encode. Shannon showed that it is not possible to perfectly reconstruct
the value of a continuous variable from a noisy observation. To salvage digital physics,
we could assume that any information that fails to be conveyed by a noisy observation
is not relevant information. This is equivalent to assuming digital physics. We have to
assume digital physics to prove digital physics.

This question of information conveyed versus information contained is a deep and diffi-
cult question. Is it possible for a physical system to have information that is not externally
observable at all but is nonetheless essential to the system? I briefly addressed this ques-
tion in section 8.2, where I lamented that, as a teacher, I am unable to convey all the
information I carry in my brain. I will return to this question when I consider the human
brain and cognition in chapter 9, but ultimately I believe that even information that is not
conveyed is still relevant.

The way Bekenstein developed his bound is an interesting story. He worked with physi-
cist Stephen Hawking on a problem that black holes seem to defy the second law of ther-
modynamics by swallowing up entropy. To salvage the second law of thermodynamics,
Bekenstein and Hawking associated the surface area of the event horizon of a black hole
with entropy. Nobody before Bekenstein and Hawking had thought that a surface area
of anything had anything to do with entropy, but this association resolved the problem,
saving the second law.

The bound also depends on the theory of quantum gravity, an effort to reconcile quantum
mechanics with Einstein’s general theory of relativity. Neither this nor equating surface
area with entropy is without controversy, and neither has had any experimental observa-
tion. For me, accepting Bekenstein’s bound requires a great deal of faith in physics that
is difficult if not impossible to fully understand and may be beyond the reach of exper-
imental observation. Even Hawking, one of the most widely recognized and respected
physicists today, expresses doubt, pointing out that the digital interpretation of the bound
is inconsistent with most of modern physics. Hawking notes that continuums are required
in both time and space for the bedrock of quantum mechanics, the Schrodinger equation,
resulting in “an infinite density of information which is not allowed” (Hawking, 2002).

195

8. THE LIMITS OF SOFTWARE

Unless you assume that the number of possible states is finite, the Bekenstein bound talks
about continuous entropy, not entropy in bits, and the contradiction evaporates.

At this time, there is no experimental confirmation of a digital and quantized nature of
the universe, both needed for digital physics. Experiments in progress are looking for
such confirmation. One is the Fermilab Holometer near Chicago that is intended to be
the world’s most sensitive laser interferometer, more sensitive than LIGO (see chapter 1).
According to Wikipedia, the principal investigator on this project, Craig Hogan, states,

We’re trying to detect the smallest unit in the universe. This is really great
fun, a sort of old-fashioned physics experiment where you don’t know what
the result will be. [Wikipedia page on Holometer, Retrieved May 24, 2016]

The experiment started collecting data in August 2014, and as of August 2016 has no
major results yet. Worse, even if it gets results, if there is any noise at all in the measure-
ments, then Shannon’s channel capacity theorem tells us that the measurements can only
convey a finite number of bits of information, even if the underlying system has an infinite
number of bits of information.

I am not a physicist, so you should take my skepticism with a grain of salt, but I have to
say I would be extraordinarily surprised if digital physics is valid. It reads more like a cult
than a science to me. If it is valid, then nature has its hands tied indeed. For some reason,
nature has restricted itself to operating within only a finite number of possibilities. Why
would nature do that? Although my skepticism seems to be a minority opinion, I am not
entirely alone.

Sir Roger Penrose, an English physicist, mathematician, and philosopher, in his contro-
versial book The Emperor’s New Mind, states,

The belief seems to be widespread that, indeed, “everything is a digital
computer.” It is my intention, in this book, to try to show why, and perhaps
how, this need not be the case. (Penrose, 1989, p. 30)

Penrose goes on to argue that consciousness, a naturally occurring process in the physical
world, is not only not a computation but is not even explainable using the known laws of
physics.

Gualtiero Piccinini, a philosopher at the University of Missouri, observes,

196

8.4. DIGITAL PHYSICS?

.-+ from the point of view of strict mathematical description, the thesis that
everything is a computing system - -- cannot be supported. (Piccinini, 2007)

Piccinini, like me, defends this idea using the notion of cardinality. There just aren’t
enough possible computations to encompass the richness of the physical world.

Digital physics cannot be disproved, assuming all measurements have noise, so this issue
may never be resolved. It will probably always remain a matter of faith. My faith is that
nature is more likely to be richer in possibilities than poorer. The tiny cardinality of a
digital universe just seems too small to me.

197

Symbiosis

Contents
9.1 TheNotionofaContinuum 199
9.2 The Impossible Becomes Possible 202
9.3 Digital Psyche? i it i i e e e e 207
9.4 Symbiotic Partnership., 213
9.5 Imcompleteness o ¢ v v v v v v v vttt 215

- in which I go beyond the countable world of computing and argue that
computers are not universal machines and their real power comes from their
partnership with humans. [explain the notion of a continuum, a concept
that is out of reach for software and rejected by digital physics but seem-
ingly essential for modeling the physical world; I argue that computers are
coevolving symbiotically with humans, and I examine the limitations of the
formal models that underlie what computers do, showing that the partnership
between humans and computers is much more powerful than either alone.

9.1. THE NOTION OF A CONTINUUM

9.1 The Notion of a Continuum

In chapter 8, I mentioned the continuum hypothesis, an unproven (and in some sense
unprovable) assertion that the next larger infinite sets larger than the natural numbers N
have the same cardinality (size) as the set R of real numbers. I also mentioned that R has
the same size as the set of all decision functions.

The word “continuum” in “continuum hypothesis” is an interesting and deeply philo-
sophical one. What is a continuum? Intuitively, a continuum is a set where one can
move “smoothly” from one element in the set to another in the set without having to pass
through any values not in the set.

The set of real numbers is a continuum. Suppose I want to move from real number 3 to
real number 4. Every number between 3 and 4 is a real number, so as I pass through all
those numbers in between, I never leave the set of real numbers.

The set of rational numbers is not a continuum. Consider again moving from 3 to 4. The
numbers 3 and 4 are both rational numbers, so they are in the set of rational numbers.
But if I try to move smoothly from 3 to 4, I would have to pass through © ~ 3.14159---.
However, T is not a rational number, so to move smoothly from 3 to 4, I have to leave
the set of rational numbers.! The set of rational numbers is not a continuum. In fact,
no countable set is a continuum. Because computers operate entirely within a realm of
countable sets, continuums are out of reach for computers.

Now we can get philosophical. Do continuums exist in the physical world? Consider time
as a set. Let’s just focus on the possible times in one afternoon. Suppose it is now 3 PM,
a member of that set. As I move from 3 PM to 4 PM, do I pass through any instants that
are not times? I have to assume not. If I further assume that time progresses “smoothly,”

' One way to construct the set of real numbers from the set of rational numbers is using the idea of a

Dedekind cut, named after the German mathematician Richard Dedekind. A Dedekind cut is a partition
of the set of rational numbers into two nonoverlapping subsets A and B, where all elements of A are less
than all elements of B and A has no greatest element. The set of all such cuts can be put into a one-to-one
correspondence with the real numbers and in fact can be taken to define the set of real numbers. The set B
may or may not have a least element. If B has a least element, then the cut is put into correspondence with
that least element, a rational number, and hence also a real number. If B has no least element, then the cut
is put into correspondence with the unique irrational number that lies between A and B, in a sense filling
the “gap” between them. This gap prevents the set of rational numbers from forming a continuum. It is
remarkable that the number of such cuts, the cardinality of the set of Dedekind cuts, is vastly larger than
the number of rational numbers, a result due to Cantor.

199

9. SYMBIOSIS

then I would have to conclude that time is a continuum. Although most models in physics
assume that time is a continuum, some modern physics contests this assumption.

The physicist John Archibald Wheeler, who coined the term “black hole” and was Beken-
stein’s PhD thesis advisor at Princeton, wrote the following:

Time, among all concepts in the world of physics, puts up the greatest resis-
tance to being dethroned from [the] ideal continuum to the world of the
discrete, of information, of bits. (Wheeler, 1986)

Wheeler can’t see any way to handle time without continuums. Despite these reservations,
Wheeler was a proponent of digital physics, which requires that continuums not exist in
the physical world. Wheeler even coined the phrase “it from bit” to capture the essence
of digital physics.

Space seems to similarly require a notion of a continuum. If I am standing at point x
and I move to point y, do I pass through any points that are not in space? Do I move
smoothly? Although my senses seem to indicate that I do, I cannot trust what my senses
tell me when I am reasoning about time and space scales smaller than what my senses can
perceive. Nevertheless, almost all of physics models space as a continuum.”

Of course, we can now go down the rabbit hole to debate what “smoothly” means, but
I will instead rest on centuries of tradition in science, where time and space are nearly
universally modeled as continuums. At a minimum, we have to concede that modeling
time and space as continuums has proved to be a useful paradigm indeed. These are
just models, of course, so as we faithfully avoid confusing the map and territory, we
cannot assert the existence of continuums in the physical world just because they are
useful as models. However, the reason that they are useful as models is that these models
provide simpler explanations of the physical world than models that reject continuums.
Applying the principle of Occam’s razor, attributed to William of Ockham (c. 1287-
1347), an English Franciscan friar, scholastic philosopher, and theologian, when there are
competing hypotheses, other things being equal, we should choose the simpler one.

We might just as well question whether the physical world has any intrinsic notion of
integers or, more broadly, countable sets. Suppose I have two apples sitting in front of

2 An exception is the holographic principle, a property of string theories and possibly of quantum gravity

first proposed by the Dutch physicist Gerard 't Hooft. The holographic principle replaces the notion
of three-dimensional space with lower dimensional surfaces and in at least one form replaces quantum
theory with a new deterministic theory. There is quite a bit of controversy around this and related theories
(Smolin, 2006).

200

9.1. THE NOTION OF A CONTINUUM

me. It certainly seems that these apples are distinct, individual, integral objects. From
that observation, I can argue that integer arithmetic, like 1 +1 = 2, is a physical reality.
But is it? Some of the apple molecules have actually escaped into the air, so I can smell
them. What if I take a knife and peel a bit off one apple? Do I still have two apples? What
if a worm has eaten part of one? What if the two apples are touching one another? Where
does one end and the other begin? Arguably, the notion that these apples are integers
is confusing the map and the territory. To model them using integers is defensible on
the grounds of its usefulness. The grocery store may count the apples in my basket to
determine how much to charge me. But aren’t integers here just a model? The grocery
store could equally well charge me by their weight.

Leopold Kronecker, a nineteenth-century German mathematician, vehemently criticized
Georg Cantor’s work, famously stating, “God made the integers; the rest is the work of
man.” If I substitute “nature” for “God,” then I would have to conclude that Kronecker
could equally well have gotten it exactly backward! It is just as defensible to say, “Man
made the integers; the rest is the work of God.” Software, one of the most remarkable
human constructions ever, is all about integers and only about integers, and even then
only about a tiny subset of all conceivable operations on integers. It is not unreasonable
to expect the natural world to be vastly richer than that.

If we further assume that the statement “time is a continuum” is a Platonic truth about the
physical world, then we have to assume that physical systems that deal with continuums
exist. I am uncomfortable doing this because once again it risks confusing the map and
the territory. The notion of a continuum is a mathematical model not a physical reality.
But software systems also operate in the world of models not in the physical world. We
know how to make physical machines (computers) that are faithful to the software model.
Can we make physical machines that are faithful to models in a continuum? Yes, we can!
Mechanical engineers, for example, do it all the time. My dishwasher is a machine that
almost certainly is better modeled using continuums than restricting it to computation.

Computers have two key limitations. First, they operate only on digital data, limiting
their domain to a countable set. Second, their operations are algorithmic, performed as
a sequence of steps, where time is irrelevant. Unless you subscribe to a strong form of
digital physics, the physical world has neither of these constraints. The models of resistors
and inductors considered in chapter 2, for example, have neither of these properties, yet
these are arguably models of machines.

But all models are wrong, so it could be that the models we use for resistors and inductors
are not only wrong in the ways I cited in chapter 2 but also wrong to be operating in

201

9. SYMBIOSIS

a continuum and wrong because they do not describe the behavior algorithmically, as a
sequence of steps. The digital physics advocates would have to conclude that these models
are wrong in this way. To me, however, an algorithmic model of a resistor or an inductor
operating on integers only would be cumbersome, useful only for computer simulation
and opaque to people.

The fact that computers do not and cannot deal with continuums in no way proves that
there are no machines that can deal with continuums. Moreover, continuums are not the
only larger infinite sets bigger than the countable sets. Some sets are vastly larger than
continuums, and other sets are vastly larger than those sets. Why would nature limit
itself to the smallest of infinite sets? This notion seems so improbable that it requires
compelling evidence before accepting it. I've already argued that because of the Shannon
channel capacity theorem, we cannot obtain such evidence by empirical measurement.
In the next section, I will argue that physical systems, including information-processing
systems such as the human brain, are far more likely to be machines that deal with
uncountable sets than they are to be computers.

9.2 The Impossible Becomes Possible

Consider a simple balloon. I can think of this balloon as a machine that outputs the
circumference of a circle given its diameter. Suppose I inflate the ballon until it reaches
a specific diameter d at its widest point. The balloon then exhibits a circumference at a
cross-section at that widest point. The “input” to the machine is the diameter d, and the
output is the circumference, which by the basic geometry of circles should come out to
7 x d. If I inflate the machine to a diameter of one foot, it calculates 7.

The number 7 is not representable as a binary number with a finite number of bits. So
a digital computer would have to run forever before it could produce as output a binary
representation of w. As it happens, the number T is nevertheless “computable,” in that,
given any positive integer n, a computer can calculate the nth digit of T. No computer can
give us all the digits of 7 in finite time, but a computer can give us any arbitrary digit of a
decimal or binary representation of .

Equivalently, there is a finite program that, in effect, describes the infinite sequence of
digits that constitute . Because this finite program “describes” 7, this infinite sequence
is “describable” (by a finite description). However, there are many more real numbers
where there is no computer program that can give us any arbitrary digit of the number.

202

9.2. THE IMPOSSIBLE BECOMES POSSIBLE

Gregory Chaitin, an Argentine-American mathematician who worked at IBM in New
York and at the University of Auckland, New Zealand, developed a beautiful example of
such a number, one that he called “Omega,” or Q. Q is a number between zero and one
whose binary representation can be used to solve Turing’s halting problem for a particular
binary encoding of Turing machines. Specifically, if we know the first N bits of the
binary representation of €, then we can determine for all valid programs of length up to
N bits whether they halt. Because this question is known to be undecidable, no computer
program can give us any arbitrary bit of the binary representation of Q.3

My balloon machine is not trying to calculate Q, but it nevertheless does seem to do
something no computer can do. Specifically, it outputs, all at once, a representation of 7.

I’m sure that you are protesting now. Any reader who has persisted this far in this book is
far too smart to be hoodwinked by this slight of hand. This argument has several problems.
First, the circumference of the balloon will not be 7 because the balloon is not a Platonic
Ideal. It has imperfections. The rubber is probably not perfectly uniform, so the balloon
will not form a perfect circle. Thus, the circumference will be something other than 7t x d.
In fact, if we are lucky, it could be 4 x Q X d, in which case we have built a machine that
calculates Q.

Nevertheless, I stick to my guns. Yes, the balloon will not form a perfect circle, but it will
form some shape. If we assume that this shape has a circumference, then it is likely that
circumference will be a noncomputable multiple of the diameter. There are vastly more
noncomputable numbers than computable numbers, so it would require digital physics
to assume that the actual circumference of the balloon is a computable multiple of the
diameter. I don’t actually know what function the balloon realizes, but it seems that it
most likely realizes a function that no digital computer can realize.

But wait. This argument has still more problems. Suppose that the input to the balloon
machine is restricted to a countable set perhaps because we accept digital physics. Then
the set of all possible outputs is also countable. We know from the arguments in the
previous chapter that a union of two countable sets is still countable. Thus, if the inputs
are countable, then the balloon machine is actually working only with countable sets.

Suppose that the balloon is perfect, in that given any input diameter d, its circumference
will be exactly ® x d. Then I can easily come up with a binary encoding that handles
all the inputs and outputs of this machine if d comes from a countable set. For example,
suppose that my binary encoding is such that any sequence of bits that begins with zero

3 For a wonderfully readable story about Q, see Chaitin (2005).

203

9. SYMBIOSIS

is interpreted as an integer, where the bits after the first zero directly encode that integer.
For example, 00 means zero, 01 means one, 010 means two, 011 means three, and so
on. Suppose further that in my binary encoding, any sequence of bits that begins with 1
is interpreted to mean T X n, where n is the binary number following the leading 1. For
example, 10 means © x 0 = 0, 11 means ®, 110 means 27, and so on. I now have an
encoding that a computer can use to realize the balloon machine.

Computer scientists make a distinction between syntax, the way things are written, and
semantics, what things mean. A computer transforms bit patterns, operating only on
syntax, and is restricted to a countable set of syntactic objects, bit sequences. However,
a human looking at those bit sequences is not restricted to a countable number of inter-
pretations of those objects. To interpret 110 to mean 27 is a human act not something the
computer does. A human assigns semantics to the syntax 110. Bit sequences can mean
integers, real numbers, text, anything, in fact. We can even encode emotions. I can declare
that the bit sequence 01010 means “happy” and write a program that produces “happy”
as its output. Does this mean that the computer is happy?

Semantics is an association between a set of syntactic objects, such as bit sequences,
and a set of concepts. Numbers are concepts, so one possible semantic interpretation
of a sequence of bits is as a binary number. However, many other interpretations are
possible. In fact, there is no reason to assume that the number of possible interpretations is
countable. What makes computers so effective, so useful to humans, is the many possible
interpretations we can assign to bit sequences. The partnership of computers with humans
is the real source of their power.

But what if humans are just computers? If we assume a strong form of digital physics,
then this must be true, ultimately. Even if we do not assume digital physics, many smart
people believe that the human mind is in fact software. Alan Turing was a strong advocate
of this point of view. In this case, semantics must somehow be reducible to syntax, and
the set of all semantic interpretations must be countable.

This idea brings us back to the question of whether it is possible to realize machines
that do more than what Turing defined as “computation.” If it is not possible, then the
human brain, a machine, must be performing computation. It must, therefore, be limited
to operating within a countable world. But if it is possible, then the world is much richer,
and there are no bounds to creativity.

Returning to our balloon machine, suppose that I inflate the balloon to a diameter of
d =1 foot. What is the output circumference from the machine? In fact, what is the

204

9.2. THE IMPOSSIBLE BECOMES POSSIBLE

input? How do we know it is exactly one foot? If we want numbers, then we have a
problem that is potentially of the scale of the LIGO problem. Perhaps we write a proposal
for $1.1 billion to the National Science Foundation to fund a research project to make
this measurement. Presumably, if we get funded, we could enlist the 1,019 scientists and
engineers who worked on the LIGO project to measure the diameter and circumference
of the balloon to precisions much less than the diameter of a proton. But this is just
representing the information in another form. The information is already represented in a
perfectly adequate and much cheaper form in the balloon. But the problem with that form
is that we humans don’t know what the input is, what the output is, nor what function the
machine computes!

It is easy to assign semantics to bit sequences. Suppose I declare that 010101 means
“happy” and 111000 means “sunshine.” Suppose further I have a computer running a
program that, given 111000 as input, produces 010101 as output. This computer outputs
“happy” in response to the input “sunshine.” This is simply true by definition. However,
the balloon machine is more problematic. I don’t know the input, the output, or the
function being computed.

What good is a machine if we can’t know the function that it realizes? My claim is that
we should not be surprised that we cannot know the function that it realizes. We might
assume that to “know” the function means that we can describe that function in some
mathematical or natural language.* Given any written mathematical or natural language,
the vast majority of functions with numerical input and output are not describable in
that language. This is because every description in any such language is a sequence of
characters from a finite alphabet of characters, so the total number of such descriptions is
countable. There are vastly more functions, so there can’t possibly be descriptions for all
of them in any one language. In fact, any language will only be able to describe a tiny
subset of them, a countably infinite subset. Does a function need to be describable to be
useful?

A car is a machine whose function is to carry me some distance. I don’t need to measure
that distance to make use of the machine. In fact, any measurement of the circumference
of the balloon is simply putting the output information into another form. What’s wrong
with the original form given to me by the balloon? If I insist on writing the circumference
down as a decimal number on paper, then I have already forced the problem into the realm
of digital computers.

4 The notion that “knowing” something is not the same as being able to describe it was immortalized in 1964
by United States Supreme Court Justice Potter Stewart who described his threshold test for obscenity in
Jacobellis v. Ohio as, “I know it when I see it.”

205

9. SYMBIOSIS

Moreover, if I assume that every measurement is noisy, then by Shannon’s channel
capacity theorem, equation (4) in chapter 7, the measurement will only reveal a finite
number of bits of information, even if the underlying physical system contains more
information than that. But I don’t need to measure or write down the distance that my
car carries me to get value out of it. I don’t need to measure or write down the circum-
ference of the balloon to assert that the circumference has been produced by the balloon
machine.

A rather simple and much more practical example of a machine that is not implementable
in software is a simple inductor, described in chapter 2. Assume that the input to the
machine is the voltage and the output is the current. The relationship between the input
and output is given by Faraday’s law, equation (256) on page 50. Under Faraday’s law,
this inductor implements a function that is not effectively computable and therefore not
implementable in software. This is true simply because the input and output both exist
in a continuum; even if the input is drawn from a countable set, under Faraday’s law, the
outputs over time have an uncountable number of values.

To assert that an inductor is not an information-processing machine, we could try to
assert that it is invalid to represent information using a voltage or current. Because
all computers represent information using voltages and currents, our whole world of
information-processing machines would collapse. Or we could assert that a value in
a continuum does not represent information because it cannot be encoded with a finite
number of bits. As I explained in chapter 7, it is perfectly valid to interpret a value from
a continuum as information.

To assert that an inductor is actually a Turing computation, we would have to reject
Faraday’s law, start counting electrons, and discretize time. This will not lead to a useful
model.

As I pointed out in chapter 2, an inductor is not actually implementable. But just like
my balloon, any physical device that I call an inductor is actually a machine that reacts
to input voltage by producing a current. Just because I don’t have an exact model for
that machine doesn’t mean the machine doesn’t exist. It is an information-processing
machine, I just don’t know exactly what function it implements.

Even if I did know the input-output function that my machine implements, and even if I
can arbitrarily closely approximate that function with a computer, I stil/ cannot conclude
that I’ve somehow captured all important properties of the machine. The relationships
between the inputs and outputs may not be sufficient. I examine this issue next.

206

9.3. DIGITAL PSYCHE?

9.3 Digital Psyche?

What good is a machine if we can’t know its output or even the function that it computes?
I will now give a real-world example of an extremely useful information-processing
machine that has properties not observable from outside the machine and has functions
that are probably not describable: the human brain. One of the functions that the brain
performs is to create consciousness. I know this for a fact because I have a brain, and
what we mean by “consciousness” is exactly what I experience as consciousness. In
Searle’s words, “the concept that names the phenomenon is itself a constituent of the
phenomenon.”

However, the consciousness that my brain produces is not directly observable to anyone
but me. It is a property of my brain, like the circumference of the balloon, and any
attempt to externally measure it will fail to capture it. Regardless, I know for a fact that
it exists, observable or not. I will not accept any argument that it does not exist. Cogito
ergo sum, “I think, therefore I am,” to quote the seventeenth-century French philosopher,
mathematician, and scientist René Descartes. To deny that my consciousness exists would
be to deny existence. If we deny that properties not externally observable are important,
then we would be forced to conclude that consciousness is not an important property of
the human brain. I’'m not willing to do that.

Consciousness is one of many cognitive functions of the brain, along with understanding,
reasoning, learning, sentience, and remembering. Of these functions, reasoning seems
closest to computation. The human brain is clearly capable of some modest form of
Turing computation. We can, in our heads, perform the same functions as the logic gates
discussed in chapter 4. We have memory, and we are able to follow recipes, step-by-step
procedures, emulating a computer executing a program. But we are not actually good
at this kind of computation, at least not when we are doing it consciously. A computer
performs the logic functions of chapter 4 billions of time per second and stores billions of
bytes in memory. We don’t even come close.

The human brain does many things that we do not know to be Turing computation.
Consider face recognition, something that computers are only now starting to get good at.
The fact that computers are starting to excel at face recognition, natural language under-
standing, and speech recognition leads many engineers and scientists today to conclude
that the human brain must be accomplishing these things by doing Turing computation.
Is this a leap of faith?

207

9. SYMBIOSIS

Evidence indicates that the brain includes mechanisms that resemble digital computation.
The pioneering work of Warren McCulloch and Walter Pitts in the 1940s showed that
neurons operate discretely, with distinct and identifiable firings that have a binary nature.
Either a firing occurs or it does not. McCulloch and Pitts argued that the behavior of any
network of neurons could be exactly replicated by a very different network. They argued
that functions of the neurons could be described in a propositional logic, and therefore any
realization of the same logic would perform the same function that the neurons perform.
If this is true, then, in theory, it should be possible to convey my consciousness to some
physical machine other than my brain. It is debatable, however, that the logic in the
neuron firings completely constitutes consciousness. McCulloch and Pitts’ model, for
example, assumes that the timing of the firings is irrelevant to the function they perform.
This notion seems unlikely.

In the 1960s, the philosopher Hilary Putnam developed the idea that different structures
could realize the same function, calling the principle “multiple realizability.” Bickle
(2016) describes it this way:

In the philosophy of mind, the multiple realizability thesis contends that a
single mental kind (property, state, event) can be realized by many distinct
physical kinds.

Under this principle, mental states are not so much dependent on the hardware (the brain)
in which they occur, in that other realizations of the same states would realize the same
function. In other words, mental states are like software. Again, it is a stretch to conclude
that these same states can be realized in a computer. This would require either that
computers be universal information-processing machines or that the brain be limited to
the same class of functions that computers can realize.

It may seem that the thesis of multiple realizability is reinforced by the distinctly digital
encoding in DNA. DNA uses a base-four encoding rather than binary, but it is still digital.
A DNA molecule consists of a pair of strands of nucleotides, where each nucleotide
consists of one of four nucleobases. The digital genetic code is used to synthesize each
new human, and that human realizes cognition. Does this mean that cognition is digitally
encoded?

Your offspring may have eyes the color of yours, but they have entirely their own mind. As
pointed out by George Dyson in Turing’s Cathedral, “the problem of self-reproduction is
fundamentally a problem of communication, over a noisy channel, from one generation to
the next” (Dyson, 2012, p. 287). Recall Shannon’s channel capacity theorem from section

208

9.3. DIGITAL PSYCHE?

7.4, equation (4), which states that a noisy channel can only communicate a finite number
of bits of information per use of the channel. Given this limitation, there is no point in
encoding more than a finite number of bits in the genetic material. The information would
not get through the noisy channel anyway. There would be no point in a nondigital DNA.

Only features that can be encoded with a finite number of bits can be passed from gener-
ation to generation, according to the channel capacity theorem. If the mind, or features
of the mind such as knowledge, wisdom, and our sense of self, cannot be encoded with a
finite number of bits, then these features cannot be inherited by our offspring. It certainly
appears that DNA does not encode the mind because the mind of your offspring is not
your own or even a combination of those of both biological parents. An infant does not
emerge with a fully developed mind. The mind emerges later.

If the mind requires mechanisms beyond digital for its operation and character, then the
mind cannot be conveyed by any mechanism over a noisy channel. Your mind is entirely
your own. Not only can it not be passed on to your offspring, it cannot be passed to
anything. It will never reside in other hardware unless we invent a noiseless channel.
Biological inheritance cannot provide a noiseless channel because if it did, there would
be no mutation, there would be no evolution, there would be no humans, and we would
have no minds at all. Genetic inheritance is, of necessity, digital, but minds are formed
from more than genetics.

Although DNA is digital and encodes how to construct a brain, a mind does not arise from
a brain alone, unless you take an untenably extreme position on the classic nature versus
nurture debate. The formation of the mind is heavily influenced by the environment in
which it forms, by language, by culture, and by education. Although the brain incor-
porates some binary operations, like computers, if timing matters, then even the binary
reactions are not purely algorithmic, proceeding as a sequence of discrete step-by-step
state changes, as in a computer. Finally, we just don’t know enough about neurophysio-
logical reactions to conclude that they are all purely binary and algorithmic. Consider the
effects of drugs, noise, nutrition, and so on on the mind.

John Daugman, a computer science professor specializing in computer vision and pattern
recognition at the University of Cambridge, documents a long history of technological
metaphors for the brain dating back to the ancient Greeks:

Theorizing about brain and mind has been especially susceptible to sporadic
reformulation in terms of the technological experience of the day. (Daugman,
2001)

209

9. SYMBIOSIS

He talks about “Freud’s hydraulic construction of the unconscious”; clockwork metaphors
in Descartes, Hobbes, and many other thinkers; and steam engine metaphors from various
writers. The history, he says, is a “stumbling progression toward its inevitable culmination
in today’s understanding that the brain turns out to be a computer.”

Daugman then critiques researchers who “ask precisely that we not think of computation
as just the contemporary metaphor, but instead that we adopt it as the literal description
of brain function.” This converts the “enlivening effect of a new metaphor” into “the
deadening effect of embracing one too literally or too ideologically or too long.” He
concludes,

While the computational metaphor often seems to have the status of an estab-
lished fact, it should be regarded as a hypothetical, and historical, conjecture
about the brain.

Today’s embrace of the computational metaphor in the cognitive and neural
sciences is so widespread and automatic that it begins to appear less like
an innovative leap than like a bandwagon phenomenon, of the sort often
observed in the sociology and history of science. There is a tendency to
rephrase every assertion about mind or brains in computational terms, even
if it strains the vocabulary or requires the suspension of disbelief.

David Deutsch, a strong proponent of digital physics, also believes that software, as
constructed today, will not achieve cognition, which he calls “artificial general intelli-
gence” (AGI).

[AGI] cannot be programmed by any of the techniques that suffice for writing
any other type of program. Nor can it be achieved merely by improving [the]
performance [of programs] at tasks that they currently do perform, no matter
by how much. (Deutsch, 2012)

Deutsch cites Watson, the IBM computer that defeated former Jeopardy champions Brad
Rutter and Ken Jennings in 2011, stating that Watson was not “mimicking human thought
processes.” He points out that “no Jeopardy answer will ever be published in a journal of
new discoveries,” whereas, in principle, Rutter and Jennings are both capable of coming
up with answers that can be so published. Deutsch also reaffirms my observation that
cognition involves processes that are not externally observable, stating, “the relevant

210

9.3. DIGITAL PSYCHE?

attributes of an AGI program do not consist only of the relationships between its inputs
and outputs.”

But Deutsch is not saying that AGI is unachievable with computation. Rather, he is saying
that we don’t know how to achieve it using computation. In fact, Deutsch claims to
have proved that AGI is, in principle, achievable by Church-Turing computation. His
proof relies on the “quantum theory of computation” (more physics that is difficult to
understand) to show that everything in the physical world “can, in principle, be emulated
in arbitrarily fine detail by some program on a general-purpose computer” (emphasis
added).

But if you assert that emulating something in “arbitrarily fine detail” is equivalent to
actually achieving that something, then you would have to also assert that no meaningful
difference exists between rational numbers and a continuum, despite Cantor’s observation
that there are vastly more real numbers than rational numbers. Given a randomly chosen
real number, the probability that it is a rational number is zero, but you can arbitrarily
closely approximate it with a rational number.’ I believe a continuum is qualitatively
different from a countable set. In chapter 10, I will give simple examples of real systems
where emulation in “arbitrarily fine detail” fails completely to capture essential features
of the system.

Penrose, in The Emperor’s New Mind, goes much further to argue that consciousness
cannot be explained by the known laws of physics. Penrose argues that the mind is
not algorithmic and must be somehow exploiting hitherto not-understood properties of
quantum physics. I am making a less radical argument, in that I argue that the mind is not
digital and algorithmic even if it can be fully explained using the known laws of physics.

Alan Turing postulated what is known as the “Turing test” for determining whether a
computer program realizes a cognitive function. In this test, a human evaluator would
observe natural-language conversations between another human and a computer that is
programmed to generate human-like responses. The evaluator would be aware that one
of the two partners is a computer but would not know which one. Turing said that if the
evaluator cannot reliably tell the computer from the human, then the computer is said to
have passed the test.

In chapter 11, I will examine what passing the test can tell us broadly about the capabilities
of computers. For now, it is evident that if consciousness is not externally observable,

5 See chapter 11 for a discussion of what it means for something to have probability zero.

211

9. SYMBIOSIS

then the Turing test tells us nothing about whether a computer (or even a human) has
consciousness.

The same questions arise with other brain functions, such as love, empathy, and under-
standing. Searle put forth a famous argument called the “Chinese room argument”: that no
machine operating like a computer, following algorithmic step-by-step rules, can under-
stand natural language.

The Chinese room argument goes like this. Assume that you know no Chinese, either
written or spoken (I believe this is true of Searle, at least). You are locked in a room
with a small window and a rule book. Someone outside the room, who does understand
Chinese, hands you a stack of cards with Chinese characters on them. The cards tell a
story in Chinese and then ask a question about the story. You pick up the first card and
find in your rule book a matching symbol and a rule telling you what to do with the card.
For example, you might put the card in a particular place on the table. You also have a
supply of cards within the room, and occasionally the rule book will tell you to find a card
in that supply and put it into a pile that you will then pass out through the window. You
similarly go through all the cards that were given to you until the rule book tells you that
you are done. You then pass the pile you constructed out the window.

Searle then asks a simple question: Did you understand the story? It’s quite possible that
the answer you gave to the question about the story would lead the external observer to
conclude that in fact you did understand the story. However, Searle points out that there
is no way you could come to that conclusion yourself.

In this scenario, you are acting exactly like a computer. The algorithmic computation
that computers (and Turing machines) perform has exactly this nature. If you are the
computer, then no matter how good your rule book is, and no matter how convincing your
answers are, you have not achieved what we call “understanding.” We can even extend the
thought experiment with an unbounded supply of paper with preprinted symbols, giving
us a computer with unbounded memory, and the conclusion would not change.

Searle’s argument created quite a firestorm of controversy. The community of researchers
in artificial intelligence (AI) was not happy. Many counterarguments and counter-counter-
arguments ensued, some of them really quite entertaining. Google it.

My argument is different, but it leads me to believe that Searle’s conclusion is probably
right, even if you do not believe his argument. There are so many more functions than
computations that it is unlikely any given function found in nature is actually performing
Turing computations. There just aren’t enough possible computations.

212

9.4. SYMBIOTIC PARTNERSHIP

This is not to say that software cannot accomplish a great deal. Some people, such as the
American computer scientist and futurist Ray Kurzweil, have predicted a “singularity,” a
point at which a runaway effect takes over, where computers surpass the ability of humans
to control or understand what they do. Kurzweil may be right. I hope not, but nothing that
I say makes this impossible.

But I am saying that achieving human-like intelligence, what I call digital psyche and what
Searle calls strong Al, using computers as we know them today is extremely improbable.
I believe that we will never consider computers to be siblings, and we will never be able to
upload our souls to them even if their capabilities eventually exceed those of the human
brain in any or all dimensions. Of course, future forms of software and hardware may
have entirely new properties, so I will not make any claims about what they can or cannot
accomplish.

9.4 Symbiotic Partnership

The idea of a human-like digital psyche, like digital physics, is a paradigm shift. Perhaps
this one too is just waiting for the skeptics, like myself, to die out. Actually, I believe that
if anything, it underestimates what we can and will do with computers. Forming them in
our own image may have biblical appeal, but it is not likely to take full advantage of their
complementary capabilities.

I’ve already mentioned that Google makes me smarter. So does Wikipedia. Sergey Brin,
cofounder of Google, once said, “We want Google to be the third half of your brain”
(Saint, 2010). What if what is really happening is a coevolution of man and machine,
where each becomes more fit for survival or more likely to procreate because of the other?

Google and Wikipedia both do things that no human can do. They exist as data and
software in vast server farms in the cloud, as we saw in chapter 5. They have features
of a life form, including, for example, the immune system in Wikipedia, where, like a
lymphocyte, ClueBot NG kills vandalism, as we saw in chapter 1. Even the Internet can
repair itself, with its ability to route around damage. These machines have features of a
nervous system, the “dreaming” that is indexing, organizing, and machine learning. Are
we playing God, creating a new life form in our own image, or are we being played by
a Darwinian evolution of a symbiotic new species? Are humans the purveyors of the
“noisy channel” of mutation, facilitating sex between software beings by recombining
and mutating programs into new ones, as described in chapter 5?

213

9. SYMBIOSIS

George Dyson, in Turing’s Cathedral, raises this question of coevolution. He talks about
Google’s million-plus servers as a “collective, metazoan organism.” He points out that
“the companies and individuals who nurture [these servers] are ever more richly rewarded
in return” and “unemployment is pandemic among those not working on behalf of the
machines.” However, it is not just the machines enslaving the humans. The humans are
evolving too. “Facebook defines who we are, Amazon defines what we want, and Google
defines what we think” (Dyson, 2012, pp.308, 325).

There is no question in my mind that humans are coevolving with computers. If computers
and software form organisms, then they depend on us for their procreation. We provide
the husbandry and serve as midwives. In exchange, we depend on them to manage our
systems of finance, commerce, and transportation. More interesting, the machines make
the humans more effective at the husbandry that spreads the software species. Elaborate
software simulation of semiconductor physics leads to smaller and less power-hungry
transistors. Computer-aided design software enables humans to design billion-transistor
chips. Compilers translate human-readable code into machine-readable bits. Google
makes it easier for humans to fix problems with the machines (just search for the error
message), turning us into their own healing agent. And software innovations fuel the
startup culture of Silicon Valley, where the software survives and evolves only if the
company survives and evolves, and vice versa.

But it’s not just humans making machines more effective. The machines are also making
the humans more effective and survivable. Cars are learning to refuse to crash. Hearing
aids, pacemakers, and insulin pumps compensate for failures in our bodies. Credit card
companies’ computers block fraudulent transactions, compensating for failures in our
society. Data mining is starting to be able to detect the spreading of diseases, such as
SARS and the zika virus. And Google makes it easier for your doctor to find cases that
manifest the same combination of symptoms in a human pathology, turning computers
into agents in our own healing. As Dyson observes, “[t]he Big Computer [is] doing
everything in its power to make life as comfortable as possible for its human symbionts”
(Dyson, 2012, p. 313)

Dyson goes further, raising a question that we cannot ignore:
Are we using digital computers to sequence, store, and better replicate our
own genetic code, thereby optimizing human beings, or are digital computers

optimizing our genetic code—and our way of thinking—so that we can better
assist in replicating them? (Dyson, 2012, p. 311)

214

9.5. INCOMPLETENESS

Here Dyson is asking about a purposefulness in computers. However, coevolution does
not require teleology in nature, so why should it require it in this case?

Coevolution is happening, where computers and humans are both getting more capable.
As with much symbiosis in nature, the partnership can empower both partners, even if
the genetic manipulations that Dyson asks about do not occur. Wikipedia still makes me
smarter, even if I am stuck with the DNA I was born with.

Doomsayers worry that humans will become unnecessary and the machines will dispose
of or enslave us. That does not necessarily happen with symbiosis in nature, so why
should it happen here? The fungus in lichen has not killed off the algae, even after millions
of years. Instead, stronger connections and interdependencies between man and machine
could create a more robust ecosystem, such as the notion of an interconnected “nature”
that Andrea Wulf says was invented by Alexander von Humboldt (chapter 2).

Evolution is a natural process. It is pointless to simply fear it, and if we understand what
is happening, we can help guide it in desirable directions. Creating human-like digital
psyches is, in my view, not a desirable direction. Fortunately, it is probably not even
achievable, at least not with today’s computer designs. Instead, the real power in the
partnership between man and machine comes from their complementarity.

To understand that complementarity, we have to understand the fundamental strengths
and limitations of both partners. Software is restricted to a formal, discrete, and algo-
rithmic world. Humans connect to that world through the notion of semantics, where we
assign meaning to bits. In the next section, I examine the fundamental limits of the world
of software and how a partnership between humans and computers can overcome these
limitations.

9.5 Incompleteness

Software is limited to a countable, algorithmic world. Humans are not so limited and
through the notion of semantics can leverage the countable world of software in an
uncountable variety of ways. Limits still exist, however. Scientific thinking strives for
rigor, with solid, provable foundations. Mathematics provides the structure for rigorous
scientific thinking. However, it turns out that the very quest for rigor results in the same
sort of incompleteness that Turing found in computation.

215

9. SYMBIOSIS

Kurt Godel published his famous incompleteness theorems in 1931 when he was only 25
years old. His theorems put an end to a decades-long effort known as Hilbert’s Program,
after the German mathematician David Hilbert. Hilbert’s Program, put forth by Hilbert
around the turn of the twentieth century, was to put mathematics on a sound foundation
as a formal language.

Stephen Hawking, who played a major role in the development of the Bekenstein bound
and the digital physics agenda, in a wonderful lecture delivered through a speech synthe-
sizer in 2002 (Hawking, 2002), cites Godel’s theorems. He claims that these theorems do
more than just end Hilbert’s Program, which pertains to mathematics; they may also end
the positivist agenda in science, where every physical theory is a Platonic truth waiting to
be discovered. He explains the positivist philosophy as follows:

In the standard positivist approach to the philosophy of science, physical
theories live rent free in a Platonic heaven of ideal mathematical models.
(Hawking, 2002)

He makes the connection to Godel as follows:

What is the relation between Godel’s theorem and whether we can formulate
the theory of the universe in terms of a finite number of principles? One
connection is obvious. According to the positivist philosophy of science, a
physical theory is a mathematical model. So if there are mathematical results
that cannot be proved, there are physical problems that cannot be predicted.

As we will see, Godel’s theorems tell us that within any (consistent) formal system,
some statements cannot be proven true or false. So Hawking is saying that, given
some formalism for modeling the physical world, inevitably some statements within that
formalism we cannot know to be true or false. Although this could be a huge disappoint-
ment to scientists striving for that ultimate goal, the grand unified theory, Hawking draws
a more optimistic conclusion:

Some people will be very disappointed if there is not an ultimate theory that
can be formulated as a finite number of principles. I used to belong to that
camp, but I have changed my mind. I’'m now glad that our search for under-
standing will never come to an end, and that we will always have the chal-
lenge of new discovery. Without it, we would stagnate.

216

9.5. INCOMPLETENESS

With this conclusion, Hawking reaffirms my observation that scientists, like engineers,
will never be finished. Although each formalism that we might come up with has its
limitations, there is no end to the suite of possible formalisms. There will always be room
for invention of new theories.

To understand Godel’s results, we need to first understand what Hawking is referring to
as a formulation based on a “finite number of principles.” This depends on the idea of
a formal language. Before explaining exactly what a formal language is, let me give a
simple example, a language that I call X. As with any written natural language, sentences
in a formal language are written down as a sequence of characters from an alphabet. X
has a small alphabet, with just one letter, x. So the sentences expressible in this language
are any sequence of xs, such as “xxxx.” We can’t say much in language X. If I had written
this book in language X, then it would be boring indeed.

A formal language has a set of axioms, which are sentences that are by definition true
in the language. X has just one axiom, which asserts that the sentence “xx” is true. In
a formal language, you cannot argue with the axioms. They are true by definition. So it
doesn’t really matter whether you believe me when I say “xx.” When I say “xx” in the
language X, it is true. Don’t argue.

A formal language has a set of inference rules, which can transform one or more true
sentences into another true sentence. X has just one inference rule, which is that if some
sentence S is true, then the new sentence Sx (just append an x to S) is also true. For
example, if “xxx” is true, then so is “xxxx.”

What are the true sentences in X? Well, that’s an easy question. The true sentences are
(3 99 &6 99 ¢ (13 2

xx,” “xxx,” “xxxx’ and so on. The only sentence not known to be true is “x,” and perhaps
the empty sentence, if that is included in the language.

Summarizing what we have so far, a formal language has an alphabet for forming
sentences, a (preferably small) set of axioms, and a (preferably small) set of inference
rules. That’s all. More interesting formal languages will have a bigger alphabet, which
might, for example, include the characters + and X to represent addition and multipli-
cation of numbers. The inference rules could include, for example, basic rules of logic,
such as, “If you know that at least one of sentences A and B is true, and you know that A
is false, then you can conclude that B is true.” Almost all of mathematics is expressible
within such formal languages, including mathematics that deals directly with continuums.

A formal language has a notion of a proof. A proof is a sequence of true sentences that
demonstrate that a particular end sentence is true. The sequence starts with the axioms,

217

9. SYMBIOSIS

which are assumed to be true, and follows with sentences constructed using the inference
rules. The final sentence in the sequence is the sentence proved by the proof. Hilbert’s
Program sought a formal language that would prove all mathematical truths and have no
contradictions (i.e. cannot prove any false sentences).

More precisely, a formal language is complete if every sentence in the language can be
proved true or false. The language is consistent if no sentence can be proved both true
and false. Hilbert sought a complete and consistent formal language for mathematics.

In X, every sentence with at least two xs has a proof. For example, the proof of the
sentence “xxxx;’ is the sequence of sentences (“xx”, “xxx”, “xxxx”). This is a proof
because it starts with an axiom, ends with the sentence being proved, and uses inference
rules to get from one sentence to the next. There is no way in X to construct a proof that

a sentence with at least two xs is false, so X is consistent. Is it complete?

The sentence “x” has no proof, but there is also no proof that it is false. In fact, within the
language X, I cannot make the sentence, “The sentence ‘x’ is false.” The only sentences
I can make are rather boring sentences, such as “xxxxxxxx.” Therefore, this language
cannot possibly have a proof that “x” is false. Thus, X is not complete unless I extend it

(T3]

with another axiom, that “x” is false or true. Within the language X, the sentence “x” is

.9

neither true nor false. I have to step outside the language X to assign a truth value to “x.

What does it mean for a sentence to be “true” if a formal language can have sentences
that are neither true nor false? This question has vexed logicians for some time. One
possible resolution to this conundrum is to equate the notion of “truth” with the existence
of a proof. This is, in fact, a form of logic called “intuitionistic logic,” which ironically
is not very intuitive. In intuitionistic logic, a sentence is true only if there is a proof that
it is true, and it is false only if there is a proof that it is false. Under this logic, in X, the
sentence “x” is neither true nor false. Intuitionistic logic rejects the “law of the excluded
middle,” an axiom of classical logic that asserts that any sentence must be either true or
false. It replaces this law with a constructive principle, which states that truth or falsehood

are consequences of constructive demonstrations of that truth or falsehood.

Intuitionistic logic is a rather draconian solution to this problem. A more pragmatic
approach is to simply accept that we will sometimes have to rely on certain sensible or
self-evident statements as truths even if we have no proof for them. In other words, we
may need to assume some elements of the Platonic Good.

Alfred Tarski, a Polish mathematician who later emigrated to the United States, showed
in 1936 that no formal language rich enough to possibly satisfy Hilbert’s Program could

218

9.5. INCOMPLETENESS

completely define its own notion of truth. In effect, to talk about the “truth” of some
sentences in a formal language, you may have to step outside the formal language and
use what Tarski called a “metalanguage.” This “undefinability of truth” is credited to
Tarski, but really it was already present in Gddel’s own results, so it might be more appro-
priate to credit Godel for it. Nevertheless, Tarski made it explicit and widely known and
understood, as much as such a concept can be understood.

Consider now the following sentence, which I will call “Godel’s sentence’:

“There is no proof for this sentence.”

Suppose this sentence can be made in some formal language (clearly X is not a rich
enough language for this). If the sentence is true, then the language cannot be complete
because there is at least one sentence, Godel’s sentence, that is true but has no proof. If the
sentence is false, then the language cannot be consistent because if the sentence is false,
then it has a proof, which means there is a proof for a false sentence. Hence, any formal
language that can express Godel’s sentence cannot be both complete and consistent.

Note that I don’t have to establish whether Godel’s sentence is true or false. That would
require me to use a metalanguage, per Tarski. If the sentence is true, then the language
is incomplete. If the sentence is false, then the language is inconsistent. Either way, I've
shown that no language that can express Godel’s sentence can satisfy Hilbert’s Program.

You’ve probably already noticed an obvious resolution to the conundrum raised by
Godel’s sentence. Let’s just avoid any language that can express Godel’s sentence! Are
there such languages? Sure. X is such a language. But X can’t satisfy Hilbert’s Program
because it can’t express much math. Notice that it can express a little math. For example,
I can interpret the sentence “xxx” to mean the natural number 3. So I can express all the
natural numbers in X (I could interpret the empty sentence, which says nothing, as zero).
But the language gives me no way to express, say, “xxx + xx = xxxxx” because the symbols
+ and = are not in the alphabet. The only sentences I can make in X are strings of xs.

Hilbert wouldn’t be satisfied with X. Is there some other language that would have
made him happy? Godel, to the great disappointment of many optimistic mathematicians,
showed that any formal language that is rich enough to describe addition and multiplica-
tion of natural numbers can in fact make Godel’s sentence or a sentence logically equiva-
lent to it. Hence, any formal language that has the potential to address Hilbert’s Program is
either incomplete or inconsistent. This is Godel’s first theorem. Gddel’s second theorem,
also published in 1931, showed that no rich enough formal language can prove its own

219

9. SYMBIOSIS

consistency. You have to step outside the language and use a metalanguage to construct
any such proof.

Godel’s sentence may seem too clever, too cute, a parlor trick. The essence of Godel’s
sentence is its self-reference. The sentence talks about itself, reminiscent of the self-
scaffolding of software, human consciousness and self-awareness, and Searle’s “the
concept that names the phenomenon is itself a constituent of the phenomenon.” It suggests
that formalisms capable of self-reference are all problematic. = Hawking points out
that such self-reference is also intrinsic in science because the humans who are building
models of the physical world are part of that same physical world:

[W]e and our models are both part of the universe we are describing. Thus
a physical theory is self-referencing, like in Godel’s theorem. One might
therefore expect it to be either inconsistent or incomplete. The theories we
have so far are both inconsistent and incomplete. (Hawking, 2002)

So this is not a parlor trick. It is quite fundamental.

I won’t explain how Gdodel proved his theorem, although it’s an interesting subject. I've
already risked losing too many readers. If you are interested in understanding this more
deeply, I recommend Franzén (2005), which is informal and accessible. A more rigorous
overview can be found in Raatikainen (2015). A delightful and witty exposition of the
topic can be found in Gdédel, Escher and Bach: An Eternal Golden Braid by Douglas
Hofstadter (Hofstadter, 1979), which won a Pulitzer Prize.

Instead of giving you more detail on Godel’s theorems, I would like to consider their
implications for modeling and software. In Godel’s formal languages, the set of all math-
ematical statements and the set of all proofs are countable sets, just like the set of all
computer programs. Moreover, a “proof” in a formal language is a sequence of transfor-
mations of sentences, where each transformation is governed by a set of inference rules.
This is conceptually close to what a computer does when it executes a program. In a
computer, the sentences in the formal language are ultimately just sequences of bits, and
the inference rules are the instructions in an instruction set architecture.

Given a finite alphabet, every sentence constructed as sequences of letters from that
alphabet can be encoded as a sequence of bits. The original alphabet and sentence become
semantic interpretations of the bit sequences. If each inference rule in a formal language
is a computable function, then a proof is exactly an execution of a program. It has to

220

9.5. INCOMPLETENESS

terminate to be a proof, and therefore the existence of a proof and the halting problem are
closely connected.

This is not just theory. Extremely useful computer programs, called “theorem provers,”
take as input an encoding of a sentence in a formal language and attempt to apply the
inference rules of the language backward until the program transforms the bit pattern
into one or more axioms. If the program succeeds, then the program has constructed a
proof. Godel and Turing both showed, in different ways, that no such program can always
succeed.

The formal languages considered by Godel only permit us to make a countable number
of mathematical sentences. Moreover, his incompleteness result only applies to formal
languages that are rich enough to describe arithmetic on natural numbers, another count-
able set. If instead we look at formal languages that describe arithmetic on real numbers,
then the theorems do not apply. Tarski showed in 1948 that a natural theory of real
numbers that expresses addition and multiplication, the so-called theory of real closed
fields (RCFs), is both complete and consistent (and also decidable, an even stronger prop-
erty which asserts that the truth or falsehood of any statement can be determined by an
effectively computable function). He also showed a theory of Euclidean geometry that is
complete, consistent, and decidable.

Formal languages that talk about real numbers are better behaved than formal languages
that talk about natural numbers. This notion perhaps further supports my suspicion that
Kronecker got it backward when he ascribed the integers to God and the rest to man.
It also supports my argument that when designing information-processing machines, we
should not limit ourselves to software, which is forced to live within the world of natural
numbers.

The number of sentences in any particular formal language is countable, but what about
the number of possible formal languages? Given any formal language that fails to provide
a proof for some proposition that we care about, we can always come up with a different
formal language that does provide such a proof or even one that makes that proposi-
tion an axiom. Moreover, even if we restrict the alphabet to, say, zeros and ones, the
number of possible semantic interpretations for formal languages is certainly not count-
able. However, like Kuhn’s paradigms, distinct formal languages, particularly those with
distinct semantics, are incommensurable. The sentences of one formal language cannot
be evaluated through the lens of the other. Making comparisons across formal languages
requires stepping outside these formal languages into a metalanguage. This is what we
do when we assign semantics to a syntax. For example, if I interpret the sentence “xxx”

221

9. SYMBIOSIS

in the language X to mean the natural number three, then I have assigned it a semantics.
The language X has no notion of “three” and assigns no meaning to “xxx”” except that it is
true.

Turing computation is a formal language. The alphabet for this language has two letters,
0 and 1, and the sentences are sequences of bits. The semantics I assign to these bit
sequences, however, is quite arbitrary. As I pointed out in section 9.2, I could interpret
the bit sequence 11 to mean =, although 11 is not a direct binary encoding of the number
7. Hence, just as formal languages can talk about irrational numbers, so can computers,
given a suitable semantic interpretation to the bit sequences. The partnership of computers
with humans enables such semantic interpretation, and because the number of possible
semantic interpretations is much larger than the countable number of formal sentences in
any formal language, there is plenty of room for creativity.

Mathematical formal languages on real numbers are widely used by scientists and engi-
neers to specify models. These models can be talking about systems whose behaviors
involve uncountable sets, although the total number of sentences that can be formed in
any formal language is countable. For example, Faraday’s law, equation (256), speci-
fies voltages and currents in a continuum, but the law can nevertheless be encoded in a
formal language. In fact, we routinely use models that involve uncountable sets when-
ever we use a continuum in our models, for example, to model time or space. With
suitably chosen semantic interpretations, these models can be manipulated by computers.
However, the manipulations are meaningless without the semantic interpretation, so the
partnership with humans becomes essential.

If the number of possible systems or behaviors in the physical world is uncountable,
however, then given any one formal language and any one semantic interpretation, we
can expect that most systems are indescribable. There just aren’t enough sentences to
describe more than a tiny subset. If nature is not constrained to give us only describable
systems, then we should assume that with high probability any system found in nature will
be indescribable by any particular formal language paired with a semantic interpretation.

Humans are not restricted to working only with one formal language and one semantic
interpretation. It is true that given any formal language, such as the accepted language
of mathematics based on Zermelo-Fraenkel set theory, we cannot construct more than a
countable number of sentences. Yet we can invent new languages. In fact, we do this
all the time. Every programming language is a formal language, and we keep coming up
with new ones. We are free to assign semantic interpretations to sentences in any formal
language. Although a computer produces only zeros and ones, we can interpret a string

222

9.5. INCOMPLETENESS

of zeros and ones to represent a sequence of letters from the alphabet forming sentences
in a natural language. This book is produced on a computer, and formally the book is a
sequence of zeros and ones, but only a human can give it meaning.

If our goal is engineering rather than science, then we do not need for our new languages
to describe some preexisting physical system, such as human cognition. Rather we only
need the language to be able to describe something useful or even just something beautiful
or interesting. And we need the language to be implementable. We need to be able to find
a physical realization that is reasonably faithful to the language. It need not be perfect.
No computer is perfect.

Models are similar. They are expressed in a formal language. Speaking as an engineer,
I need models to be understandable, and I need to be able to find physical systems that
are reasonably faithful to my models. I do not need my models to be true. For example,
I know we can make a pretty good balloon machine even if the circumference will never
be exactly T x d, and we can make a pretty good inductor even if Faraday’s law does not
exactly describe its behavior.

Mathematical models are capable of describing behaviors that software cannot handle
numerically, but by assigning semantic interpretations to the formal symbols manipu-
lated by a computer, computers can help humans to use such models. Computers can,
for example, sometimes prove theorems and symbolically solve mathematical equations
involving real numbers. However, software is fundamentally limited to a countable world,
and it is limited to processes that are algorithmic, following step-by-step procedures. If the
physical world is not so limited, then there are machines that can perform functions that
software cannot. I believe it is extremely unlikely that the physical world is so limited;
thus, despite the amazing things we can do with software, we can’t do everything, and
even what we can do with software often requires a partnership with humans to give it
any semantic meaning. Computers are not universal machines.

223

10

Determinism

Contents
10.1 Laplace’sDemon v v v v v v v v vt v o v oo oo v o s nsas 225
10.2 The Butterfly Effect 234
10.3 Incompleteness of Determinism. 240
10.4 The Hard and the Soft of Determinism 248

.-+ in which I argue that determinism is a property of models not of the phys-
ical world; that determinism is an extremely valuable property, one that has
historically delivered considerable payoffs in engineering and science, that
deterministic models may not be usefully predictive because of chaos and
complexity; that families of deterministic models that embrace both discrete
and continuous behaviors are incomplete; and that nondeterministic models,
used explicitly and judiciously, play an essential role in engineering.

10.1. LAPLACE’S DEMON

10.1 Laplace’s Demon

The previous three chapters show definitively that we cannot know everything. Of course,
each of us already knew that about ourselves, but these results are more fundamental.
They assert that not everything is knowable. If we limit our study to computational
processes, those given algorithmically by software, then Turing’s result shows that we
cannot tell what some programs will do just by looking at the code. If we broaden our
study to formal mathematical models, then Godel’s result shows that we will always be
able to construct models that we cannot determine to be true or false (or, worse, that
end up being both true and false). Moreover, cardinality arguments show that there are
many more possible information-processing functions than there are computer programs,
mathematical models, or even descriptions in any given language. Consequently, some
functions are not computations, cannot be modeled mathematically, and cannot even be
described (completely) in any language we have. Unless nature, for some inexplicable
reason, limits itself to only the tiny subset of functions that are computable and describ-
able in a language we have, nature will inevitably continue to throw things at us that we
cannot understand. To a scientist, this may be frustrating, but to an engineer, it simply
means that the horizon for creativity is infinitely far away. There are no bounds to what
we can do because we can continue to invent new languages and formalisms, and because
they will never be complete, we will never be finished.

Because we can’t know everything, we need systematic ways to deal with uncertainty.
In the next chapter, I will directly address how to model uncertainty with probabilities.
Before we can do that, however, we need to address the question of whether uncertainty is
caused by the limits of what we can know or some intrinsic randomness in the world or in
our models of the world. Many of the mathematical models and computer programs that
we construct are deterministic, which suggests that we should be able to know quite a bit
about them unless they fall into the Turing and Gédel traps. Most computer programmers
strive to avoid these traps, yielding understandable programs, and also to create deter-
ministic programs. However, this notion of determinism is not a simple one. We can’t
confront uncertainty without first confronting determinism.

Determinism is a deceptively simple idea that has vexed thinkers for a long time.
Broadly, determinism in the physical world is the principle that everything that happens
is inevitable, preordained by some earlier state of the universe or by some deity. For
centuries, philosophers have debated the implications of this principle, particularly insofar

225

10. DETERMINISM

as it undermines the notion of free will. If the world is deterministic, then presumably we
cannot be held individually accountable for our actions because they are preordained.'

Determinism is quite a subtle concept, as is the notion of free will. John Earman, in his
Primer on Determinism, admits defeat in getting a handle on the concept:

This is already enough to make strong the suspicion that a real understanding
of determinism cannot be achieved without simultaneously constructing a
comprehensive philosophy of science. Since I have no such comprehen-
sive view to offer, I approach the task I have set myself with humility.
And also with the cowardly resolve to issue disclaimers whenever the going
gets too rough. But even in a cowardly approach, determinism wins our
unceasing admiration in forcing to the surface many of the more important
and intriguing issues in the length and breadth of the philosophy of science.
(Earman, 1986, p. 21)

But Earman insists that “determinism is a doctrine about the nature of the world.” 1
will circumvent the most treacherous difficulties by instead adopting a principle that I
first learned from the Austrian computer scientist Hermann Kopetz, who asserted that
determinism is a property of models and not a property of the physical world. This thesis
does not diminish my fascination with the deep questions that Earman addresses, but it
certainly does make it easier to apply the concept of determinism to engineered systems.

As a property of models, determinism is relatively easy to define:

A model is deterministic if given an initial state of the model, and given
all the inputs that are provided to the model, the model defines exactly one
possible behavior.

In other words, a model is deterministic if it is not possible for it to react in two or
more ways to the same conditions. Only one reaction is possible. In this definition, I
have italicized words that must be defined within the modeling paradigm to complete the

99 ¢

definition, specifically, “state,” “input,” and “behavior.”

For example, if the state of a particle is its position x(¢) in a Euclidean space at a time ¢,
where both time and space are continuums, and if the input F(z) is a force applied to the

1 Author and neuroscientist Sam Harris, in his short 2012 book Free Will, argues that even without deter-
minism, free will does not exist. His argument is quite compelling but off topic for this book.

226

10.1. LAPLACE’S DEMON

particle at each instant ¢, and the behavior is the motion of the particle through space, then
Newton’s second law, equation (4096), is a deterministic model.

Two useful variations of this idea are evident immediately. First, a model may not have
any inputs, in which case it is called a “closed model.” For example, if we assume that
the universe is everything there is, then any model of the universe cannot have any inputs.
Nothing outside the universe exists to provide those inputs. A closed model is determin-
istic if given an initial state, exactly one behavior is possible.

Second, a deterministic model may be reversible. In this case, given the state of the model
at any particular time, and given the inputs at all times (if there are any inputs), both the
past and future of the model are uniquely defined. There is only one possible past and
only one possible future. Put another way, in a closed reversible deterministic model, the
behavior for all time is determined by the state at any one time.

One reason that this simple concept has been so problematic is that all too often, when
speaking of determinism, the speaker is confusing the map for the territory. To even
speak of determinism, we must define “input,” “state,” and “behavior.”” How can we
define these things for an actual physical system? Any way we define them requires
constructing a model. Hence, an assertion about determinism will actually be an assertion
about the model not about the thing being modeled. Only a model can be unambiguously
deterministic, which underscores Earman’s struggle to pin down the concept.

Consider that any given physical system inevitably has more than one valid model. For
example, a particle to which we are applying a force exhibits deterministic motion under
Newton’s second law but not under quantum mechanics, where the position of the particle
will be given probabilistically. However, under quantum mechanics, the evolution of the
particle’s wave function is deterministic, following the Schrédinger equation (I will say
more about this later). If the “state” and “behavior” of our model are the wave function,
then the model is deterministic. If instead the state and behavior are the particle’s position,
then the model is nondeterministic. It makes no sense to assign determinism as a property
to the particle. It is a property of the model.

If I have a deterministic model that is faithful to some physical system, then this model
may have a particularly valuable property: the model may predict how the system will
evolve in time in reaction to some input stimulus. This predictive power of a deterministic
model is a key reason to seek deterministic models.

We already know that some deterministic models are not predictable. For example, Turing
showed that we cannot predict, for all computer programs, whether the program execution

227

10. DETERMINISM

will halt for a particular input, even if the program is deterministic. It turns out that there
are many more deterministic models that are also not predictable because of chaos and
complexity.

In chapter 2, I made a distinction between the engineering and scientific uses of models.
An engineer seeks a physical system to match a model, whereas a scientist seeks a model
to match a physical system. For these two uses, determinism plays different roles. For an
engineer, the determinism of a model is useful because it facilitates building confidence
in the model. In chapter 4, | talked about logic gates as deterministic models of electrons
sloshing around in silicon. The determinism of the logic gate model is valuable: it enables
circuit designers to use Boolean algebra to build confidence in circuit designs that have
billions of transistors. The model predicts behaviors perfectly, in that an engineer can
determine how a logic gate model will react to any particular input, given any initial state.

Of course, the usefulness of the logic gate model also depends on our ability to build
silicon structures that are extremely faithful to the model. We have learned to control the
sloshing of electrons in silicon so that, with high confidence, a circuit will emulate the
logic gate model billions of times per second and operate without error for years.

Herein lies an essential difference between science and engineering. To a scientist, for
a deterministic model to be useful, it must faithfully describe the behavior of a given
physical system. To an engineer, for a deterministic model to be useful, it must be possible
to construct a physical system that is faithful to the model. In both cases, “faithful”
means that the behaviors of the model and the physical system match to a high degree
of accuracy. However, the goals are different, and therefore deterministic models will be
useful to an engineer in situations where the same models are not useful to a scientist and
vice versa.

Some of the most valuable engineering models are deterministic. In addition to logic
gates, we also have digital machines, instruction set architectures, and programming
languages, most of which are deterministic models. The Turing machines in chapter 8
are also deterministic. The determinism of all these models has proved extremely valu-
able historically. The information technology revolution is built on the determinism of
these models.

For a scientist, fundamentally, when considering the use of deterministic models, it
matters quite a lot whether the physical system being modeled is also deterministic. Is
the sloshing of electrons in silicon deterministic? If only a model can be unambiguously
deterministic, then how can we answer this question? The fact is that almost all estab-

228

10.1. LAPLACE’S DEMON

lished laws of physics are deterministic models, and most are also reversible. Ohm’s law
for resistors and Faraday’s law for inductors from chapter 2 are both reversible deter-
ministic models. For a resistor, if I define the input to be a voltage and the output to be
the current, then Ohm’s law gives me a deterministic model of a resistor. The model is
described by equation (1024). Newton’s laws of motion and Einstein’s theories of rela-
tivity are deterministic. Interestingly, even basic laws used to study the thermodynamics
of gasses such as Boyle’s law and Charles’ law are deterministic, although they do not
require the underlying motion of gas molecules to be deterministic. They define state,
input, and output in terms of pressure, temperature, and volume not in terms of positions
and momentums of the gas molecules. Even quantum mechanics is almost entirely deter-
ministic, in that the evolution of the wave function as defined by the Schrédinger equation
is deterministic.

The question of whether the physical world is deterministic has remained unanswered
for a long time. In the early 1800s, the French scientist Pierre-Simon Laplace made an
argument for determinism in the universe. Laplace argued that if someone (a demon) were
to know the precise location and velocity of every particle in the universe, then the past
and future locations and velocities for each particle would be completely determined and
could be calculated from the laws of classical mechanics (Laplace, 1901). Is this true?

As I've pointed out before, the laws of classical mechanics, such as Newton’s second law,
equation (4096), are wrong. They need to be adjusted using Einstein’s relativity to be
precise, although the imprecision will be insignificant for most applications of classical
mechanics. Moreover, the notions of position and velocity that underly the notion of
“state” in classical mechanics are undermined by quantum mechanics, although again
only significantly at extremely small scales. If the question is the fundamental scientific
question of whether the world is deterministic, then any imprecision, no matter how small,
matters.

What about the probabilistic nature of the wave function in quantum mechanics? Does
this undermine the idea of a deterministic universe? Stephen Hawking argues that it does
not:

At first, it seemed that these hopes for a complete determinism would be
dashed by the discovery early in the 20th century that events like the decay
of radioactive atoms seemed to take place at random. It was as if God was
playing dice, in Einstein’s phrase. But science snatched victory from the
jaws of defeat by moving the goal posts and redefining what is meant by a
complete knowledge of the universe. (Hawking, 2002)

229

10. DETERMINISM

Hawking is referring to the fact that the Schrodinger equation, which describes how a
wave function evolves in time, is deterministic. “In quantum theory, it turns out one
doesn’t need to know both the positions and the velocities [of the particles].” It is enough
to know how the wave function evolves in time.

Although I can’t possibly explain it fully (I'm not convinced that anyone can), it is worth a
brief aside on wave functions because they represent the only established nondeterminism
that I know of in widely accepted models of fundamental physics. In quantum mechanics,
the position of a particle in space is not described simply as a point in a three-dimensional
Euclidean geometry but rather by a wave function, a squiggle that changes shape and
moves in space over time. The square of the value of the wave function at a point in space
and time represents the relative probability of finding the particle at that position at that
time.” The use of probabilities, a subtle concept that I discuss in chapter 11, implies that
the position of the particle is nondeterministic, and the wave function gives the relative
likelihoods that an observer will find the particle at any particular point in space.

In 1926, Erwin Schrodinger, a Nobel Prize-winning Austrian physicist, published what is
now a key centerpiece of quantum mechanics, the Schrodinger equation. This equation
describes the evolution in time and space of the wave function, and as Hawking points
out, that evolution is deterministic.

The wave function represents probabilities, and its interpretation is fraught with diffi-
culties. In what is now called the Copenhagen interpretation, originally proposed in
the years 1925 to 1927 by the Danish physicist Niels Bohr and the German physicist
Werner Heisenberg, the state of a system continues to be defined by probabilities until an
external observer observes the state, and only at that point do the probabilities influence
the outcome. Prior to being observed, all possible outcomes represented by the probabil-
ities continue to remain possible. This requires an “observer” who is somehow separate
from the system and measures the position of the particle. The usual interpretation of
a probability is that it specifies the likelihood of observing a particular outcome of an
experiment. Under this interpretation, a probability makes sense only if the experiment
is performed and the outcome is observed. How can any observer be separate from the
physical system?

Schrodinger pointed out difficulties of the Copenhagen interpretation, famously illus-
trating them with what is now called “Schrodinger’s cat.” In this thought experiment, a
cat is locked in a chamber containing a mechanism that will release a poison if a particular

2 For the position of a particle, this is actually a probability density not a probability. The probability of
finding the particle at any specific point in space and time is zero (see chapter 11).

230

10.1. LAPLACE’S DEMON

radioactive atom decays, emitting radiation. The decay of a radioactive atom is governed
by a wave function, so the decay event is governed by probabilities. The probabilities
evolve deterministically according to the Schrodinger equation, but under the Copen-
hagen interpretation, no actual experiment governed by those probabilities occurs until an
observer observes the system. Because all possibilities remain possible until an observer
observes the system, Schrodinger argued that the cat must be both alive and dead until
such observation occurs. Only then does it become one or the other.

These difficulties have led to endless debate about the meaning of the wave function, with
a variety of sometimes bizarre positions emerging. Some of these positions posit that
the observer somehow lives outside of physics, that the observer is God, and that this
observer is the essence of human cognition. In the 1950s, the physicist Hugh Everett 111
dispensed with the observer, bundling observer and observed under a single wave function
that evolves deterministically under the Schrodinger equation. This view is often called
the “many worlds” view because it can be interpreted to mean that all outcomes exist
simultaneously in an infinite number of parallel universes. In this view, we can take the
state of a system to be its wave function, and then quantum dynamics is deterministic.

So Laplace’s question still stands, except that now we have to update it to consider the
“state” of the system to be represented by its wave function not by the positions and veloc-
ities of its particles, and we have to account for the curvature of space time no matter how
small. If we make these adjustments, is the resulting model of the universe deterministic?
The question of whether the physical world itself is deterministic is probably unanswer-
able.” However, we can answer the question of whether any particular model of the
universe is deterministic. We need to keep distinct the map and the territory.

In 2008, David Wolpert used Georg Cantor’s diagonalization technique to prove that
Laplace’s demon cannot exist (Wolpert, 2008). His proof relies on the observation that
such a demon, were it to exist, would have to exist in the very physical world that it
predicts. This results in a self-referentiality that yields contradictions, not unlike Turing’s
undecidability discussed in chapter 8 and Godel’s incompleteness theorems discussed in
chapter 9. In fact, the result is a kind of essential incompleteness that must result from
any deterministic model of the universe, similar to Hawking’s observation quoted earlier.
Binder (2008), in a review of Wolpert’s work, observes poignantly, “It is possible, though,
that these various theories, along with all that we have learned in physics and other scien-
tific disciplines, will yet merge into the best science can do: a theory of almost every-

3 For a concise summary of the various interpretations that have been put forth, see Hoefer (2016). For a
more in-depth study of determinism in physical models, Earman’s Primer on Determinism remains a good
analysis of determinism in various physical theories (Earman, 1986).

231

10. DETERMINISM

thing.” That theory, incomplete as it is, today consists almost entirely of deterministic
models.

These debates are fascinating and more philosophical than scientific, but they are largely
irrelevant to the engineering use of models. The value of a deterministic logic gate model
does not depend at all on whether the sloshing of electrons in silicon is deterministic. It
depends only on whether we can build silicon structures that emulate the model with high
confidence. We do not need and cannot achieve perfection. As Box and Draper say, all
models are wrong, but some models are useful, and logic gates have proved extremely
useful.

Although determinism can help predict how a system will evolve in time, I will show
in section 10.2 that even a deterministic model may not predict future behavior well. It
may be foiled by a phenomenon called chaos; by complexity, where it simply becomes
impractical to compute the predictions; or even more simply by an accumulation of error.
In such cases, nondeterministic models may become valuable.

Every model has a bounded regime of validity. Newton’s laws are accurate at modest
speeds and scales, but even a system that is well described by Newton’s laws may evolve
to be outside the regime of validity of the model. Suppose that we apply a modest constant
force for a long time to an object in space. Then Newton’s second law predicts that the
velocity will grow without bound, eventually exceeding the speed of light, in violation of
Einstein’s special theory of relativity. Compared with an actual physical system, the error
in the model’s prediction will become arbitrarily large. Nevertheless, for a reasonably
short time horizon, with small forces and large masses, Newton’s second law will predict
behavior extremely well, and such prediction is valuable. Similarly, Einstein’s general
theory of relativity explains gravity at large scales, whereas quantum mechanics explains
interactions of matter at small scales, and attempts to unify these remain unsatisfactory.

Deterministic models may also be foiled by complexity. A classic example from ther-
modynamics is the pressure exhibited by a gas in a chamber. This can be modeled as
collisions of individual molecules with each other and with the walls of the chamber.
In Laplace’s day, these collisions would have been governed by Newton’s determin-
istic laws of motion, but such models are intractable. Any attempt to compute the indi-
vidual motions of even a relatively small number of molecules under such laws of motion
would overwhelm even the most powerful computers today. As a consequence, physicists
consider these motions to be nondeterministic and rely on the statistics of large numbers
of random events to exhibit behaviors that are well modeled deterministically by Boyle’s
and Charles’ laws. The emergence of deterministic models from large numbers of nonde-

232

10.1. LAPLACE’S DEMON

terministic behaviors is a consequence of the law of large numbers, considered in the
next chapter. Our ability to model transistors as deterministic switches relies on similar
statistical arguments.

Complex behaviors can arise from even simple models, which can exhibit a phenomenon
called “chaos.” Interestingly, the inability to make predictions for chaotic models despite
their determinism can actually be a valuable property. The technology of encryption,
which obscures the content of messages, depends on both determinism (to ensure that
the message can be decrypted by the intended recipient) and an inability to make predic-
tions (to protect the message from eavesdroppers). Interestingly, although cryptographers
today depend on deterministic models, they hope the physical world is actually nondeter-
ministic and some form of “true randomness” can be tapped to make stronger encryption
techniques. True randomness, it turns out, is extremely difficult to achieve.

A nondeterministic model may also lend itself to prediction, but instead of predicting a
single behavior, it predicts a family of behaviors. Each behavior in the family is possible.
A nondeterministic model of a coin toss, for example, simply states that both heads and
tails are possible. A deterministic model of a coin toss remains elusive. Even if we
laboriously construct one using some exact model of the shape and material properties
of the coin and the surface on which it lands, the predictive value of the model would be
poor because even the smallest error in our model could drastically change the outcome
of a toss. Despite its uselessness, Karl Popper, high priest of scientific positivism, insists
on such a model for the toss of a die:

One sometimes hears it said that the movements of the planets obey strict
laws, whilst the fall of a die is fortuitous, or subject to chance. In my view the
difference lies in the fact that we have so far been able to predict the move-
ment of the planets successfully, but not the individual results of throwing
dice. In order to deduce predictions one needs laws and initial conditions; if
no suitable laws are available or if the initial conditions cannot be ascertained,
the scientific way of predicting breaks down. In throwing dice, what we lack
is, clearly, sufficient knowledge of initial conditions. With sufficiently precise
measurements of initial conditions it would be possible to make predictions
in this case also. (Popper, 1959, p. 198)

The root of this insistence is a firm belief in the determinism of the underlying physical
system. However, predictions can only be made with models, and no such model will be
faithful to the physical system in any useful way, so an irreconcilable gap remains here.

233

10. DETERMINISM

Regardless of whether the underlying physical world is deterministic, a nondeterministic
model may be augmented with probabilities, which attach a measure of our uncertainty
about the outcome. The unfair coin toss considered in chapter 7, where we expect only
1 of 10 tosses to produce tails, can be modeled with probability 0.1 for tails and 0.9 for
heads. I will explore probabilistic models in chapter 11, but for now let’s just focus on
deterministic models.

10.2 The Butterfly Effect

Studying atmospheric effects with the goal of being able to predict weather better, Edward
Norton Lorenz came to a disheartening conclusion that prediction beyond a few days was
simply not possible, despite that his models were deterministic. Working as a research
meteorologist at MIT in the early 1960s, Lorenz was among the first to use well-developed
mathematical models of convection and thermal effects in fluids to build computer simu-
lations of weather. He noticed, however, that his models would yield radically different
behaviors if he started the simulations with minutely different initial states.

[T]wo states differing by imperceptible amounts may eventually evolve into
two considerably different states. If, then, there is any error whatever
in observing the present state—and in any real system such errors seem
inevitable—an acceptable prediction of an instantaneous state in the distant
future may well be impossible. (Lorenz, 1963)

People later called this extreme sensitivity to initial conditions “the butterfly effect” after
a metaphor put forth in the title of a talk by Lorenz, where the turbulence created in the
air by the wing of a butterfly could cause a tornado. The butterfly wing changed the
initial conditions just enough to make the difference between the tornado forming and the
tornado not forming. The tornado would not have formed had the butterfly not flown.

Since the time of Lorenz’s initial experiments, computers, mathematical models, and data
gathered about weather have all improved by many orders of magnitude. Yet it is still
true that predictions beyond about 14 days of weather patterns like rain and wind are not
reliable. Indistinguishable initial conditions can lead to radically different weather.

A common feature of models that have such extreme sensitivity to initial conditions is
that their behavior can appear random, capricious even. For this reason, the phenomenon
is often called “chaos,” although the models are actually deterministic. Models of fluid

234

10.2. THE BUTTERFLY EFFECT

flow, as occurs, for example, as air moves around on earth making weather, frequently
exhibit chaos. These models can capture the general pattern of behavior of a system but
not the details. The turbulence that you feel in an airplane, for example, has the character
of highly random motion (see figure 10.1). Even the most detailed model will not be able
to meaningfully predict that motion.

Even simple models can exhibit extreme sensitivity to initial conditions. Figure 10.2
shows the trajectory of a billiard ball on a table with a fixed circular obstacle in the middle.
In this case, a small variation in the angle of the initial path of the ball eventually results

ST o L St
o PREAR

Figure 10.1: Turbulence in a vortex from the tip of an airplane wing tracked with the help
of colored smoke. [Image by NASA Langley Research Center, released into the public
domain.]

235

10. DETERMINISM

in a completely different trajectory around the table. Although the starting trajectory of
the ball on the left is almost imperceptibly different between the solid line and the dotted
line, a radically different trajectory results.

Lorenz’s studies of chaos all involved physical systems operating in a continuum of space
and time. It turns out that purely digital systems can also exhibit chaotic behavior. The
electrical engineer Solomon Wolf Golomb, whom we encountered in chapter 2 for his
famous quote, “You will never strike oil by drilling through the map” (Golomb, 1971),
figured out that surprisingly simple digital logic circuits could generate bit patterns that
appeared to be random (Golomb, 1967).

I first learned about Golomb’s “linear feedback shift registers” in the early 1980s when I
was at Bell Labs designing modems, devices to transmit bit sequences over an ordinary
telephone channel that had been designed to carry human voice signals not bit sequences.
It turns out that modems behave much better on seemingly random bit sequences, where
there are no repeating patterns. Golomb had figured a way to make almost any bit pattern
look completely random using a simple logic circuit called a “scrambler.” The original bit
sequence can be easily extracted using a similar logic circuit called a “descrambler” at the
receiving end. I was so impressed with the elegant simplicity (and the Boolean algebra
that could be used to analyze these circuits) that I made an oil painting with a scrambler
circuit and LED lights embedded in the canvas (see figure 10.3). The LED lights exhibit

Figure 10.2: A billiard table with a fixed circular obstacle in the middle.

236

10.2. THE BUTTERFLY EFFECT

Figure 10.3: Pseudo Random, oil, TTL circuits, and LEDs on canvas, 1981, by the author.

a seemingly random pattern that repeats itself only every 14 hours. The circuit operates
reliably to this day.

Pseudorandom patterns were also used in a much more serious art work shown in figure
10.4, a light sculpture by the American artist Leo Villareal. The sculpture consists of
25,000 LED lights installed in 2013 on the San Franscisco Bay Bridge. The lights are
controlled by a computer to create patterns that were designed to never repeat during the
entire intended two-year lifetime of the installation.

Golomb’s circuits generate pseudorandom bit sequences. They seem random but are
not. They produce digital chaos. Pseudorandom bit sequences are central to simulation,
computer games, cryptography, and even some art. In computer games, for example, they

237

10. DETERMINISM

e

n..f.,..:,u,lm}'rinmrl

Figure 10.4: The Bay Lights, light sculpture by Leo Villareal (2013).

create an illusion of random things happening, whereas in fact the game is completely
deterministic.

In the early 1980s, Stephen Wolfram noticed a connection between Golomb’s circuits and
cellular automata. Cellular automata are simple digital models with a rectangular grid
of bits, where each bit gets repeatedly updated by computing some logic function of the
neighboring bits. A famous example of a cellular automaton is Conway’s Game of Life,
developed in 1970 by the British mathematician John Horton Conway. Conway’s game
is an astonishingly simple deterministic closed model that exhibits tantalizingly lifelike
behavior. It captured the imagination of many people, including Wolfram, who devoted
much of the rest of his career to studying cellular automata and related phenomena.

The game has a rectangular grid of cells that are either alive (shown as black squares) or
dead (white squares). An initial state has some cells alive and some dead, as shown in
figure 10.5. At each step of the game, the cells are updated according to the following
rules:

1. Any live cell with fewer than two live neighbors dies.
2. Any live cell with two or three live neighbors lives on to the next step.
3. Any live cell with more than three live neighbors dies.

4. Any dead cell with exactly three live neighbors becomes a live cell.

238

10.2. THE BUTTERFLY EFFECT

| | .
u Spaceship
] "l | V'
| 1] | '}
.] n
" N EEm u n
(] u
(1] [] [| EE E N
(1]] E 1]
| 1 1]
|
Block -
[
[|
]
1] [] u
(| |]
N _EE] [[] 1]
EE NN EH N nn [
[1] u 1|
| Tl 1]
Beehi . =.l. 1]
eehive
| u

Figure 10.5: A snapshot of Conway’s Game of Life.

Conway metaphorically associated these rules with life, where underpopulation, overpop-
ulation, and reproduction could all change the state of a cell. Despite the simple rules,
the game exhibits surprisingly complex behavior. As the game proceeds, patterns may
become stable, like the Block and Beehive shown in the figure, or they may move across
the grid, as in the Spaceship. They can also oscillate between two repeating patterns, and
they can exhibit seemingly random, chaotic behavior for quite a long time. It is mesmer-
izing to watch one of these games play out.

Conway’s game is purely digital, easily realized on a computer. The fact that such simple
rules can exhibit such complex behavior inspired Wolfram, who in his 2002 book, A New
Kind of Science, concludes that “all is computation” (Wolfram, 2002). More specifi-
cally, Wolfram postulates that all natural processes can be constructed out of simple rules,
and the complexities arise because of the chaos that such rules can induce. He makes
a compelling and engaging case, but of course the ultimate “truth” of such a postulate
would depend on digital physics.

Despite chaos, many engineered systems are predictable with high confidence with time
horizons of years. Transistors are good examples. Although any detailed model of the
underlying motion of electrons in the silicon will be chaotic, the macroscopic behavior
of a transistor is simple. It functions as a switch. A gasoline engine in a car is another
example. The explosions in the cylinders are highly chaotic, but they reliably deliver
controllable power to the powertrain. Harnessing chaos is a key goal of engineering and,
if Wolfram is right, of nature as well.

239

10. DETERMINISM

10.3 Incompleteness of Determinism

Laplace believed that nature can be fully described by deterministic models. Wolfram
goes further and argues that nature behaves like computational models that are also deter-
ministic. The set of deterministic computational models is much smaller than the set
of deterministic models. The set of computational models excludes continuums, for
example. So Wolfram’s claim is more aggressive than Laplace’s.

In both cases, the models may exhibit chaos, so they are capable of describing immensely
complex behavior. But the chaos also limits the utility of the models as predictors, making
Laplace’s demon a difficult concept to accept. Nevertheless, the models are deterministic.

In Laplace’s world, time and space are continuums through which objects move. In
Wolfram’s world, time and space are discrete grids of cells that are updated in a step-
by-step fashion. What happens if we assume that the world has both kinds of behaviors,
discrete and continuous? I will give a simple example that suggests that in such a world,
determinism is incomplete. Specifically, a set of deterministic models that describes the
world using a mixture of discrete and continuous behaviors has “holes” in it, situations
that should be able to be modeled deterministically but cannot be. To patch these holes,
we either have to disallow discrete behaviors altogether, asserting that they do not occur in
the physical world, or we have to embrace digital physics and sacrifice almost all known
physical models, including relativity and quantum mechanics, both of which model space
and time as continuums.

As an example of a model with both continuous and discrete behaviors, consider the
collisions of billiard balls, as shown in figure 10.6. Suppose that the left ball is moving
toward the right ball with momentum P and the right ball is sitting still, as illustrated
in figure 10.6(a). Assume that the surface is frictionless, so the momentum of each ball
remains constant until a collision occurs. As long as no collision occurs, the behavior is
continuous.

Suppose that we model a collision as a discrete event. That is, we assume that the collision
occurs in an instant, having no duration in time. Such a model needs to determine the
momentum of the balls after the collision as a function of their momentums before the
collision.

Assume that the balls are ideally elastic, meaning that no kinetic energy is lost when they
collide. In this case, Newton’s laws require that both energy and momentum be conserved,
in the sense that the total momentum and energy in the balls must be the same after the

240

10.3. INCOMPLETENESS OF DETERMINISM

collision as before.* In the physical world, some of the kinetic energy will be converted
to heat due to friction, but here we will assume that doesn’t happen or that so little kinetic
energy is lost that we can neglect it.

Assuming the masses are the same, there are two possible results from the collision that
preserve both momentum and energy. One result is that the left ball passes right through
the right ball without interacting with it. This outcome could happen, for example, if
the ball were actually a neutrino rather than a billiard ball. However, for billiard balls,
this outcome is extremely unlikely, so we are justified in rejecting this possibility. The
only other result that conserves both momentum and energy is that the balls exchange
momentums, as shown in figure 10.6(c). The left ball is now still, and the right ball is
moving away at the same velocity that the left ball was approaching before the collision.

Now suppose that the two balls have different masses. It turns out that in this case, there
are still exactly two possible solutions, one where the left ball passes through the right
ball and the other where they bounce. Let’s again choose the more reasonable solution
where they bounce. Because the masses are different, after the collision, both balls will
be moving. If the left ball is heavier than the right, then they will both be moving to
the right. If the left ball is lighter than the right, then they will be moving in opposite
directions. In both cases, their speeds after the collision are uniquely determined by

4 The momentum of a ball is the product of its velocity and its mass. The energy of a ball is half of the
product of the mass and the square of the velocity.

@ O Rl
(a) 4
Collision
v
Co
(b) 7
ORE
(©) 7

Figure 10.6: Collision of ideal billiard balls on a frictionless surface.

241

10. DETERMINISM

Newton’s requirement that both momentum and energy be conserved. Hence, the model
is deterministic.

If there are more than two balls, however, then the situation gets much more interesting.
Consider a thought experiment where two billiard balls are approaching a third ball from
opposite sides, as illustrated here”:

frictionless
©—> O <—C> surface

/

Assume that the center ball is sitting still and the two outer balls collide with the center
ball at the same time. To keep things simple, let’s start with the assumption that all three
balls have the same mass. What will happen?

I hope you have enough practical experience with billiard balls that your intuition matches
mine. [would expect in this situation that the two outer balls will bounce off the center
one and move away from it at the same speed that they had been approaching it. Thus,
after the collision, the situation will look like this:

~— 0O () —

But coming up with a discrete model that predicts this behavior turns out to not be so
easy.

A first attempt will be to simply use the same technique that we used with two balls,
where the balls exchange momentums when they collide. However, if the collisions are
simultaneous, then the left and right balls will exchange momentums with the center ball
at the same time, and these momentums will have opposite signs, canceling each other out.
Thus, all three balls will suddenly stop. This solution fails to conserve both momentum
and energy.

5 The details of this thought experiment are given in Lee (2016). T will spare you the nerd storm here, but

if you want to check the conclusions, please see that article. Penrose (1989) also used multiball collisions
to show that the notion of determinism even in classical mechanics is problematic. His examples are a bit
more complicated because they occur in more dimensions.

242

10.3. INCOMPLETENESS OF DETERMINISM

An alternative way to handle this situation is to treat the two simultaneous collisions as a
sequence of two-ball collisions with no time elapsing between the collisions. As shown
in figure 10.7(b), when the collisions occur, we can arbitrarily pick one of the collisions
to handle first, ignoring the other collision. Suppose we handle the left collision first,
ignoring the right collision, as indicated in the figure. The left ball transfers its momentum
P to the middle ball and stops. Without time elapsing, we find ourself in state (c) in the
figure, where the middle and right balls are traveling toward one another and colliding.
Now there is only one collision, so we handle it in (d), leaving us in state (e), where the
balls have exchanged momentums. Again, without time elapsing, a new collision occurs,
which we handle in (f), leaving us in state (g). After time elapses, we find ourselves in
state (h), where the left and right balls are moving away from the center ball, which has
not moved and remains still. This behavior is the one we expected intuitively, where the
two balls are moving away at equal speeds after the collision.

In this solution, if the masses of the balls are all the same, then it does not matter which
of the two collisions we handle first. Here comes the rub. If the masses of the balls are
not the same, then the solutions are not the same. If we handle the left collision first, then
we get one solution. If we handle the right collision first, then we get a different solution,
with all three balls moving at different speeds.

Suppose, for example, that the center ball weighs twice as much as the left and right balls.
To be concrete, let’s suppose that the center ball weighs two kilograms and the outer balls
weigh one kilogram each (these billiard balls are quite heavy, but nice round numbers
make the math easier). Suppose that the left and right balls are approaching the center
ball at one meter per second so that they collide simultaneously with the center ball. First,
notice that this scenario is completely symmetric, and the same intuitive solution works,
where the two outside balls bounce off the center one so that after the collision, they are
moving away from the center ball at one meter per second, and the center ball remains
still. This solution conserves both momentum and energy.

However, this is not the solution we get using the strategy shown in figure 10.7. In that
strategy, we handle the left collision first, and then without time elapsing, we handle
the second and third collisions that result. I will spare you the nerd storm, but after the
sequence of collisions in the figure, the left ball will be moving to the left at about 0.48
meters per second, the middle ball will also be moving to the left, but more slowly, at about
0.37 m/s, and the right ball will be moving to the right at about 1.22 m/s. If you do the

243

10. DETERMINISM

CO9)

(a) 7
Handle Ignore
VooV
D)
(b) 7
OB
() 7
Handle
OB
(d “
)
(e) 7
Handle
OB
() 7/
3O
9] 7
CHORI,
(h) 7

Figure 10.7: One of two orderings for handling collisions among three balls.

244

10.3. INCOMPLETENESS OF DETERMINISM

math, you can verify that with this solution, both momentum and energy are conserved.®
Notice that with this solution, the situation is no longer symmetric, although the starting
state was symmetric.

So what happens if we handle the right collision first? In that case, we will end up with
the mirror image asymmetric solution, where the middle ball is moving to the right. This
solution also conserves momentum and energy.

We now have a real conundrum. We have three possible outcomes: a symmetric one
derived intuitively and two mirror-image asymmetric ones derived using the strategy of
figure 10.7. Newton’s laws give us no basis for preferring any one of these solutions. All
three solutions, and many more, are consistent with Newton’s laws. They all conserve
momentum and energy. Because there is more than one allowed behavior, Newton’s laws
(with discrete collisions) result in a nondeterministic model.

How do we know which behavior will match some physical experiment? Here’s where
things get tricky. To conduct such an experiment, we will have to ensure that the colli-
sions are actually simultaneous. This will be difficult to do (impossible, in fact, given
quantum mechanical uncertainty principles). First, suppose that the collisions are not
actually simultaneous but are just close in time. That is, one of the two outer balls collides
with the center ball just before the other outer ball arrives. In this case, instead of a single
collision among three balls, a sequence of collisions occurs between two balls. This
makes the problem easier to solve because when only two balls are colliding, only one
outcome after the collision is possible that conserves both momentum and energy (barring
the tunneling outcome, where the balls pass through one another). Consequently, if the
collisions are not simultaneous, the model remains deterministic. Only one final behavior
is allowed by the model.

If the masses of the balls are different, then the behavior is different if the left ball collides
first than if the right ball collides first. This will be true no matter how small the time is
between collisions. Let’s call the time of the left collision 77, and the time of the right colli-
sion 7. Let the time difference be d = 1, —tg. Consider a sequence of experiments where
d is always positive (the right ball always collides first), and d approaches zero, getting
smaller and smaller. As d gets close to zero, there will be little difference between the
outcomes of these experiments. Changing d from, say, one nanosecond to 0.5 nanosec-
onds will not change the outcome much. Eventually, as d gets small, there is no significant

6 The total momentum in the system after these collisions is —0.48 x 1 —0.37 x 24 1.22 x 1 = 0, same as
the starting momentum. The total energy in the system after the collisions is ((—0.48)% x 14 (—0.37)% x
24(1.22)2 x 1)/2 = 1, same as the starting energy.

245

10. DETERMINISM

difference between the experimental outcomes, so the sequence of experiments seem to
be converging to behavior that should be the behavior when d = 0.” It would seem that the
limiting behavior should be the one unique behavior when the collisions are simultaneous.

However, it is not. If we repeat the same sequence of experiments, but this time we require
d to always be negative, then again we get a sequence of behaviors that are closer and
closer together, and they appear to be converging to a behavior, but they do not converge
to the same behavior as the previous sequence of experiments.

In the limiting case, when d reaches zero, the collisions become simultaneous. At this
point, the behavior will depend on which sequence of experiments we are conducting, the
one where d > 0 or the one where d < 0. These two sequences of experiments converge
to different behaviors as d approaches zero. When the collisions become simultaneous,
we have no basis for choosing between these two possible limiting cases, so we have to
assume they are both possible. They both conserve momentum and energy.

In the single unique experiment where d is exactly zero, there is more than one possible
outcome from the model, so the model is nondeterministic. However, if d is not zero, no
matter how small it is, then the model is deterministic. A mathematician would call the
set of all these deterministic models incomplete because this set does not contain its own
limit points. In the limit, when d exactly hits zero, the model becomes nondeterministic.
The set of deterministic models has a hole at exactly the point where d = 0.

Note that it will not do to just disallow d = 0 because to do so we would have to disallow
t1 and 1, to vary smoothly. Assuming time is a continuum, as nearly all current models of
physics do, #; can cross f;, in which case there is a point where ¢; = t,, and hence d = 0.
Note that this point is even harder to avoid if we quantize time, as required by digital
physics. However, we don’t want to do that anyway because doing so sacrifices almost
all of modern physics, including Newton’s laws, the Schrodinger equation, and Einstein’s
relativity.

I argued in section 9.3 that a close approximation of a process does not have the same
properties as the process unless no significant difference is found between a continuum
and a countable set. This billiard ball thought experiment reinforces that arbitrarily close
approximations can in fact be quite different from the real thing. If the “real thing”
is simultaneous collisions, then this thought experiment shows that all arbitrarily close

7 Technically, such a sequence of experiments, where the difference between them becomes vanishingly

small, is called a Cauchy sequence, after the French mathematician Augustin-Louis Cauchy. A space of
models is said to be complete if every Cauchy sequence in the space converges to a model in the space.
This space of deterministic models is incomplete, as proved in Lee (2016).

246

10.3. INCOMPLETENESS OF DETERMINISM

approximations to it are deterministic, but the real thing is not. Moreover, we can make
two scenarios, one with d < 0 and one with d > 0, that are arbitrarily close to one another
in all their parameters but that exhibit wildly different (but still deterministic) behaviors.
We are forced to conclude that coming arbitrarily close, in “arbitrarily fine detail” in the
words of Deutsch, does not achieve the “real thing.” In this billiard ball experiment, all
close approximations of simultaneous collisions are deterministic, but the actual simulta-
neous collisions are not.

Any model for this physical system that treats the collisions discretely will suffer this
problem. What exactly does it mean to treat the collisions discretely? In this case, it means
that the model talks about time before and after the collision, but the collision itself does
not occupy any time. It occurs instantaneously. An instant before the collision, we have
a certain energy-momentum arrangement, and an instant after, we have another energy-
momentum arrangement, and the model only requires that total energy and momentum
are conserved.

An alternative is to not treat the collision as a discrete event. Instead of being instanta-
neous, it takes time. The collision starts when the molecules of the balls are close enough
to begin to affect one another, and it ends when they have moved far enough apart that they
no longer significantly affect one another. We can build this kind of model using either
classical mechanics (Newton’s laws) or quantum mechanics (using the Schrodinger equa-
tion) to describe the continuous evolution of a wave function. Both approaches will yield
a model that is deterministic but extremely sensitive to initial conditions, and therefore
chaotic.

The nondiscrete classical mechanics solution is reasonably easy to understand. Suppose
the balls are ever so slightly springy. That is, when the molecules of one ball get close
enough to those of the other ball to start interacting, the molecules of the balls get squished
together, like a spring being compressed. The balls slow down. The spring compression
temporarily converts kinetic energy to potential energy, so energy is still conserved. As the
springs that are the balls compress, the motion of the balls slows until the balls stop. The
springs then start to decompress, converting the potential energy back to kinetic energy
and pushing the balls apart. A model like this is deterministic, but it is extremely sensitive
to the initial positions, speeds, and springiness of the balls. If those are slightly off, then
a radically different behavior will result.

So we have a choice. We can either accept a discrete model of the collisions, in which
case we lose predictability to nondeterminism, or we can reject discreteness, constructing
a detailed model of molecular interactions, in which case we lose predictability to chaos.

247

10. DETERMINISM

In both cases, we lose predictability. The model that accepts discrete collisions is much
simpler than the one that models molecular interactions, so it seems like the simpler model
that admits nondeterminism is the better choice.

10.4 The Hard and the Soft of Determinism

Determinism focuses our attention on a single behavior, a single reaction, a single “right
answer” to the question of how a system will react to a stimulus. As an intellectual tool, it
is valuable. Being able to identify the “right answer” is essential to Popper’s principle of
falsifiability in science. An experiment falsifies a theory if its behavior deviates by more
than measurement error from the right answer predicted by the theory.

In the complementary engineering use of models, a deterministic model defines the
“correct behavior” of a system. Any physical system that deviates significantly from that
correct behavior is a flawed implementation of the model. A clear definition of correct
behavior is a principle that underlies all of digital technology. The very notion of “digital”
discretizes the messy physical world, unambiguously differentiating zero and one, yes and
no, right and wrong. It is the ultimate of Serres’ hard versus soft.

However, we have to carefully avoid the tarpit that results when we conflate the map with
the territory. Determinism is a clear and unambiguous property of models but a muddy
and treacherous property of physical systems. Nearly all fundamental models in physics
are deterministic, and the question remains open whether intrinsically nondeterministic
behaviors are f